Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting Information

for

Elemental Step Thermodynamics of Dihydropyrimidine: a New Class

of Organic Hydride Donors

Fan-kun Meng and Xiao-qing Zhu

The State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China. E-mail: mfk_823@163.com, xqzhu@nankai.edu.cn Synthesis of dihydropyrimidines by the Biginelli reaction.

A mixture of aldehyde (20 mmol), ethyl acetoacetate (22 mmol), O-Methylisourea hemisulfate (15 mmol mmol), acetic acid (3 mmol) and piperazine (catalytic amount) was stirred in 50 ml toluene. The resulting mixture was refluxed for 3 h. After completion (as followed by TLC), excess toluene was evaporated under reduced pressure. The residues were treated with excess cold water (200 ml). The crude product thus was extracted by CH_2Cl_2 , concentrated and isolated through column chromatography to afford 1, 4-dihydropyrimidine. The obtained compounds were methylated by CH_3I , and isolated through column chromatography to afford 1, 2-dihydro- and 1, 4-dihydro-isomers, respectively.

Copies of the Typical ¹H NMR Spectra of XH.

ppm (t1)

|] + 3.11 |] + 2.04] - 3.09] - 2.00 子 0.95]] 5.16 3.09 7.0 4.0 2.0 8.0 ppm (t1) т т Т Т т 6.0 T T т 5.0 - - - - - Т **T** T 3.0 T T -1 1 1 1.0

Typical Electrochemical Spectra

Figure s1. CV and OSWV for the oxidation of $1H(R = CH_3)$ (a) and reduction of $1^+(R = CH_3)$ (b) in deaerated acetonitrile containing 0.1 M n-Bu₄NPF₆ as supporting electrolyte.

Figure s2. CV and OSWV for the oxidation of $2H(R = OCH_3)$ (a) and reduction of $2^+(R = OCH_3)$ (b) in deaerated acetonitrile containing 0.1 M n-Bu₄NPF₆ as supporting electrolyte.

Figure s3. CV and OSWV for the oxidation of $2H(R = CH_3)$ (a) and reduction of $2^+(R = CH_3)$ (b) in deaerated acetonitrile containing 0.1 M n-Bu₄NPF₆ as supporting electrolyte.

Figure s4. CV and OSWV for the oxidation of 2H(R = Cl) (a) and reduction of $2^+(R = Cl)$ (b) in deaerated acetonitrile containing 0.1 M n-Bu₄NPF₆ as supporting electrolyte.

Figure s5. CV and OSWV for the oxidation of $2H(R = NO_2)$ (a) and reduction of $2^+(R = NO_2)$ (b) in deaerated acetonitrile containing 0.1 M n-Bu₄NPF₆ as supporting electrolyte.

Figure s6. CV and OSWV for the oxidation of $\mathbf{3H}(R = OCH_3)$ (a) and reduction of $\mathbf{3}^+(R = OCH_3)$ (b) in deaerated acetonitrile containing 0.1 M n-Bu₄NPF₆ as supporting electrolyte.

Figure s7. CV and OSWV for the oxidation of $3H(R = CH_3)$ (a) and reduction of $3^+(R = CH_3)$ (b) in deaerated acetonitrile containing 0.1 M n-Bu₄NPF₆ as supporting electrolyte.

Figure s8. CV and OSWV for the oxidation of $\mathbf{3H}(R = H)$ (a) and reduction of $\mathbf{3}^+(R = H)$ (b) in deaerated acetonitrile containing 0.1 M n-Bu₄NPF₆ as supporting electrolyte.

Figure s9. CV and OSWV for the oxidation of $\mathbf{3H}(R = Cl)$ (a) and reduction of $\mathbf{3}^+(R = Cl)$ (b) in deaerated acetonitrile containing 0.1 M n-Bu₄NPF₆ as supporting electrolyte.

Figure s10. CV and OSWV for the oxidation of $\mathbf{3H}(R = NO_2)$ (a) and reduction of $\mathbf{3}^+(R = NO_2)$ (b) in deaerated acetonitrile containing 0.1 M n-Bu₄NPF₆ as supporting electrolyte.

Figure s11. CV and OSWV for the oxidation of $4H(R = OCH_3)$ (a) and reduction of $4^+(R = OCH_3)$ (b) in deaerated acetonitrile containing 0.1 M n-Bu₄NPF₆ as supporting electrolyte.

Figure s12. CV and OSWV for the oxidation of $4H(R = CH_3)$ (a) and reduction of $4^+(R = CH_3)$ (b) in deaerated acetonitrile containing 0.1 M n-Bu₄NPF₆ as supporting electrolyte.

Figure s13. CV and OSWV for the oxidation of 4H(R = H) (a) and reduction of $4^+(R = H)$ (b) in deaerated acetonitrile containing 0.1 M n-Bu₄NPF₆ as supporting electrolyte.

Figure s14. CV and OSWV for the oxidation of 4H(R = Cl) (a) and reduction of $4^+(R = Cl)$ (b) in deaerated acetonitrile containing 0.1 M n-Bu₄NPF₆ as supporting electrolyte.

Figure s15. CV and OSWV for the oxidation of $4H(R = NO_2)$ (a) and reduction of $4^+(R = NO_2)$ (b) in deaerated acetonitrile containing 0.1 M n-Bu₄NPF₆ as supporting electrolyte.

Figure s16. CV and OSWV for the oxidation of $5H(R = NO_2)$ (a) and reduction of $5^+(R = NO_2)$ (b) in deaerated acetonitrile containing 0.1 M n-Bu₄NPF₆ as supporting electrolyte.

Figure s17. CV and OSWV for the oxidation of $5H(R = CH_3)$ (a) and 5H(R = H) (b) in deaerated acetonitrile containing 0.1 M n-Bu₄NPF₆ as supporting electrolyte.

Figure s18. Isothermal titration calorimetry (ITC) for the reaction heat of $1H(R = CH_3)$ with 9-phenylxanthylium perclorate (PhXn⁺ClO₄⁻) in acetonitrile at 298 K. Titration was conducted by adding 10 μ L of $1H(R = CH_3)$ (2.87 mM) every 300 s into the acetonitrile containing PhXn⁺ClO₄⁻ (ca. 30 mM).

Figure s19. ITC for the reaction heat of 1H(R = H) with PhXn⁺ClO₄⁻ in acetonitrile at 298 K. Titration was conducted by adding 10 μ L of 1H(R = H) (2.97 mM) every 300 s into the acetonitrile containing PhXn⁺ClO₄⁻ (ca. 30 mM).

Figure s20. ITC for the reaction heat of 1H(R = Cl) with PhXn⁺ClO₄⁻ in acetonitrile at 298 K. Titration was conducted by adding 10 μ L of 1H(R = Cl) (3.03 mM) every 300 s into the acetonitrile containing PhXn⁺ClO₄⁻ (ca. 30 mM).

Figure s21. ITC for the reaction heat of $1H(R = NO_2)$ with $PhXn^+ClO_4^-$ in acetonitrile at 298 K. Titration was conducted by adding 10 μ L of $1H(R = NO_2)$ (3.01 mM) every 300 s into the acetonitrile containing $PhXn^+ClO_4^-$ (ca. 30 mM).

Figure s22. ITC for the reaction heat of $2H(R = OCH_3)$ with PhXn⁺ClO₄⁻ in acetonitrile at 298 K. Titration was conducted by adding 10 μ L of $2H(R = OCH_3)$ (2.98 mM) every 300 s into the acetonitrile containing PhXn⁺ClO₄⁻ (ca. 30 mM).

Figure s23. ITC for the reaction heat of $2H(R = CH_3)$ with $PhXn^+ClO_4^-$ in acetonitrile at 298 K. Titration was conducted by adding 10 μ L of $2H(R = CH_3)$ (2.89 mM) every 300 s into the acetonitrile containing $PhXn^+ClO_4^-$ (ca. 30 mM).

Figure s24. ITC for the reaction heat of 2H(R = Cl) with PhXn⁺ClO₄⁻ in acetonitrile at 298 K. Titration was conducted by adding 10 μ L of 2H(R = Cl) (3.04 mM) every 300 s into the acetonitrile containing PhXn⁺ClO₄⁻ (ca. 30 mM).

Figure s25. ITC for the reaction heat of $2H(R = NO_2)$ with PhXn⁺ClO₄⁻ in acetonitrile at 298 K. Titration was conducted by adding 10 μ L of $2H(R = NO_2)$ (2.98 mM) every 300 s into the acetonitrile containing PhXn⁺ClO₄⁻ (ca. 30 mM).

Figure s26. ITC for the reaction heat of $3H(R = OCH_3)$ with PhXn⁺ClO₄⁻ in acetonitrile at 298 K. Titration was conducted by adding 10 μ L of $3H(R = OCH_3)$ (2.98 mM) every 300 s into the acetonitrile containing PhXn⁺ClO₄⁻ (ca. 30 mM).

Figure s27. ITC for the reaction heat of $3H(R = CH_3)$ with $PhXn^+ClO_4^-$ in acetonitrile at 298 K. Titration was conducted by adding 10 μ L of $3H(R = CH_3)$ (3.03 mM) every 300 s into the acetonitrile containing $PhXn^+ClO_4^-$ (ca. 30 mM).

Figure s28. ITC for the reaction heat of 3H(R = H) with PhXn⁺ClO₄⁻ in acetonitrile at 298 K. Titration was conducted by adding 10 μ L of 3H(R = H) (2.99 mM) every 300 s into the acetonitrile containing PhXn⁺ClO₄⁻ (ca. 30 mM).

Figure s29. ITC for the reaction heat of 3H(R = Cl) with PhXn⁺ClO₄⁻ in acetonitrile at 298 K. Titration was conducted by adding 10 μ L of 3H(R = Cl) (3.02 mM) every 300 s into the acetonitrile containing PhXn⁺ClO₄⁻ (ca. 30 mM).

Figure s30. ITC for the reaction heat of $3H(R = NO_2)$ with PhXn⁺ClO₄⁻ in acetonitrile at 298 K. Titration was conducted by adding 10 μ L of $3H(R = NO_2)$ (3.03 mM) every 300 s into the acetonitrile containing PhXn⁺ClO₄⁻ (ca. 30 mM).

Figure s31. ITC for the reaction heat of $4H(R = OCH_3)$ with PhXn⁺ClO₄⁻ in acetonitrile at 298 K. Titration was conducted by adding 10 μ L of $4H(R = OCH_3)$ (3.00 mM) every 300 s into the acetonitrile containing PhXn⁺ClO₄⁻ (ca. 30 mM).

Figure s32. ITC for the reaction heat of $4H(R = CH_3)$ with PhXn⁺ClO₄⁻ in acetonitrile at 298 K. Titration was conducted by adding 10 μ L of $4H(R = CH_3)$ (3.01 mM) every 300 s into the acetonitrile containing PhXn⁺ClO₄⁻ (ca. 30 mM).

Figure s33. ITC for the reaction heat of 4H(R = H) with PhXn⁺ClO₄⁻ in acetonitrile at 298 K. Titration was conducted by adding 10 μ L of 4H(R = H) (2.95 mM) every 300 s into the acetonitrile containing PhXn⁺ClO₄⁻ (ca. 30 mM).

Figure s34. ITC for the reaction heat of 4H(R = Cl) with PhXn⁺ClO₄⁻ in acetonitrile at 298 K. Titration was conducted by adding 10 μ L of 4H(R = Cl) (3.15 mM) every 300 s into the acetonitrile containing PhXn⁺ClO₄⁻ (ca. 30 mM).

Figure s35. ITC for the reaction heat of $4H(R = NO_2)$ with PhXn⁺ClO₄⁻ in acetonitrile at 298 K. Titration was conducted by adding 10 μ L of $4H(R = NO_2)$ (3.09 mM) every 300 s into the acetonitrile containing PhXn⁺ClO₄⁻ (ca. 30 mM).

Figure s36. ITC for the reaction heat of $5H(R = CH_3)$ with PhXn⁺ClO₄⁻ in acetonitrile at 298 K. Titration was conducted by adding 10 μ L of $5H(R = CH_3)$ (3.07 mM) every 300 s into the acetonitrile containing PhXn⁺ClO₄⁻ (ca. 30 mM).

Figure s37. ITC for the reaction heat of 5H(R = H) with PhXn⁺ClO₄⁻ in acetonitrile at 298 K. Titration was conducted by adding 10 μ L of 5H(R = H) (3.09 mM) every 300 s into the acetonitrile containing PhXn⁺ClO₄⁻ (ca. 30 mM).

Figure s38. ITC for the reaction heat of 5H(R = Cl) with PhXn⁺ClO₄⁻ in acetonitrile at 298 K. Titration was conducted by adding 10 μ L of 5H(R = Cl) (3.15 mM) every 300 s into the acetonitrile containing PhXn⁺ClO₄⁻ (ca. 30 mM).

Figure s39. ITC for the reaction heat of $5H(R = NO_2)$ with PhXn⁺ClO₄⁻ in acetonitrile at 298 K. Titration was conducted by adding 10 μ L of $5H(R = NO_2)$ (3.21 mM) every 300 s into the acetonitrile containing PhXn⁺ClO₄⁻ (ca. 30 mM).

Typical Hammett Plots for Thermodynamic Parameters.

Figure s40. Plot of $\Delta H_{\text{H}^-\text{D}}(\mathbf{XH})$ against Hammett substituent parameter (σ).

Figure s41. Plot of $E(\mathbf{XH}^{+/0})$ against Hammett substituent parameter (σ).