Cation– π interactions in CREBBP bromodomain inhibition: an electrostatic model for small-molecule binding affinity and

selectivity

Wilian A. Cortopassi^{\perp}, Kiran Kumar^{\perp}, and Prof. Robert S. Paton^{*}

 $^{\perp}$ These authors contributed equally to this work.

Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK. *robert.paton@chem.ox.ac.uk

Supporting Information

Table of Contents

1. DF	FT CALCULATIONS	S3
1.1	CARTESIAN COORDINATES	
1.2	BINDING ENERGIES: COMPARISON OF DENSITY FUNCTIONALS	
1.3	ELECTROSTATIC POTENTIAL SURFACES	S10
2. M	OLECULAR DYNAMICS SIMULATIONS	\$15
 2.1 	OLECULAR DYNAMICS SIMULATIONS	S15
 2. M 2.1 2.2 	OLECULAR DYNAMICS SIMULATIONS RESP Charges MM/PBSA analysis with internal dielectric constant of 4.0	S15 S15 S45

1. DFT CALCULATIONS

1.1 Cartesian coordinates

The computational methodology is described in the main article text. Below, all species were optimized at the TPSS-D3/def2-TZVPP level of theory using *Gaussian 09.*¹ Boys-Bernadi counterpoise corrections were applied in the optimization of all complexes. Counterpoise-corrected complexation energies are used throughout, although the BSSE is small, typically in the region of 0.2 kcal/mol for all of the complexes studied. Grimme's D3 dispersion correction was applied with Becke-Johnson damping at short range using the functional-specific global parameters (S6 = 1.00, S8 = 1.9435, A1 = 0.4535, A2 = 4.4752) implemented through the use of the empiricaldispersion=gd3bj keyword in G09 rev. D.01. Energies below are quoted in Hartree per molecule unless otherwise stated. Since these complexes contain some atomic restraints to crystallographic positions we have not included zero-point energy corrections since they are not genuine stationary points on the Born-Oppenheimer potential energy surface. Effects of different levels of theory and basis set were marginal, as discussed in section **1.2**

Liga	Ligand 1: Arg complex				
<u> </u>	-	-			
COL	interpoise co	orrected ene	rgy = -516.9725		
BSS	E energy = C	0.0003			
Sun	n of monome	ers = -516.95	547		
Cor	nplexation e	nergy = -11.4	41 kcal/mol (raw)		
_					
Cor	nplexation e	nergy = -11	.20 kcal/mol (corrected)		
Ato	m X	Y	Z		
С	3.254757	-1.196359	-0.260889		
Ν	2.760614	0.160226	-0.464438		
С	1.863896	0.744207	0.319794		
Ν	1.356313	0.091733	1.356060		
Ν	1.460071	1.970973	0.052844		
С	-1.147831	-1.407212	-1.268060		
С	-1.332192	-2.118981	-0.081304		
С	-1.839744	-1.461388	1.041383		
С	-2.148519	-0.100506	0.975254		
С	-1.461309	-0.047988	-1.330251		
С	-1.970640	0.628007	-0.213451		
С	-2.253308	2.091646	-0.249558		
Н	2.415105	-1.896804	-0.226695		
Н	3.855476	-1.277696	0.651073		
Н	3.286274	0.753771	-1.092933		
Н	1.661272	-0.854445	1.534927		
Н	0.399320	0.286437	1.638416		
Н	0.794882	2.439073	0.650695		

Н	1.670108	2.412151	-0.830149
Н	-2.009768	-2.008861	1.963781
Н	-2.557419	0.400382	1.850161
Н	-1.318596	0.494510	-2.261763
Н	-2.044402	2.568590	0.714235
Н	-1.672656	2.597066	-1.027640
Н	3.878224	-1.458990	-1.114187
Н	-3.309925	2.288840	-0.468328
н	-1.105377	-3.179680	-0.037953
Н	-0.772170	-1.913425	-2.152411
Liga	nd 2: Arg co	mplex	
Cou	nterpoise co	rrected ene	rgy = -556.3155 (
BSSI	E energy = 0	.0004	
Sum	of monome	ers = -556.29	964
Com	plexation er	nergy = -12.3	33 kcal/mol (raw)
Com	plexation er	nergy = -12.	06 kcal/mol (corrected)
Ato	m X	v	7
C	3 388361	0 924579	0 699348
N	2 804280		0.460428
Ċ	1 968574	-0.655771	-0 535171
N	1 612074	0.299673	-1 381970
N	1 474281	-1 871199	-0 668462
c	-1 074611	1 209204	1 298680
c	-1 048644	2 220615	0.336597
c	-1 448683	1 938075	-0 968984
C	1.440000	1.550075	0.00004

C	-1.856173	0.641815	-1.295915
С	-1.490931	-0.090337	0.986215
С	-1.889551	-0.381543	-0.336065
С	-2.251371	-1.768685	-0.746518
н	2.595784	1.673694	0.784966
н	4.094224	1.205310	-0.089241
н	3.229100	-1.176059	0.934887
н	1.976766	1.231722	-1.244136
н	0.675061	0.275235	-1.778925
н	0.871079	-2.103084	-1.443889
н	1.585789	-2.568324	0.052416
н	-1.463386	2.719520	-1.722716
н	-2.184463	0.421236	-2.309442
н	-2.418762	-1.835248	-1.824432
н	-1.473808	-2.492543	-0.468867
н	3.920897	0.888491	1.648561
н	-3.165996	-2.115549	-0.250245
н	-0.744626	3.225763	0.612551
н	-0.783050	1.434289	2.321623
С	-1.521517	-1.157864	2.049743
н	-2.532824	-1.558428	2.180765
Н	-0.883042	-2.011478	1.786599
н	-1.185913	-0.765210	3.011965

Ligand 3: Arg complex

Counterpoise corrected energy = -556.3155

BSSE energy = 0.0004

Sum of monomers = -556.2958

Complexation energy = -12.58 kcal/mol (raw)

Complexation energy = -12.35 kcal/mol (corrected)

Ator	n X	Y	Z	
С	-3.233765	1.116135	0.285129	
Ν	-2.781468	-0.084026	-0.408461	
С	-1.933693	-0.961671	0.112515	
Ν	-1.439311	-0.773341	1.327873	
Ν	-1.564754	-2.013619	-0.592213	
С	1.115883	1.476361	-0.495752	
С	1.310697	1.668536	0.877903	
С	1.810986	0.636140	1.673139	
С	2.106577	-0.606078	1.109042	
С	1.418745	0.222068	-1.043606	
С	1.918714	-0.828864	-0.265742	
С	2.150411	-2.181573	-0.848885	
Н	-2.371230	1.710202	0.601042	
Н	-3.865408	0.874965	1.146450	
Н	-3.308001	-0.372158	-1.222985	
Н	-1.713183	0.050094	1.844891	
Н	-0.497076	-1.099573	1.529127	
Н	-0.926457	-2.695050	-0.208178	

н	-1.752496	-2.073119	-1.581983	
н	1.978408	0.801605	2.733485	
н	2.502657	-1.403829	1.732951	
н	1.855100	-2.977254	-0.155698	
н	1.607952	-2.313835	-1.790120	
н	-3.813979	1.712306	-0.417585	
н	3.211924	-2.347315	-1.070065	
н	1.262613	0.060971	-2.109066	
н	1.089568	2.635778	1.321569	
С	0.622564	2.599466	-1.374246	
н	1.467746	3.151657	-1.800942	
н	0.027645	2.222220	-2.211575	
н	0.020232	3.316113	-0.808682	

Ligand 4: Arg complex

Counterpoise corrected energy = -556.3151

BSSE energy = 0.0003 (Hartrees)

Sum of monomers = -556.2956

Complexation energy = -12.45 kcal/mol (raw)

Complexation energy = -12.24 kcal/mol (corrected)

-					
	Aton	n X	Y	Z	
	С	-3.039264	1.607780	-0.257029	
	Ν	-2.861686	0.174835	-0.459681	
	С	-2.116237	-0.594205	0.323287	
	Ν	-1.472763	-0.070831	1.357324	
	Ν	-1.997816	-1.880476	0.057253	
	С	1.257563	0.830971	-1.254874	
	С	1.600716	1.506419	-0.076386	
	С	1.964545	0.731537	1.033509	
	С	1.981884	-0.662867	0.964885	
	С	1.278054	-0.562422	-1.325132	
	С	1.645656	-1.339327	-0.219365	
	С	1.593620	-2.829140	-0.253901	
	Н	-2.063460	2.100706	-0.215878	
	Н	-3.612562	1.822119	0.650906	
	Н	-3.511420	-0.286601	-1.083186	
	Н	-1.564223	0.918328	1.540058	
	Н	-0.574462	-0.465693	1.625724	
	Н	-1.440774	-2.480026	0.648559	
	Н	-2.283590	-2.259035	-0.833609	
	Н	2.249219	1.224286	1.960031	
	Н	2.278882	-1.236374	1.840532	
	Н	1.007062	-1.054229	-2.256560	
	Н	1.284191	-3.246207	0.710817	
	Н	0.911809	-3.191830	-1.029758	
	Н	-3.581250	2.004372	-1.114253	
	Н	2.577321	-3.261671	-0.474594	
	Н	0.979603	1.404683	-2.135794	
[С	1.624111	3.013725	-0.017977	

Н	1.407971	3.380441	0.989664
н	2.614170	3.393754	-0.295143
Н	0.903479	3.453465	-0.713893
Liga	and 5: Arg co	mplex	
Cοι	unterpoise co	rrected ene	rgy = -631.5662
BSS	SE energy = 0	.0004	
Sur	n of monome	ers = -631.54	155
Cor	nplexation e	nergy = -13.	23 kcal/mol (raw)
Cor	nplexation e	nergy = -12	.97 kcal/mol (corrected)
Ato	om X	Y	Z
С	1.873828	-2.864558	-0.139980
Ν	2.486051	-1.589936	-0.495588
С	2.358077	-0.483453	0.225157
Ν	1.635960	-0.489611	1.336787
Ν	2.933737	0.632065	-0.179228
С	-1.480109	0.128878	-1.078950
Ato	om X	Y	Z
С	-1.913165	-0.196327	0.212286
С	-1.612085	0.668431	1.276458
С	-0.878240	1.827075	1.042822
С	-0.740812	1.296992	-1.289581
С	-0.424190	2.169656	-0.245506
C	0.426465	3.377154	-0.449906
Н	0.797783	-2.731474	0.006117
н	2.326844	-3.298360	0.757642
Н	3.223122	-1.610677	-1.188574
н	1.196973	-1.351219	1.629606
Н	1.115265	0.349014	1.586620
н	2.839361	1.482268	0.357342
Н	3.283630	0.727294	-1.121217
н	-1.980372	0.426035	2.268400
н	-0 673008	2 496806	1 875619
н	-0.410953	1.530254	-2.299120
н	1 069590	3 570666	0 416315
н	1 058385	3 280954	-1 338657
н	2 019576	-3 551773	-0 972129
н	-0 177503	4 282185	-0 590369
н	-1 718097	-0 509309	-1 922070
0	-2 618097	-1 319162	0 534047
c	-3 078245	-2 144306	-0 546628
н	-3 66/36/	-2 92/126	-0 079714
н	-3 7061/10	-1 562002	-1 23/169
н	-2 234715	-2 582027	-1 094862
	J_/_J		

Ligand 6: Arg complex

Counterpoise corrected energy = -721.6023

BSSE	BSSE energy = 0.0007				
Sum	of monome	ers = -721.58	81		
Comp	olexation er	nergy = -9.36	5 kcal/mol (raw)		
Comp	plexation er	nergy = -8.9	3 kcal/mol (corrected)		
Atom		v	7		
C	1 A	T 0 021052	ے 2 د محمد م		
N	-2 536290	-0.031855	-0.024692		
C	-1 456455	-1 668628	0.348541		
N	-0 887682	-1 424349	1 520634		
N	-0.007002	-2 570294	-0.460629		
Ċ	0.653319	1 238951	-0 247430		
C	1 254543	1 728255	0 907776		
C	2 342469	1 021264	1 419775		
c	2.799012	-0.136251	0.785864		
C	1.111300	0.103604	-0.907906		
C	2.194954	-0.610287	-0.390894		
C	2.666655	-1.841564	-1.087259		
Н	-2.547353	0.924007	0.891700		
н	-3.415571	-0.374997	1.777151		
н	-2.747953	-0.984039	-1.014333		
Н	-1.103786	-0.581469	2.032455		
Н	-0.099169	-1.964758	1.843635		
Н	-0.043627	-3.000204	-0.266888		
Н	-1.454577	-2.925662	-1.250323		
Н	2.837830	1.375977	2.317418		
Н	3.646029	-0.673517	1.203935		
Н	2.806155	-2.675980	-0.389659		
Н	1.970454	-2.148587	-1.872445		
Н	-4.102524	0.320878	0.303242		
Н	3.639228	-1.678442	-1.565523		
Н	0.612798	-0.213894	-1.816164		
Н	0.875793	2.627117	1.378827		
Ν	-0.562544	1.906294	-0.762581		
0	-1.185213	1.334076	-1.669852		
0	-0.911279	2.959365	-0.230784		

Ligand 7: Arg complex

Counterpoise corrected energy = -721.5991

BSSE energy = 0.0005

Sum of monomers = -721.5866

Complexation energy = -8.13 kcal/mol (raw)

Complexation energy = -7.81 kcal/mol (corrected)

Ator	n X	Y	Z	
С	-1.239442	-3.100944	0.163147	
Ν	-2.185846	-2.001103	0.306681	
С	-2.179867	-0.917934	-0.459390	
Ν	-1.275269	-0.782833	-1.418900	

N	-3.064125	0.037765	-0.249589
С	0.763703	0.333406	1.268639
С	1.659890	0.298976	0.205104
С	1.688719	1.290700	-0.771980
С	0.727766	2.297850	-0.722442
С	-0.165675	1.367099	1.318070
С	-0.228872	2.339038	0.306945
С	-1.358028	3.311982	0.264151
Н	-0.212089	-2.730096	0.237243
Н	-1.388674	-3.637403	-0.779668
Н	-3.005494	-2.163913	0.876461
Н	-0.577452	-1.501303	-1.551225
Н	-1.022404	0.139890	-1.749323
Н	-3.161549	0.812627	-0.888487
Н	-3.712185	-0.002630	0.522617
Н	2.430208	1.244323	-1.561380
Н	0.710725	3.055497	-1.500995
Н	-0.873950	1.409403	2.140818
Н	-1.811906	3.350473	-0.732633
Н	-2.130836	3.061949	0.995268
Н	-1.403121	-3.794015	0.986940
Н	-1.020625	4.332012	0.483732
Н	0.797648	-0.442021	2.024718
Ν	2.558456	-0.864826	0.068468
0	3.568013	-0.736946	-0.617546
0	2.199488	-1.910409	0.632024
	H H H N O O	H -1.811906 H -2.130836 H -1.403121 H -1.020625 H 0.797648 N 2.558456 O 3.568013 O 2.199488	H -1.811906 3.350473 H -2.130836 3.061949 H -1.403121 -3.794015 H -1.020625 4.332012 H 0.797648 -0.442021 N 2.558456 -0.864826 O 3.568013 -0.736946 O 2.199488 -1.910409

Ligand 8: Arg complex

LISC	Ligand of Alg complex				
Cou	interpoise co	prrected ene	ergy = -616.2621		
BSS	E energy = C	0.0005			
Sun	n of monome	ers = -616.24	159		
Con	nplexation e	nergy = -10.	51 kcal/mol (raw)		
Con	nplexation e	nergy = -10	.17 kcal/mol (corrected)		
Ato	m X	Y	Z		
С	3.323259	1.171583	0.349475		
N	2.805711	-0.190964	0.308827		
С	1.921679	-0.617872	-0.583688		
N	1.449905	0.209257	-1.505805		
N	1.494644	-1.864806	-0.537824		
С	-0.838998	1.212313	1.230964		
С	-1.232683	2.185943	0.310337		
С	-1.954687	1.816638	-0.825806		
С	-2.290813	0.477013	-1.037087		
С	-1.186010	-0.108057	0.984445		
С	-1.923297	-0.525595	-0.127309		
С	-2.226887	-1.968999	-0.346255		
н	2.494002	1.883389	0.395489		
н	3.963019	1.387953	-0.512432		
Н	3.297883	-0.891789	0.847535		

Н	1.786613	1.159915	-1.549480
н	0.525652	0.055800	-1.891799
н	0.848195	-2.214781	-1.229638
н	1.617722	-2.426463	0.292442
н	-2.272395	2.570564	-1.538333
н	-2.865142	0.196556	-1.916179
н	-2.553806	-2.150264	-1.372942
н	-1.362640	-2.604647	-0.127836
н	3.912656	1.281354	1.258513
н	-3.026143	-2.312296	0.320602
н	-0.990506	3.228025	0.492237
н	-0.291285	1.463655	2.133097
F	-0.765003	-1.062132	1.867988
Lig	and 9		
Coi	unterpoise co	rrected ene	rgy = -616.2608
			\ \
BSS	E energy = 0	0.0006 (Hart	rees)
Sur	n of monome	ers = -616.24	150 (Hartrees)
Сог	mplexation er	nergy = -10.3	24 kcal/mol (raw)
Сог	mplexation er	nergy = -9.8	8 kcal/mol (corrected)
Atc	om X	Y	Z
с	3.249932	-1.042566	0.233303
N	2.768271	0.221887	-0.310024
С	1.861129	0.983676	0.287575
N	1.330654	0.609660	1.443306
N	1.470228	2.106519	-0.283161
С	-0.897134	-1.381514	-0.666557
С	-1.295837	-1.875275	0.568187
С	-2.046728	-1.032086	1.391190
С	-2.366607	0.263958	0.983330
С	-1.217666	-0.101962	-1.104136
С	-1.963604	0.745197	-0.273767
С	-2.236478	2.154518	-0.677326
н	2.409827	-1.723491	0.398270
н	3.812422	-0.895038	1.160989
н	3.289280	0.627592	-1.076031
н	1.605432	-0.273036	1.849849
н	0.395806	0.919801	1.684811
н	0.814558	2.723970	0.172067
н	1.743793	2.342600	-1.225182
н	-2.387162	-1.394049	2.356186
н	-2.950192	0.904192	1.639014
н	-0.886432	0.223778	-2.085484
Н	-2.038735	2.852910	0.143781
Н	-1.638467	2.450082	-1.544006
Н	3.907758	-1.496967	-0.505754
Н	-3.288777	2.295216	-0.951120
F	-0.139087	-2.168797	-1.475481
Н	-1.043435	-2.888528	0.860297

Ligand 10: Arg complex			
Counterpoise corrected energy = -616.2592			
BSSE energy = 0.0004			
Sum of monomers = -616.2441			
Complexation energy = -9.77 kcal/mol (raw)			
Complexation energy = -9.50 kcal/mol (corrected)			
Atom X Y Z			
C -3.124544 1.455139 -0.250561			
N -2.860330 0.035469 -0.452483			
C -2.067574 -0.685793 0.329612			
N -1.455021 -0.123127 1.361691			
N -1.871630 -1.962732 0.064370			
C 1.178855 0.932222 -1.272475			
C 1.501938 1.580171 -0.086720			
C 1.954401 0.888619 1.031067			
C 2.060111 -0.502035 0.953071			
C 1.294914 -0.457671 -1.326196			
C 1.731451 -1.200535 -0.220849			
C 1.770608 -2.690794 -0.254012			
H -2.182287 2.010054 -0.220564			
H -3.701109 1.634126 0.662904			
H -3.479478 -0.465064 -1.076827			
H -1.604826 0.857343 1.552898			
H -0.554677 -0.484532 1.660891			
H -1.306218 -2.539158 0.670083			
H -2.164682 -2.369365 -0.811426			
H 2.226125 1.430104 1.930888			
H 2.420556 -1.051824 1.819167			
H 1.474510 -3.125407 0.707090			
H 1.119421 -3.093032 -1.036054			
H -3.699694 1.814970 -1.102317			
H 2.780670 -3.064166 -0.462227			
H 0.854407 1.508568 -2.132251			
H 1.043954 -0.972319 -2.250077			
F 1.364580 2.927389 -0.016095			
Ligand 11: Arg complex			
Counterpoise corrected energy = -1091.2019			
BSSE energy = 0.0007			

Sum of monomers = -1091.1808

Complexation energy = -13.69 kcal/mol (raw)

Complexation energy = -13.25 kcal/mol (corrected)

Ator	n X	Y	Z
С	-1.975456	-2.694968	-0.503301
Ν	-2.639045	-1.451879	-0.128570
С	-2.417333	-0.288213	-0.726130

Ν	-1.546108	-0.203126	-1.721485	
Ν	-3.050760	0.791854	-0.311949	
С	0.820459	0.001152	0.937344	
С	1.762940	-0.071617	-0.105637	
0	2.417336	-1.248566	-0.267693	
С	3.487792	-1.287951	-1.228590	
С	1.942978	1.065592	-0.905477	
С	1.193483	2.222031	-0.679321	
С	0.091231	1.162373	1.165301	
С	0.255520	2.296511	0.358130	
С	-0.622233	3.487464	0.544369	
Н	-0.890326	-2.578207	-0.429525	
Н	-2.265487	-3.016322	-1.508950	
Н	-3.420105	-1.511752	0.510379	
Н	-1.014375	-1.023124	-1.976930	
Н	-1.077438	0.679222	-1.892949	
Н	-2.889627	1.689659	-0.743754	
Н	-3.601925	0.785809	0.533085	
Н	3.911016	-2.287092	-1.143231	
Н	4.246308	-0.536242	-0.989010	
Н	3.107871	-1.127887	-2.243953	
Н	2.672800	1.051153	-1.706685	
Н	1.353319	3.082514	-1.323432	
Н	-0.617172	1.176130	1.988104	
Н	-1.078382	3.806414	-0.400805	
Н	-1.420773	3.286434	1.264465	
С	0.552881	-1.393581	1.945275	
Н	-2.274722	-3.462102	0.208769	
Н	-0.063557	4.352623	0.920184	

Ligand 12: Arg complex

Counterpoise corrected energy = -730.8504

BSSE energy = 0.0008

Sum of monomers = -730.8306

Complexation energy = -12.93 kcal/mol (raw)

Complexation energy = -12.45 kcal/mol (corrected)

Ator	n X	Y	Z	
С	-2.040209	-2.754727	-0.000375	
Ν	-2.661495	-1.446518	0.168847	
С	-2.371403	-0.389868	-0.579276	
Ν	-1.466311	-0.481514	-1.543337	
Ν	-2.970795	0.761643	-0.346741	
С	0.838550	0.020495	1.123537	
С	1.776571	-0.257487	0.115555	
0	2.362618	-1.482872	0.144173	
С	3.436810	-1.715067	-0.785053	
С	2.007680	0.743493	-0.835971	
С	1.307552	1.953146	-0.782599	
С	0.156567	1.222632	1.189585	

C	0.374026	2.220656	0.225924	
С	-0.457395	3.458366	0.208099	
н	-0.952730	-2.666927	0.082569	
н	-2.318480	-3.212378	-0.955255	
н	-3.482385	-1.393285	0.757093	
н	-0.976014	-1.355124	-1.672647	
н	-0.939521	0.344969	-1.805454	
н	-2.761739	1.578859	-0.900938	
н	-3.532152	0.903641	0.479573	
н	3.809526	-2.710183	-0.549339	
н	4.230146	-0.973631	-0.647520	
н	3.072962	-1.687020	-1.818595	
н	2.735430	0.584029	-1.623248	
н	1.505331	2.702961	-1.543766	
н	-0.549035	1.372029	2.001775	
н	-0.868209	3.653825	-0.789592	
н	-1.286456	3.394645	0.918959	
н	-2.384501	-3.396775	0.808717	
н	0.125130	4.347205	0.477792	
F	0.576606	-0.940996	2.044284	

Ligand 13: Arg complex

Counterpoise corrected energy = -837.7292

BSSE energy = 0.0004

Sum of monomers = -837.7121

Complexation energy = -11.02 kcal/mol (raw)

Complexation energy = -10.75 kcal/mol (corrected)

Atom	n X	Y	Z	
C	3.272676	-1.190683	-0.233070	
N	2.729857	0.135766	-0.501046	
С	1.870085	0.756027	0.296589	
N	1.448156	0.170802	1.408660	
N	1.416723	1.950340	-0.031105	
C	-2.310264	1.965465	-0.094741	
н	2.456625	-1.905596	-0.092487	
н	3.933069	-1.190322	0.640363	
н	3.190773	0.689921	-1.210885	
н	1.785893	-0.753931	1.634036	
н	0.509007	0.372618	1.739744	
н	0.805780	2.461409	0.588555	
н	1.566598	2.335769	-0.951558	
н	-2.434213	2.395289	0.901857	
н	-1.524398	2.508902	-0.627667	
н	3.846473	-1.501997	-1.104629	
н	-3.242349	2.114592	-0.647915	
С	-2.080801	-0.327089	1.152974	
C	-1.175056	-1.869397	-0.335704	
C	-1.635852	-1.665800	0.939628	
н	-2.501941	0.029436	2.087393	

-1.680959	-2.447227	1.689436	
-1.302592	-0.433592	-1.283990	
-1.975708	0.467632	0.032384	
-0.822519	-2.786675	-0.786307	
	-1.680959 -1.302592 -1.975708 -0.822519	-1.680959 -2.447227 -1.302592 -0.433592 -1.975708 0.467632 -0.822519 -2.786675	-1.680959-2.4472271.689436-1.302592-0.433592-1.283990-1.9757080.4676320.032384-0.822519-2.786675-0.786307

Ligand 14: Arg complex

Counterpoise corrected energy = -1007.5333

BSSE energy = 0.0005

Sum of monomers = -1007.5137

Complexation energy = -12.57 kcal/mol (raw)

Complexation energy = -12.28 kcal/mol (corrected)

Ato	m X	Y	Z	
С	2.852846	-2.033901	0.163170	
Ν	3.046038	-0.631908	-0.187520	
С	2.452992	0.374417	0.441549	
Ν	1.624138	0.137644	1.448626	
Ν	2.672140	1.613749	0.047415	
С	-0.544928	3.336064	-0.712813	
Н	1.787522	-2.282474	0.131877	
Н	3.273782	-2.264877	1.147351	
Н	3.809963	-0.405477	-0.810248	
Н	1.436820	-0.813233	1.732457	
Н	0.905610	0.811652	1.684565	
Н	2.225447	2.389832	0.512462	
Н	3.072452	1.804312	-0.859615	
Н	-0.092948	3.718089	0.208485	
Н	0.164947	3.387626	-1.538912	
Н	3.361994	-2.640167	-0.584414	
Н	-1.404381	3.972697	-0.941311	
С	-0.974721	1.867245	-0.541145	
С	-0.952251	-0.332773	-0.839358	
С	-1.747768	-0.300402	0.335219	
С	-0.642655	-1.564666	-1.432367	
С	-2.232296	-1.472433	0.922455	
С	-1.119675	-2.730618	-0.843785	
Н	-0.057148	-1.586266	-2.345785	
С	-1.903497	-2.685176	0.322440	
Н	-2.852189	-1.443201	1.811898	
Н	-0.901220	-3.690881	-1.299784	
Н	-2.273059	-3.608763	0.755524	
Ν	-0.520490	0.906945	-1.290803	
S	-1.958666	1.357473	0.836202	

Ligand 15: Arg complex

Counterpoise corrected energy = -648.6199

BSSE energy = 0.0005

Sum of monomers = -648.5963

Complexation energy = -15.10 kcal/mol (raw)	H -1.986452 -1.992744 1.422853
Complexation energy = -14.77 kcal/mal (corrected)	H 3.968904 0.633941 -0.093215
	H -3.297005 -0.846081 1.824855
Atom X Y Z	C -1.232890 0.585953 0.355956
C 3.254473 0.006745 -0.623892	C -2.306703 -0.426309 -1.343608
N 2.511800 -0.764395 0.365915	C -0.750489 1.143170 -0.867068
C 1.472069 -1.534594 0.072505	C -0.731687 0.973509 1.603387
N 1.045482 -1.633511 -1.178602	C -1.448321 0.478058 -1.930089
N 0.847640 -2.186188 1.034184	H -3.032377 -1.089504 -1.793480
C -2.790916 -1.375244 1.017433	C 0.235184 2.145535 -0.811983
H 2.570053 0.664884 -1.166387	C 0.258980 1.950572 1.620009
H 3.800171 -0.645747 -1.313156	Н -1.117902 0.554465 2.527695
H 2.920120 -0.859057 1.286014	H -1.376386 0.683526 -2.988758
H 1.518078 -1.089920 -1.887378	C 0.730739 2.535076 0.426416
H 0.049973 -1.746297 -1.353870	H 0.588373 2.621626 -1.722492
H 0.183469 -2.913577 0.817896	H 0.653402 2.292799 2.571526
H 1.041957 -2.004118 2.007019	H 1.479124 3.319290 0.482780
H -3.503720 -1.984536 0.464988	N -2.205267 -0.343588 0.035462

1.2 Binding energies: comparison of density functionals

QM-computed complexation energies between the guanidinium and **L1-L15** were evaluated with different functionals, and basis set size. Firstly, the effect of increasing the basis set size from valence triple- ζ to quadruple- ζ is negligible: the complexation energies are within 0.1 kcal/mol confirming that the def2-TZVPP values are essentially converged. Secondly, the effect of using a hybrid functional such as B3LYP, again with a Grimme-D3 correction for dispersion, or a hybrid meta-GGA functional (M06-2X) also has relatively little effect. The correlation against experimental binding affinities ranges from 0.57-0.63 for all levels of theory considered here, and so there is little quantitative difference associated with the level of theory. This is somewhat to be expected, since the intermolecular interaction is dominated by electrostatics: for all of the complexes the calculated extent of charge transfer (TPSS/def2-TZVPP) from arene to guanidinium is only 0.03e.

Table S1. Counterpo	pise-corrected comp	plexation energie	s (kcal/mol ⁻¹).
---------------------	---------------------	-------------------	------------------------------

Ligand	TPSS-D3/def2-TZVPP (TPSS-D3/cc-pVQZ)	B3LYP- D3/def2- TZVPP	M06-2X/def2- TZVPP
1	-11.20 (-11.24)	-11.52	-11.10

2	-12.06 (-12.11)	-12.43	-11.93
3	-12.35 (-12.38)	-12.66	-12.26
4	-12.24 (-12.27)	-12.54	-12.14
5	-12.97 (-13.00)	-13.11	-12.54
6	-8.93 (-9.01)	-9.69	-9.57
7	-7.81 (-7.92)	-8.21	-7.87
8	-10.17 (-10.21)	-10.58	-10.36
9	-9.88 (-9.93)	-10.16	-9.92
10	-9.50 (-9.55)	-9.68	-9.24
11	-13.25 (-13.27)	-13.8	-13.3
12	-12.45 (-12.48)	-12.73	-12.54
13	-10.75 (-10.77)	-11.15	-10.67
14	-12.28 (-10.81)	-11.35	-10.39
15	-14.77 (-14.82)	-15.48	-15.12
	$R^2 = 0.57 (0.63)$	$R^2 = 0.61$	$R^2 = 0.63$

1.3 Molecular Electrostatic Potential Surfaces

We constructed a bivariate model using the ESP evaluated at two different points in space for each aromatic group: above the aromatic ring, and secondly, above the substituent with the most negative ESP. ESP values were computed from B3LYP/6-31G(d,p) densities and correlated with the experimental binding affinities for ligands **L1-L15**. The coefficients were optimized by a linear regression using the experimental ΔT_m values. As shown below, there is little sensitivity to the QM level of theory used to generate the two molecular descriptors (i.e. the ESP values). The negative sign of the coefficients is a consequence of the negative ESP values used in the model (i.e. the coulombic potential energy at these points of a point-positive charge is negative, and hence favorable).

$$\Delta T_{m} = -307.70145 * ESP_{cation} - 238.74216 * ESP_{substituent} + 2.57912$$
 (Eq. 1)

Qualitative comparison of ESP surfaces (**Figure S1**) evaluated at different distances from the arene indicate relatively little sensitivity to the choice of distance: a value of 3.5 Å was chosen since this is close to the separation between arene and guanidinium

in the X-ray structure used to initiate QM calculations.

Figure S1. 2D ESP isosurfaces were generated for planes 3.5 Å and 4.0 Å perpendicular distance above the aromatic systems. ESP values for **L1-L15** were used for model fitting. Color scale spans -30 to 10 kJ/mol.

Model S1. The data analysis for this paper was generated using the *Real Statistics Resource Pack* (Release 4.3). Copyright (2013 – 2015) Charles Zaiontz.

The bivariate model was constructed using the *Real Statistics* plugin for Microsoft Excel. Here the objective is to optimize coefficients (b_1 , b_2 and c) to produce a linear model for experimental thermal shift data (y), given ESP values above the aromatic ring (x_1) and above the substituent (x_2) for each ligand L1-L15.

$$\hat{y} = b_1 x_1 + b_2 x_2 + c$$

By following the Method of Least Squares, we can rewrite this equation as:

$$\hat{y} - b_0 = b_1(x_1 - \bar{x}_1) + b_2(x_2 - \bar{x}_2)$$

The best correlation corresponds to finding the best-fit line to:

$$\hat{y} - \bar{y} = b_1(x_1 - \bar{x}_1) + b_2(x_2 - \bar{x}_2)$$

With b_1 and b_2 being calculated as the solutions of the following two equations system based on the covariance(cov):

$$cov(y,x_j) = \sum_{m=1}^{2} b_m \cdot cov(x_m,x_j)$$

The quality of the model was then based on the analysis of the standard R^2 between the sum of squares of defined as follow:

$$R^2 = \frac{SS_{reg}}{SS_{reg} + SS_{res}}$$

where the sum of squares ($^{SS}{}_{reg}$ and $SS_{res})$ are defined as:

$$SS_{reg} = \sum (\hat{y} - \bar{y})^2$$

and

$$SS_{res} = \sum (y - \hat{y})^2$$

The choice of functional and basis set has a negligible effect on the correlation obtained constructing a model as outlined above. In each case the regression coefficients of the two ESP descriptors are very similar in magnitude (**Table S2**): the ratio of $b_1:b_2$ is in the narrow region of 55:45 – 57:43, showing the near equal significance of both ESP descriptors in the overall model performance. An alternative model, using the minimum value of the ESP (i.e. the most attractive part of the potential) rather than a value directly above one of the substituents led to a very small improvement (an increase in R^2 by 0.01). Based on the simplicity of the original model, there is no reason to adopt this more complex implementation.

Table S2. Theoretical ΔT_m calculated after using multiple linear regression with ESP values at 3.5 Å above the aromatic ring and above the substituent with the most negative ESP. Different methodologies were considered: 1) M06-2X/6-31G(d,p) in diethylether; 2) B3LYP/6-31G(d,p) in gas-phase; 3) B3LYP/6-311++G(d,p) in diethylether.

Ligand	Expt.		Theo	retical ∆T _m	
	∆T _m	M06-2X	Gas- phase	6-311++G(d,p)	Different ESP*
1	6.5	6.3	6.4	6.4	6.3

6.4	7.0	6.9	6.9	6.8
6.3	6.8	6.7	6.8	6.9
7.4	7.0	7.0	7.1	7.1
8.1	8.6	8.5	8.5	8.5
5.2	4.8	4.8	4.8	4.8
5.2	4.9	4.9	4.9	5.0
6.2	6.9	6.9	7.0	6.9
7.1	7.2	7.2	7.2	7.1
6.4	7.2	7.2	7.3	7.2
9.0	9.2	9.3	9.1	9.2
9.6	8.5	8.5	8.6	8.6
6.0	6.1	6.3	6.1	6.2
6.2	6.1	6.0	6.0	6.0
8.9	7.9	7.8	7.8	7.9
	$R^2 = 0.83$	$R^2 = 0.82$	$R^2 = 0.82$	$R^2 = 0.84$
	(57/43)**	(56/44)	(55/45)	(55/45)
	6.4 6.3 7.4 8.1 5.2 5.2 6.2 7.1 6.4 9.0 9.6 6.0 6.2 8.9	6.4 7.0 6.3 6.8 7.4 7.0 8.1 8.6 5.2 4.8 5.2 4.9 6.2 6.9 7.1 7.2 6.4 7.2 9.0 9.2 9.6 8.5 6.0 6.1 6.2 6.1 8.9 7.9 $R^2 = 0.83$ $(57/43)**$	6.4 7.0 6.9 6.3 6.8 6.7 7.4 7.0 7.0 8.1 8.6 8.5 5.2 4.8 4.8 5.2 4.9 4.9 6.2 6.9 6.9 7.1 7.2 7.2 6.4 7.2 7.2 9.0 9.2 9.3 9.6 8.5 8.5 6.0 6.1 6.3 6.2 6.1 6.0 8.9 7.9 7.8 $R^2 = 0.83$ $R^2 = 0.82$ $(57/43)^{**}$ $(56/44)$	6.4 7.0 6.9 6.9 6.3 6.8 6.7 6.8 7.4 7.0 7.0 7.1 8.1 8.6 8.5 8.5 5.2 4.8 4.8 4.8 5.2 4.9 4.9 4.9 6.2 6.9 6.9 7.0 7.1 7.2 7.2 6.4 7.2 7.2 7.3 9.0 9.2 9.3 9.1 9.6 8.5 8.5 8.6 6.0 6.1 6.3 6.1 6.2 6.1 6.0 6.0 8.9 7.9 7.8 7.8 $R^2 = 0.83$ $R^2 = 0.82$ $R^2 = 0.82$ $(57/43)^{**}$ $(56/44)$ $(55/45)$

*Consideration of the most negative ESP value near the substituent.

**Ratio between the coefficients related to the ESP values above the π -system and the substituent, respectively.

Molecular dipole moments were also computed, however, the correlation between these values and ligand binding affinities are poor, and so this approach was not considered further.

Table S3. B3LYP/6-31G* dipole moment (Debye) of the aromatic/heteroarmatic groups of Ligands L1-L15.

Ligand	Dipole			
	Moment			
1	0.3447			
2	2.4238			
3	0.7305			
4	0.5882			
5	0.0827			
6	0.7799			
7	0.3544			
8	1.1869			
9	5.0183			
10	1.6946			

11	5.3473
12	1.1795
13	1.8249
14	2.4212
15	2.8971
	$R^2 = 0.13$

2. MOLECULAR DYNAMICS SIMULATIONS

The methodology is described in the main text and employs the ligand RESP charges below.

2.1 RESP Charges

Ligand 1				
Atom	х	Y	Z	RESP Charge
с	-2.06	2.75	2.47	-0.18
н	-1.42	2.60	3.31	0.13
С	-3.44	2.64	2.61	-0.08
н	-3.87	2.41	3.56	0.11
С	-4.25	2.85	1.51	-0.18
н	-5.32	2.78	1.61	0.13
С	-3.70	3.16	0.28	-0.10
н	-4.34	3.33	-0.57	0.11
С	-2.32	3.26	0.12	0.00
С	-1.51	3.06	1.23	-0.10
н	-0.44	3.14	1.13	0.11
С	-1.72	3.58	-1.24	-0.01
н	-0.78	4.10	-1.12	0.03
н	-2.39	4.24	-1.78	0.03
С	-1.48	2.33	-2.10	-0.02
н	-1.23	2.64	-3.11	0.04
н	-2.40	1.76	-2.17	0.04
С	-0.35	1.47	-1.60	0.33
N	-0.43	0.11	-1.47	-0.05
С	-1.57	-0.76	-1.67	-0.06
н	-2.19	-0.37	-2.47	0.08
н	-1.19	-1.72	-2.01	0.08
С	-2.41	-0.91	-0.40	-0.03
н	-2.73	0.08	-0.10	0.08
н	-1.78	-1.30	0.40	0.08
N	-3.58	-1.73	-0.64	-0.35
C	-3.28	-3.14	-0.82	-0.03
н	-2.50	-3.47	-0.13	0.08
н	-2.92	-3.33	-1.82	0.08
С	-4.52	-3.99	-0.58	0.09
н	-5.29	-3.71	-1.28	0.06

н	-4.29	-5.03	-0.73	0.06
О	-4.99	-3.87	0.74	-0.39
сс	-4.80	-2.61	1.34	0.09
Ligand 2				
Atom	-3,20	-2,63	1. 2 5	RESPORTArge
e	-4:98	3:47	2:28	:0:2 ₹
Ħ	:1 :∮7	3.74	9:79	0:98
Ę	-3:68	3.00	-2.29	-0.98
ĥ	-9.8 2 -4.07	-2.32	3.28	0:93
e	-4.29	-2.56	-0.69	-0: 1 8
H	-9:37	-2:42	-9.73	0: 11
e	-3.65	2.78	-0:63	-0: 18
H	-34.20	- 2 . 53	<u>-0:93</u>	0: 12
e	- <u>3,44</u> -2.34	-9.41	-0: 1 5	-0.02
e	2.89 -1.65	9:83	-0.47	-0.13
Ę	-3.29	4:73	-0.34	-8.14
ĥ	1 :43	9:87	-0.40	8:98
Ν	-6.89	<u>1</u> :13	-1:28	-0.6 <u>1</u>
ĥ	8 :84	-4.28	P:34	-0.05
e	-5.98	-9. <u>21</u> 3. 32	-9:34	-8.89
ĥ	-6.73	9:28	- <u>1:56</u>	-0.39
H	-9.74	3:35	- 1 :28	8:89
Ę	-6.94	-9.44	- <u>2:22</u>	-8.85
H	-5.35	2:39	-2.29	8:89
A	-7.93	-2.43	-9:44	-0.19
Ю	-6.9 1	-2.89	-1.69	-0:42
Ŕ	-5.33	-0:28	-1.46	-0.35
e	4.53	-1:38	-2.79	-0:84
Ħ	-5.19	: ð:∮a	-3.63	0:07
H	-3.80	-2:6 3	-3.99	0:07
<u> </u>	<u>-3.38</u>	<u>-7:79</u>	<u>-6.37</u>	<u>-6.63</u>
н	-2.71	-0.19	-0.06	0.08
н	-1.73	-1.54	0.49	0.08
N	-3.54	-2.03	-0.50	-0.36
С	-3.22	-3.45	-0.64	-0.02
н	-2.42	-3.74	0.05	0.07
н	-2.88	-3.67	-1.64	0.07
С	-4.44	-4.30	-0.34	0.10
н	-5.23	-4.06	-1.04	0.05
н	-4.20	-5.35	-0.47	0.05
0	-4.88	-4.14	0.98	-0.40
C C	-4.70	-2.86	1.53	0.10

н	-5.53	-2.67	2.20	0.05
Н	-3.78	-2.85	2.12	0.05
С	-4.63	-1.80	0.45	-0.02
н	-4.51	-0.82	0.91	0.07
Н	-5.58	-1.78	-0.09	0.07
С	0.82	-0.54	-0.99	0.01
С	1.36	-1.76	-0.59	-0.20
Н	0.80	-2.67	-0.60	0.14
С	2.68	-1.75	-0.17	-0.16
Н	3.14	-2.67	0.13	0.13
С	3.45	-0.57	-0.14	-0.07
С	2.88	0.63	-0.54	-0.13
Н	3.44	1.55	-0.51	0.11
С	1.56	0.63	-0.97	0.29
Ν	0.78	1.68	-1.42	-0.59
С	4.86	-0.62	0.32	-0.13
С	5.99	-0.36	-0.36	0.29
С	6.26	0.03	-1.78	-0.28
Н	6.73	1.01	-1.81	0.10
Н	6.94	-0.69	-2.23	0.10
Н	5.34	0.06	-2.34	0.10
0	7.04	-0.51	0.42	-0.10
Ν	6.63	-0.88	1.68	-0.47
С	5.35	-0.95	1.63	0.39
С	4.56	-1.31	2.85	-0.18
Ligand 3				
Atom	3.83	-0 ₇ 54	3. <mark>0</mark> 7	RESP Charge
Ę	4.03	<u>-2.24</u> 2.90	2.70	8:85
С	-1.17	2.87	3.19	-0.20
Н	-0.27	2.28	3.01	0.07
Н	-0.85	3.87	3.47	0.07
Н	-1.68	2.44	4.05	0.07
С	-3.44	2.78	2.10	-0.11
Н	-3.89	2.65	3.07	0.11
С	-4.25	2.84	0.98	-0.18
Н	-5.32	2.77	1.08	0.13
С	-3.69	3.01	-0.28	-0.11
Н	-4.33	3.07	-1.15	0.11
С	-2.31	3.13	-0.43	-0.05
С	-1.52	3.07	0.71	-0.09
Н	-0.45	3.16	0.60	0.12
С	-1.70	3.28	-1.80	0.00

Н	-0.77	3.83	-1.74	0.04
н	-2.37	3.86	-2.43	0.04
С	-1.44	1.94	-2.51	-0.07
н	-1.17	2.13	-3.55	0.06
н	-2.35	1.35	-2.52	0.06
С	-0.31	1.16	-1.89	0.32
Ν	-0.37	-0.17	-1.59	-0.06
С	-1.51	-1.07	-1.70	-0.02
н	-2.12	-0.79	-2.54	0.07
н	-1.12	-2.06	-1.91	0.07
С	-2.36	-1.07	-0.43	-0.01
н	-2.70	-0.05	-0.26	0.07
Н	-1.74	-1.35	0.43	0.07
Ν	-3.52	-1.92	-0.57	-0.36
С	-3.20	-3.35	-0.56	-0.02
Н	-2.43	-3.58	0.18	0.07
Н	-2.83	-3.66	-1.53	0.07
С	-4.44	-4.17	-0.23	0.09
Н	-5.21	-3.99	-0.97	0.05
Н	-4.19	-5.22	-0.25	0.05
0	-4.93	-3.88	1.06	-0.39
С	-4.76	-2.56	1.49	0.09
Н	-5.61	-2.30	2.10	0.05
Н	-3.87	-2.49	2.11	0.05
С	-4.65	-1.60	0.31	-0.02
Н	-4.54	-0.58	0.68	0.07
Н	-5.57	-1.63	-0.26	0.07
С	0.86	-0.51	-1.07	0.01
С	1.40	-1.70	-0.59	-0.18
Н	0.83	-2.61	-0.56	0.13
С	2.70	-1.67	-0.15	-0.17
Н	3.15	-2.57	0.21	0.13
С	3.48	-0.49	-0.18	-0.10
С	2.92	0.69	-0.66	-0.11
Н	3.49	1.60	-0.67	0.10
С	1.61	0.67	-1.11	0.28
Ν	0.84	1.69	-1.63	-0.61
С	4.88	-0.52	0.31	-0.12
С	6.02	-0.30	-0.37	0.30
С	6.32	0.02	-1.80	-0.30
н	6.79	0.99	-1.88	0.10
н	7.00	-0.72	-2.20	0.10

н	5.41	0.02	-2.38	0.10
0	7.06	-0.41	0.44	-0.10
N	6.63	-0.71	1.70	-0.47
с	5.35	-0.78	1.64	0.37
С	4.54	-1.08	2.87	-0.19
н	5.20	-1.14	3.73	0.07
н	3.81	-0.29	3.04	0.07
н	4.01	-2.01	2.76	0.07
Ligand 4				
Atom	X	Y	Z	RESP Charge
с	2.09	-2.90	1.86	-0.20
н	1.47	-2.89	2.74	0.13
с	3.47	-2.76	1.99	0.15
с	4.11	-2.62	3.36	-0.18
н	5.10	-2.18	3.29	0.06
н	4.22	-3.60	3.83	0.06
н	3.51	-2.01	4.02	0.06
с	4.24	-2.78	0.84	-0.20
н	5.31	-2.68	0.90	0.13
с	3.64	-2.93	-0.41	-0.15
н	4.27	-2.95	-1.29	0.13
с	2.27	-3.07	-0.54	0.00
с	1.50	-3.06	0.62	-0.15
н	0.43	-3.16	0.55	0.13
с	1.63	-3.22	-1.91	0.01
н	0.71	-3.79	-1.83	0.03
н	2.30	-3.77	-2.56	0.03
с	1.31	-1.87	-2.58	-0.03
н	1.02	-2.05	-3.61	0.04
н	2.21	-1.26	-2.60	0.04
с	0.18	-1.13	-1.92	0.33
N	0.22	0.20	-1.61	-0.06
с	1.32	1.13	-1.74	-0.03
н	1.91	0.88	-2.61	0.07
н	0.90	2.11	-1.93	0.07
с	2.22	1.13	-0.50	-0.01
н	2.59	0.13	-0.36	0.07
н	1.62	1.39	0.37	0.07
N	3.35	2.02	-0.68	-0.36
с	3.00	3.44	-0.63	-0.03
н	2.24	3.63	0.13	0.07

Н	2.58	3.75	-1.59	0.07
С	4.22	4.29	-0.33	0.10
Н	4.96	4.14	-1.11	0.05
Н	3.95	5.33	-0.33	0.05
0	4.76	4.00	0.93	-0.39
С	4.64	2.66	1.34	0.10
н	5.53	2.42	1.92	0.05
н	3.78	2.55	2.00	0.05
С	4.51	1.71	0.16	-0.03
н	4.45	0.69	0.51	0.07
Н	5.42	1.78	-0.44	0.07
С	-1.01	0.49	-1.05	0.00
С	-1.57	1.66	-0.54	-0.19
Н	-1.03	2.59	-0.52	0.14
С	-2.86	1.59	-0.07	-0.18
н	-3.32	2.48	0.32	0.14
С	-3.60	0.39	-0.08	-0.09
С	-3.02	-0.76	-0.58	-0.14
Н	-3.56	-1.69	-0.59	0.11
С	-1.72	-0.70	-1.08	0.30
Ν	-0.94	-1.70	-1.62	-0.61
С	-4.98	0.38	0.45	-0.09
С	-6.14	0.13	-0.19	0.29
С	-6.47	-0.18	-1.61	-0.29
н	-6.92	-1.17	-1.69	0.10
Н	-7.19	0.54	-1.99	0.10
Ligand 5				<u>0 4 0</u>
Atyon	-6,69	0.50	1. 2 1	RESP (Che rge
С	-3.40	-2.67	1.86	-0.35
đ	-4.58	-02.992	3.01	-0.12
A	-3.49	-0.90	3.89	0.82
Ð	-3.812	-2.76	2.64	-0.37
A	-54.408	-2.81	2.89	0.01
Н	5.58	-2.63	3.91	0.06
н	5.91	-3.45	2.37	0.06
н	5.79	-1.68	2.44	0.06
С	4.22	-2.61	0.26	-0.21
Н	5.29	-2.50	0.28	0.12
С	3.57	-2.65	-0.97	-0.15
Н	4.16	-2.57	-1.86	0.14
С	2.19	-2.79	-1.06	-0.04

С	1.47	-2.91	0.13	-0.15
н	0.41	-3.03	0.09	0.14
С	1.50	-2.81	-2.41	-0.02
Н	0.62	-3.44	-2.37	0.04
Н	2.17	-3.25	-3.15	0.04
С	1.09	-1.42	-2.91	-0.02
Н	0.77	-1.50	-3.95	0.03
Н	1.96	-0.77	-2.91	0.03
С	-0.04	-0.82	-2.13	0.34
Ν	-0.05	0.48	-1.67	-0.05
С	1.01	1.47	-1.74	-0.04
Н	1.57	1.34	-2.66	0.07
Н	0.53	2.44	-1.80	0.07
С	1.96	1.38	-0.55	-0.02
Н	2.37	0.38	-0.53	0.07
Н	1.39	1.50	0.37	0.07
Ν	3.04	2.33	-0.67	-0.36
С	2.63	3.71	-0.46	-0.04
Н	1.90	3.79	0.36	0.08
Н	2.16	4.11	-1.35	0.08
С	3.82	4.59	-0.11	0.10
Н	4.54	4.56	-0.93	0.06
Н	3.51	5.61	0.02	0.06
0	4.43	4.19	1.09	-0.40
С	4.39	2.81	1.36	0.10
Н	5.30	2.55	1.89	0.06
Н	3.55	2.60	2.03	0.06
С	4.25	1.99	0.09	-0.04
Н	4.24	0.94	0.34	0.08
Н	5.13	2.16	-0.53	0.08
С	-1.26	0.65	-1.04	0.00
С	-1.85	1.72	-0.38	-0.20
Н	-1.35	2.67	-0.27	0.14
С	-3.11	1.54	0.14	-0.17
Н	-3.59	2.36	0.64	0.14
С	-3.79	0.31	0.02	-0.08
С	-3.19	-0.75	-0.63	-0.14
Н	-3.69	-1.70	-0.72	0.11
С	-1.92	-0.57	-1.17	0.32
Ν	-1.12	-1.46	-1.85	-0.63
С	-5.15	0.17	0.60	-0.10
С	-6.32	-0.06	-0.02	0.29

С	-6.71	-0.23	-1.45	-0.28
н	-7.11	-1.22	-1.62	0.10
н	-7.47	0.49	-1.71	0.10
н	-5.85	-0.08	-2.09	0.10
0	-7.30	-0.13	0.87	-0.10
N	-6.80	0.05	2.13	-0.47
С	-5.54	0.23	1.99	0.36
С	-4.66	0.44	3.18	-0.19
н	-5.24	0.35	4.09	0.07
н	-3.86	-0.29	3.20	0.07
Н	-4.20	1.42	3.16	0.07

Ligand 6				
Atom	х	Y	Z	RESP Charge
С	-0.91	4.30	0.79	-0.01
N	0.23	4.62	1.64	0.72
0	0.01	5.11	2.70	-0.44
0	1.32	4.37	1.22	-0.44
С	-2.18	4.65	1.23	-0.13
н	-2.31	5.13	2.17	0.14
С	-3.25	4.34	0.41	-0.15
н	-4.25	4.61	0.71	0.14
С	-3.04	3.72	-0.81	-0.08
н	-3.89	3.50	-1.44	0.12
С	-1.77	3.37	-1.24	-0.01
С	-0.69	3.67	-0.42	-0.06
н	0.31	3.41	-0.72	0.11
с	-1.57	2.68	-2.58	-0.02

н	-0.58	2.89	-2.96	0.04
Н	-2.29	3.08	-3.29	0.04
С	-1.77	1.15	-2.52	-0.03
Н	-1.88	0.77	-3.53	0.05
н	-2.70	0.93	-2.01	0.05
С	-0.63	0.42	-1.87	0.29
Ν	-0.75	-0.86	-1.42	-0.05
С	-1.93	-1.70	-1.39	-0.03
Н	-2.60	-1.41	-2.19	0.07
Н	-1.62	-2.72	-1.60	0.07
С	-2.68	-1.60	-0.06	-0.04
Н	-2.93	-0.56	0.11	0.08
Н	-2.01	-1.90	0.75	0.08
Ν	-3.90	-2.37	-0.08	-0.37
С	-3.68	-3.82	-0.10	-0.02
Н	-2.86	-4.11	0.56	0.08
Н	-3.43	-4.15	-1.10	0.08
С	-4.93	-4.55	0.35	0.10
Н	-5.76	-4.32	-0.32	0.05
Н	-4.77	-5.62	0.30	0.05
0	-5.28	-4.24	1.67	-0.39
С	-4.96	-2.94	2.09	0.10
Н	-5.73	-2.63	2.79	0.05
Н	-4.01	-2.95	2.62	0.05
С	-4.90	-1.98	0.92	-0.02
Н	-4.68	-0.98	1.28	0.08
Н	-5.88	-1.93	0.45	0.08
С	0.50	-1.22	-0.94	0.02
С	1.00	-2.38	-0.36	-0.20
Н	0.39	-3.25	-0.20	0.14
С	2.33	-2.38	-0.01	-0.15
Н	2.76	-3.26	0.43	0.13
С	3.16	-1.26	-0.20	-0.07
С	2.64	-0.11	-0.77	-0.11
Н	3.25	0.77	-0.92	0.11
С	1.30	-0.10	-1.15	0.21
Ν	0.56	0.91	-1.73	-0.53
С	4.59	-1.32	0.20	-0.14
С	5.70	-1.27	-0.56	0.29
С	5.92	-1.17	-2.03	-0.30
Н	6.45	-0.25	-2.27	0.10
Н	6.52	-2.00	-2.37	0.10

				1
н	4.97	-1.18	-2.56	0.10
0	6.78	-1.35	0.20	-0.10
N	6.41	-1.45	1.51	-0.47
С	5.13	-1.43	1.54	0.38
С	4.38	-1.49	2.83	-0.17
н	5.08	-1.51	3.66	0.06
Н	3.73	-0.63	2.94	0.06
Н	3.77	-2.38	2.88	0.06

Ligand 7				
Atom	х	Y	Z	RESP Charge
С	1.89	-3.63	0.49	-0.17
н	1.26	-4.08	1.23	0.15
С	3.25	-3.49	0.72	0.04
С	4.09	-2.92	-0.22	-0.17
н	5.14	-2.84	-0.02	0.15
С	3.55	-2.48	-1.41	-0.08
н	4.20	-2.04	-2.15	0.12
С	2.18	-2.59	-1.67	0.01
С	1.37	-3.18	-0.71	-0.08
н	0.31	-3.26	-0.90	0.12
С	1.62	-2.08	-2.98	-0.02
н	0.70	-2.60	-3.22	0.04
Н	2.33	-2.28	-3.77	0.04

С	1.34	-0.57	-2.96	0.01
Н	1.15	-0.23	-3.98	0.04
Н	2.22	-0.04	-2.61	0.04
С	0.14	-0.20	-2.13	0.30
Ν	0.00	1.03	-1.53	-0.08
С	0.96	2.11	-1.47	0.01
Н	1.56	2.11	-2.37	0.06
Н	0.40	3.04	-1.47	0.06
С	1.87	2.01	-0.25	-0.03
Н	2.37	1.05	-0.28	0.07
Н	1.26	2.02	0.66	0.07
Ν	2.88	3.05	-0.26	-0.37
С	2.35	4.38	-0.01	-0.02
Н	1.57	4.37	0.76	0.07
Н	1.90	4.78	-0.91	0.07
С	3.45	5.33	0.44	0.12
Н	4.21	5.39	-0.33	0.05
Н	3.05	6.32	0.60	0.05
0	4.02	4.92	1.66	-0.41
С	4.06	3.53	1.87	0.12
Н	4.96	3.32	2.44	0.05
Н	3.21	3.23	2.48	0.05
С	4.07	2.77	0.56	-0.02
Н	4.12	1.70	0.77	0.07
Н	4.96	3.03	0.00	0.07
С	-1.24	1.01	-0.92	0.02
С	-1.93	1.95	-0.16	-0.18
Н	-1.52	2.92	0.07	0.14
С	-3.18	1.59	0.30	-0.18
Н	-3.75	2.30	0.88	0.14
С	-3.74	0.33	0.02	-0.06
С	-3.04	-0.59	-0.73	-0.10
Н	-3.44	-1.56	-0.94	0.10
С	-1.78	-0.24	-1.20	0.23
Ν	-0.88	-0.96	-1.97	-0.56
С	-5.09	0.00	0.54	-0.14
С	-6.23	-0.25	-0.14	0.30
С	-6.57	-0.28	-1.59	-0.30
Н	-6.88	-1.27	-1.89	0.10
Н	-7.39	0.40	-1.79	0.10
Н	-5.71	0.02	-2.18	0.10
0	-7.21	-0.52	0.71	-0.10

N	-6.75	-0.45	1.99	-0.46
С	-5.51	-0.15	1.91	0.37
С	-4.68	0.00	3.15	-0.17
н	-5.27	-0.25	4.02	0.06
н	-3.82	-0.66	3.11	0.06
н	-4.31	1.01	3.25	0.06
N	3.80	-3.96	1.98	0.73
0	3.06	-4.47	2.76	-0.44
О	4.98	-3.81	2.16	-0.44

Ligand 8				
Atom	х	Y	Z	RESP Charge
С	-2.23	3.17	2.27	-0.23
Н	-1.62	3.31	3.15	0.16
С	-3.57	2.84	2.35	-0.14
Н	-4.03	2.71	3.32	0.14
С	-4.31	2.68	1.19	-0.12
Н	-5.36	2.44	1.25	0.12
С	-3.71	2.86	-0.04	-0.19
Н	-4.29	2.75	-0.94	0.14
С	-2.36	3.18	-0.16	0.00
С	-1.65	3.34	1.03	0.24
F	-0.37	3.68	0.98	-0.18
С	-1.71	3.36	-1.51	0.00
Н	-0.76	3.88	-1.41	0.03

Н	-2.35	3.99	-2.12	0.03
С	-1.48	2.04	-2.27	-0.04
Н	-1.22	2.27	-3.30	0.05
Н	-2.39	1.47	-2.29	0.05
С	-0.34	1.23	-1.70	0.35
Ν	-0.41	-0.12	-1.47	-0.09
С	-1.55	-1.02	-1.63	-0.02
Н	-2.18	-0.67	-2.44	0.07
Н	-1.16	-1.98	-1.93	0.07
С	-2.37	-1.13	-0.35	-0.03
Н	-2.71	-0.13	-0.08	0.08
Н	-1.73	-1.48	0.46	0.08
Ν	-3.54	-1.97	-0.54	-0.36
С	-3.21	-3.39	-0.69	-0.03
Н	-2.41	-3.69	0.00	0.08
Н	-2.86	-3.60	-1.69	0.08
С	-4.43	-4.25	-0.40	0.10
Н	-5.22	-4.00	-1.10	0.05
Н	-4.18	-5.29	-0.54	0.05
0	-4.88	-4.10	0.92	-0.39
С	-4.70	-2.82	1.48	0.10
Н	-5.53	-2.64	2.15	0.05
Н	-3.79	-2.81	2.08	0.05
С	-4.63	-1.75	0.41	-0.03
Н	-4.51	-0.78	0.87	0.08
Н	-5.57	-1.73	-0.13	0.08
С	0.83	-0.49	-1.00	0.01
С	1.37	-1.70	-0.59	-0.18
Н	0.80	-2.61	-0.60	0.13
С	2.68	-1.70	-0.17	-0.18
Н	3.13	-2.63	0.13	0.14
С	3.46	-0.53	-0.14	-0.06
С	2.90	0.67	-0.55	-0.13
Н	3.47	1.59	-0.52	0.11
С	1.58	0.69	-0.98	0.29
Ν	0.81	1.74	-1.43	-0.62
С	4.87	-0.59	0.32	-0.16
С	6.00	-0.34	-0.37	0.31
С	6.28	0.04	-1.78	-0.29
Н	6.75	1.01	-1.82	0.10
Н	6.95	-0.68	-2.23	0.10
н	5.36	0.07	-2.35	0.10

				1	
0	7.05	-0.50	0.43	-0.10	
N	6.64	-0.86	1.68	-0.47	
С	5.36	-0.91	1.63	0.38	
С	4.57	-1.26	2.85	-0.18	
н	5.23	-1.38	3.70	0.07	
н	3.84	-0.48	3.07	0.07	
Н	4.02	-2.19	2.71	0.07	

Ligand 9				
Atom	х	Y	Z	RESP Charge
С	-2.01	3.06	1.91	0.15

F	-1.20	3.04	2.97	-0.18
С	-3.37	2.98	2.11	-0.11
н	-3.76	2.91	3.11	0.13
С	-4.19	2.99	1.00	-0.18
Н	-5.26	2.94	1.13	0.14
С	-3.65	3.09	-0.27	-0.12
Н	-4.31	3.11	-1.13	0.12
С	-2.27	3.16	-0.46	-0.05
С	-1.44	3.15	0.66	-0.09
Н	-0.38	3.21	0.56	0.13
С	-1.69	3.24	-1.86	0.00
Н	-0.75	3.77	-1.84	0.04
Н	-2.37	3.80	-2.49	0.04
С	-1.47	1.86	-2.50	-0.06
Н	-1.24	1.99	-3.55	0.06
Н	-2.39	1.29	-2.45	0.06
С	-0.33	1.10	-1.88	0.31
Ν	-0.38	-0.23	-1.57	-0.05
С	-1.52	-1.14	-1.67	-0.04
Н	-2.13	-0.87	-2.51	0.08
Н	-1.12	-2.13	-1.87	0.08
С	-2.37	-1.12	-0.40	-0.04
Н	-2.70	-0.10	-0.23	0.08
Н	-1.74	-1.40	0.46	0.08
Ν	-3.53	-1.97	-0.53	-0.36
С	-3.22	-3.40	-0.52	-0.02
Н	-2.44	-3.63	0.21	0.08
Н	-2.85	-3.71	-1.50	0.08
С	-4.45	-4.21	-0.19	0.09
Н	-5.23	-4.03	-0.93	0.06
Н	-4.22	-5.27	-0.21	0.06
0	-4.94	-3.93	1.10	-0.39
С	-4.75	-2.61	1.54	0.09
Н	-5.60	-2.35	2.16	0.06
Н	-3.86	-2.55	2.15	0.06
С	-4.65	-1.64	0.36	-0.02
Н	-4.53	-0.63	0.74	0.08
Н	-5.58	-1.67	-0.19	0.08
С	0.86	-0.55	-1.06	0.02
С	1.40	-1.74	-0.57	-0.20
Н	0.85	-2.65	-0.53	0.14
С	2.71	-1.69	-0.14	-0.17

Н	3.17	-2.59	0.23	0.14
С	3.47	-0.51	-0.17	-0.07
С	2.91	0.66	-0.65	-0.12
Н	3.46	1.58	-0.67	0.11
С	1.59	0.63	-1.10	0.27
N	0.81	1.64	-1.62	-0.59
С	4.87	-0.52	0.32	-0.13
С	6.02	-0.31	-0.37	0.30
С	6.31	-0.02	-1.80	-0.30
Н	6.78	0.96	-1.90	0.10
Н	7.00	-0.76	-2.19	0.10
Н	5.40	-0.03	-2.38	0.10
0	7.06	-0.40	0.45	-0.10
N	6.63	-0.68	1.72	-0.47
С	5.35	-0.76	1.66	0.36
С	4.54	-1.03	2.89	-0.17
Н	5.20	-1.09	3.75	0.06
Н	3.81	-0.25	3.04	0.06
н	4.01	-1.97	2.79	0.06

Ligand 10				
Atom	Х	Y	Z	RESP Charge
С	1.95	-3.10	1.84	-0.20
н	1.33	-3.14	2.71	0.15
С	3.31	-2.98	1.98	0.27
F	3.84	-2.90	3.20	-0.20
С	4.16	-2.93	0.89	-0.20
н	5.22	-2.84	1.04	0.15
С	3.60	-3.00	-0.38	-0.13
н	4.25	-2.97	-1.24	0.13
С	2.23	-3.12	-0.57	-0.02
С	1.41	-3.18	0.56	-0.13
н	0.35	-3.27	0.44	0.13
С	1.64	-3.18	-1.96	0.00
н	0.71	-3.74	-1.96	0.03
н	2.33	-3.70	-2.62	0.03
С	1.38	-1.79	-2.57	-0.02
н	1.13	-1.90	-3.62	0.04
н	2.28	-1.20	-2.53	0.04

С	0.24	-1.07	-1.91	0.33
Ν	0.26	0.26	-1.59	-0.06
С	1.37	1.20	-1.70	-0.02
н	1.97	0.95	-2.56	0.07
н	0.95	2.18	-1.88	0.07
С	2.25	1.19	-0.45	-0.02
н	2.61	0.18	-0.30	0.07
н	1.64	1.44	0.42	0.07
Ν	3.40	2.06	-0.60	-0.37
С	3.05	3.48	-0.58	-0.02
Н	2.28	3.69	0.17	0.07
Н	2.66	3.79	-1.54	0.07
С	4.27	4.32	-0.26	0.11
Н	5.03	4.16	-1.02	0.05
Н	4.01	5.37	-0.27	0.05
0	4.79	4.04	1.01	-0.40
С	4.64	2.71	1.44	0.11
Н	5.51	2.47	2.05	0.05
Н	3.76	2.63	2.08	0.05
С	4.53	1.75	0.27	-0.02
Н	4.45	0.74	0.63	0.07
Н	5.45	1.81	-0.31	0.07
С	-0.97	0.55	-1.04	0.01
С	-1.53	1.71	-0.52	-0.20
Н	-1.00	2.64	-0.49	0.15
С	-2.83	1.63	-0.06	-0.17
Н	-3.30	2.51	0.33	0.14
С	-3.56	0.43	-0.09	-0.07
С	-2.98	-0.72	-0.60	-0.12
Н	-3.52	-1.65	-0.62	0.11
С	-1.68	-0.65	-1.08	0.28
Ν	-0.89	-1.64	-1.63	-0.61
С	-4.95	0.40	0.43	-0.12
С	-6.10	0.16	-0.23	0.30
С	-6.42	-0.14	-1.65	-0.28
Н	-6.86	-1.13	-1.74	0.10
Н	-7.14	0.57	-2.03	0.10
Н	-5.53	-0.10	-2.26	0.10
0	-7.13	0.22	0.61	-0.10
Ν	-6.68	0.51	1.87	-0.46
С	-5.41	0.62	1.78	0.35
С	-4.58	0.92	2.99	-0.16

н	-5.21	0.95	3.87	0.06
н	-3.82	0.16	3.13	0.06
Н	-4.08	1.88	2.89	0.06

Ligand 11				
Atom	X	Y	Z	RESP Charge
С	-2.08	-2.92	-0.51	-0.16
Cl	-1.14	-3.44	-1.87	-0.11
С	-3.46	-2.78	-0.63	0.38
0	-4.00	-3.06	-1.83	-0.29
С	-5.39	-3.00	-2.00	-0.01
н	-5.58	-3.29	-3.03	0.07
н	-5.90	-3.69	-1.34	0.07
н	-5.77	-2.00	-1.84	0.07
С	-4.18	-2.36	0.48	-0.18
н	-5.25	-2.26	0.42	0.12
С	-3.53	-2.10	1.68	-0.23
н	-4.12	-1.79	2.52	0.16
С	-2.16	-2.24	1.81	-0.03
С	-1.44	-2.65	0.69	-0.04
Н	-0.38	-2.77	0.75	0.13
С	-1.47	-1.92	3.12	0.00
Н	-0.58	-2.54	3.23	0.04

н	-2.13	-2.16	3.94	0.04
С	-1.05	-0.45	3.26	-0.05
н	-0.74	-0.26	4.28	0.05
н	-1.91	0.19	3.07	0.05
С	0.09	-0.07	2.35	0.31
Ν	0.15	1.10	1.64	-0.05
С	-0.88	2.12	1.50	-0.03
н	-1.43	2.21	2.43	0.07
н	-0.37	3.06	1.35	0.07
С	-1.84	1.81	0.36	-0.02
н	-2.28	0.83	0.55	0.08
н	-1.27	1.72	-0.58	0.08
Ν	-2.90	2.79	0.28	-0.36
С	-2.46	4.09	-0.20	-0.03
н	-1.73	3.99	-1.01	0.07
Н	-1.98	4.64	0.60	0.07
С	-3.63	4.90	-0.71	0.09
н	-4.35	5.05	0.09	0.06
Н	-3.30	5.88	-1.04	0.06
0	-4.26	4.30	-1.81	-0.39
С	-4.23	2.89	-1.82	0.09
Н	-5.15	2.55	-2.29	0.06
Н	-3.40	2.54	-2.43	0.06
С	-4.12	2.33	-0.41	-0.03
Н	-4.13	1.25	-0.45	0.07
Н	-4.99	2.63	0.16	0.07
С	1.36	1.08	0.98	0.02
С	1.97	1.97	0.11	-0.20
Н	1.51	2.90	-0.19	0.15
С	3.22	1.63	-0.37	-0.17
Н	3.73	2.31	-1.03	0.14
С	3.86	0.43	0.00	-0.08
С	3.22	-0.45	0.86	-0.13
Н	3.68	-1.38	1.14	0.11
С	1.97	-0.11	1.36	0.27
Ν	1.14	-0.80	2.22	-0.59
С	5.20	0.12	-0.55	-0.12
С	6.38	-0.01	0.10	0.30
С	6.78	0.13	1.52	-0.30
Н	7.16	-0.81	1.91	0.10
Н	7.57	0.87	1.62	0.10
н	5.93	0.44	2.12	0.10

0	7.34	-0.31	-0.76	-0.10
Ν	6.82	-0.40	-2.03	-0.47
С	5.56	-0.15	-1.92	0.36
С	4.67	-0.18	-3.12	-0.17
н	5.24	-0.48	-3.99	0.07
Н	3.85	-0.87	-2.97	0.07
Н	4.24	0.80	-3.30	0.07

Ligand 12				
Atom	Х	Y	Z	RESP Charge
С	2.09	-2.92	0.90	0.09
F	1.38	-3.17	1.99	-0.18
С	3.47	-2.79	1.02	0.28
0	3.98	-2.94	2.26	-0.28
С	5.36	-2.89	2.44	-0.01
н	5.53	-3.06	3.50	0.07
н	5.86	-3.67	1.87	0.07
н	5.77	-1.92	2.17	0.07
С	4.19	-2.53	-0.13	-0.19
н	5.26	-2.44	-0.09	0.13
С	3.55	-2.41	-1.35	-0.22

Н	4.14	-2.21	-2.23	0.16
С	2.18	-2.53	-1.47	-0.06
С	1.45	-2.80	-0.30	-0.14
Н	0.38	-2.91	-0.33	0.16
С	1.48	-2.37	-2.80	0.00
Н	0.60	-3.00	-2.85	0.04
Н	2.15	-2.70	-3.59	0.04
С	1.07	-0.92	-3.11	-0.07
Н	0.76	-0.86	-4.15	0.06
Н	1.94	-0.27	-3.01	0.06
С	-0.07	-0.44	-2.26	0.32
Ν	-0.10	0.80	-1.67	-0.05
С	0.93	1.81	-1.63	-0.02
Н	1.49	1.80	-2.56	0.07
Н	0.44	2.77	-1.57	0.07
С	1.89	1.61	-0.46	-0.02
Н	2.32	0.62	-0.55	0.07
Н	1.32	1.62	0.48	0.07
Ν	2.96	2.58	-0.47	-0.36
С	2.53	3.93	-0.12	-0.03
Н	1.80	3.92	0.69	0.08
Н	2.05	4.41	-0.97	0.08
С	3.71	4.78	0.31	0.09
Н	4.43	4.85	-0.51	0.06
Н	3.38	5.78	0.54	0.06
0	4.33	4.27	1.46	-0.39
С	4.30	2.87	1.60	0.09
Н	5.22	2.57	2.09	0.06
Н	3.47	2.59	2.24	0.06
С	4.17	2.18	0.25	-0.03
Н	4.18	1.11	0.39	0.08
Н	5.05	2.43	-0.35	0.08
С	-1.32	0.87	-1.01	0.02
С	-1.92	1.85	-0.24	-0.20
Н	-1.44	2.79	-0.03	0.14
С	-3.17	1.58	0.26	-0.17
Н	-3.68	2.33	0.85	0.14
С	-3.83	0.36	0.02	-0.07
С	-3.21	-0.61	-0.75	-0.12
Н	-3.69	-1.56	-0.94	0.11
С	-1.95	-0.35	-1.27	0.27
Ν	-1.13	-1.13	-2.06	-0.60

С	-5.18	0.12	0.58	-0.12
С	-6.36	-0.05	-0.05	0.30
С	-6.75	-0.05	-1.49	-0.30
н	-7.14	-1.02	-1.77	0.10
н	-7.53	0.69	-1.66	0.10
н	-5.90	0.18	-2.11	0.10
0	-7.32	-0.25	0.83	-0.10
Ν	-6.81	-0.21	2.10	-0.47
С	-5.55	0.01	1.97	0.36
С	-4.67	0.09	3.17	-0.17
Н	-5.24	-0.11	4.07	0.07
н	-3.86	-0.63	3.10	0.07
Н	-4.22	1.07	3.26	0.07

Ligand 13				
Atom	Х	Y	Z	RESP Charge
н	0.76	-4.03	-1.14	0.05
н	2.40	-4.17	-1.73	0.05
С	1.54	-2.23	-2.01	-0.11
н	1.35	-2.49	-3.05	0.08
н	2.45	-1.66	-1.99	0.08
С	0.38	-1.40	-1.52	0.32
Ν	0.41	-0.04	-1.42	-0.07
С	1.54	0.86	-1.62	-0.02
н	2.18	0.47	-2.40	0.07
н	1.14	1.80	-1.99	0.07
С	2.35	1.05	-0.34	-0.05
н	2.69	0.08	-0.01	0.08
н	1.70	1.45	0.44	0.08
Ν	3.51	1.89	-0.58	-0.36

С	3.18	3.29	-0.79	-0.03
н	2.39	3.62	-0.11	0.08
н	2.83	3.45	-1.80	0.08
С	4.40	4.17	-0.55	0.10
н	5.19	3.89	-1.24	0.05
н	4.15	5.21	-0.73	0.05
0	4.86	4.08	0.78	-0.39
С	4.69	2.83	1.39	0.10
н	5.53	2.68	2.06	0.05
н	3.78	2.84	2.00	0.05
С	4.61	1.71	0.37	-0.03
н	4.50	0.76	0.88	0.08
н	5.55	1.66	-0.17	0.08
С	-0.84	0.34	-0.98	0.03
С	-1.41	1.58	-0.69	-0.18
н	-0.86	2.50	-0.78	0.13
С	-2.73	1.59	-0.28	-0.19
н	-3.20	2.53	-0.06	0.14
С	-3.48	0.40	-0.15	-0.06
С	-2.89	-0.82	-0.44	-0.10
Н	-3.44	-1.74	-0.33	0.10
С	-1.56	-0.84	-0.86	0.24
Ν	-0.77	-1.91	-1.21	-0.58
С	-4.89	0.47	0.30	-0.13
С	-6.01	0.13	-0.37	0.29
С	-6.27	-0.39	-1.74	-0.29
Н	-6.72	-1.38	-1.69	0.10
Н	-6.96	0.27	-2.26	0.10
Н	-5.35	-0.45	-2.29	0.10
0	-7.07	0.34	0.40	-0.10
Ν	-6.68	0.82	1.62	-0.47
С	-5.40	0.91	1.57	0.37
С	-4.62	1.39	2.76	-0.15
Н	-5.30	1.57	3.59	0.06
Н	-3.88	0.66	3.05	0.06
Н	-4.10	2.32	2.53	0.06
С	2.22	-3.28	0.20	-0.05
С	1.51	-3.12	1.34	-0.05
н	0.43	-3.17	1.36	0.13
С	2.32	-2.87	2.49	-0.32
Н	1.92	-2.72	3.48	0.18
С	3.63	-2.85	2.21	-0.11

S 3.92 -3.14 0.53	-0.05
H 4.45 -2.71 2.89	0.17

Ligand 14				
Atom	Х	Y	Z	RESP Charge
С	1.40	-3.00	-1.98	-0.04
н	0.54	-3.57	-1.64	0.07
н	1.96	-3.61	-2.68	0.07
С	0.90	-1.74	-2.71	-0.07
н	0.54	-2.03	-3.69	0.07
н	1.73	-1.06	-2.87	0.07
С	-0.24	-1.07	-2.00	0.31
Ν	-0.27	0.27	-1.68	-0.03
С	0.75	1.28	-1.87	-0.02
н	1.34	1.04	-2.74	0.07
Н	0.24	2.21	-2.08	0.07
С	1.66	1.42	-0.65	0.00
Н	2.13	0.46	-0.48	0.07
н	1.05	1.63	0.24	0.07
Ν	2.69	2.41	-0.87	-0.38
С	2.18	3.78	-0.85	-0.02
н	1.43	3.92	-0.07	0.07
н	1.71	4.02	-1.80	0.07
С	3.32	4.77	-0.61	0.12
н	4.06	4.68	-1.40	0.05

н	2.93	5.78	-0.62	0.05
0	3.92	4.57	0.65	-0.40
С	3.95	3.24	1.10	0.12
н	4.87	3.11	1.66	0.05
н	3.12	3.06	1.78	0.05
С	3.90	2.25	-0.06	-0.02
н	3.95	1.24	0.33	0.07
н	4.77	2.40	-0.69	0.07
С	-1.50	0.47	-1.08	0.01
С	-2.11	1.60	-0.54	-0.21
н	-1.63	2.56	-0.53	0.14
С	-3.38	1.45	-0.02	-0.14
н	-3.88	2.30	0.39	0.13
С	-4.04	0.20	-0.02	-0.08
С	-3.41	-0.91	-0.55	-0.12
н	-3.88	-1.87	-0.55	0.11
С	-2.13	-0.77	-1.09	0.28
Ν	-1.31	-1.70	-1.68	-0.61
С	-5.40	0.09	0.56	-0.14
С	-6.56	-0.21	-0.05	0.29
С	-6.93	-0.52	-1.46	-0.30
н	-7.31	-1.53	-1.54	0.11
н	-7.70	0.16	-1.80	0.11
н	-6.06	-0.43	-2.10	0.11
0	-7.55	-0.21	0.84	-0.10
Ν	-7.06	0.09	2.07	-0.47
С	-5.80	0.28	1.93	0.38
С	-4.94	0.62	3.11	-0.17
Н	-5.53	0.61	4.01	0.07
Н	-4.13	-0.10	3.20	0.07
Н	-4.49	1.60	2.99	0.07
С	2.26	-2.69	-0.79	0.27
Ν	1.81	-2.49	0.39	-0.50
С	2.83	-2.18	1.28	0.25
С	4.11	-2.15	0.73	0.09
С	5.22	-1.85	1.51	-0.17
Н	6.21	-1.83	1.08	0.17
С	5.03	-1.59	2.85	-0.18
Н	5.87	-1.35	3.47	0.14
С	3.75	-1.62	3.40	-0.14
Н	3.62	-1.41	4.45	0.14
С	2.65	-1.91	2.63	-0.16

Н	1.66	-1.94	3.05	0.13
S	4.00	-2.53	-0.97	-0.13

Ligand 15				
Atom	Х	Y	Z	RESP Charge
С	-1.72	2.89	-2.14	0.00
н	-0.82	3.46	-1.95	0.07
н	-2.32	3.45	-2.85	0.07
С	-1.35	1.54	-2.79	-0.10
н	-1.02	1.74	-3.81	0.07
н	-2.23	0.92	-2.85	0.07
С	-0.22	0.84	-2.09	0.33
N	-0.28	-0.45	-1.64	-0.05
С	-1.40	-1.38	-1.67	-0.01
н	-1.99	-1.20	-2.56	0.07
н	-0.99	-2.37	-1.77	0.07
С	-2.28	-1.26	-0.43	0.00
н	-2.66	-0.25	-0.38	0.07
н	-1.67	-1.41	0.46	0.07
Ν	-3.40	-2.18	-0.50	-0.38
С	-3.03	-3.57	-0.28	-0.02

Н	-2.27	-3.66	0.50	0.07
Н	-2.61	-4.00	-1.19	0.07
С	-4.24	-4.39	0.13	0.11
Н	-4.99	-4.35	-0.66	0.05
Н	-3.95	-5.43	0.26	0.05
0	-4.78	-3.95	1.34	-0.40
С	-4.69	-2.57	1.58	0.11
Н	-5.58	-2.27	2.12	0.05
Н	-3.83	-2.36	2.22	0.05
С	-4.57	-1.79	0.28	-0.02
Н	-4.53	-0.73	0.50	0.07
Н	-5.47	-1.95	-0.31	0.07
С	0.96	-0.71	-1.09	0.01
С	1.50	-1.84	-0.48	-0.18
Н	0.95	-2.75	-0.35	0.13
С	2.81	-1.74	-0.04	-0.16
Н	3.26	-2.60	0.43	0.14
С	3.57	-0.57	-0.18	-0.09
С	3.00	0.54	-0.79	-0.09
Н	3.56	1.46	-0.90	0.10
С	1.69	0.46	-1.25	0.25
Ν	0.91	1.41	-1.88	-0.60
С	4.96	-0.52	0.31	-0.11
С	6.11	-0.37	-0.38	0.28
С	6.42	-0.21	-1.83	-0.28
Н	6.88	0.75	-2.01	0.10
Н	7.11	-0.98	-2.14	0.10
Н	5.51	-0.29	-2.41	0.10
0	7.14	-0.38	0.45	-0.10
Ν	6.70	-0.54	1.74	-0.47
С	5.43	-0.63	1.67	0.36
С	4.61	-0.80	2.92	-0.15
Н	5.25	-0.76	3.79	0.06
Н	3.86	-0.01	2.99	0.06
Н	4.09	-1.75	2.91	0.06
Ν	-2.48	2.76	-0.92	0.01
С	-2.00	2.83	0.38	0.07
С	-3.10	2.70	1.25	0.11
С	-4.27	2.55	0.42	-0.32
Н	-5.28	2.45	0.74	0.18
С	-3.84	2.60	-0.86	-0.20
Н	-4.41	2.55	-1.77	0.18

1				
С	-2.89	2.75	2.63	-0.19
н	-3.72	2.66	3.31	0.13
С	-1.61	2.92	3.10	-0.17
н	-1.44	2.96	4.17	0.13
С	-0.53	3.04	2.22	-0.18
н	0.46	3.17	2.62	0.14
С	-0.70	3.00	0.86	-0.15
н	0.14	3.08	0.19	0.13

2.2 MM-PBSA and MM-GBSA analysis

The MM-PB(GB)SA analysis was performed with an internal dielectric constant (ϵ_{int}) of 1; the MM-PBSA analysis was also repeated with ϵ_{int} =4.0, giving worse results: the correlation coefficient drops from 0.59 to 0.38 with this change in dielectric constant. This change is due to the importance of electrostatics (and thus dielectric constant) for quantification of the strength of cation- π interactions.

Both PB and GB surface area models give similar levels of correlation with experimental binding affinities (**Table S4**), while consideration of just the electrostatic term improves this correlation. This observation is coherent with earlier attempts to use classical force fields to evaluate the interaction strength of cation- π interaction: the intermolecular electrostatic term tends to correlate more strongly with QM-computed results than does the total classical intermolecular energy.

Ligand	MM-PBSA	MM-GBSA	Electrostatic	MM-PBSA ε _{int} =4.0
L1	-33.46 ± 2.73	-36.43 ± 4.63	-2.07 ± 1.08	-43.39 ± 2.58
L2	-35.90 ± 3.30	-38.83 ± 3.35	-1.81 ± 1.27	-48.05 ± 2.53
L3	-34.21 ± 3.07	-38.11 ± 2.59	-1.75 ± 1.26	-45.10 ± 2.75
L4	-33.00 ± 3.28	-37.01 ± 3.30	-1.30 ± 1.06	-46.40 ± 2.17
L5	-36.10 ± 2.73	-38.98 ± 2.82	-2.48 ± 1.44	-44.80 ± 2.56
L6	-34.15 ± 2.33	-37.77 ± 2.47	-1.14 ± 2.28	-47.27 ± 2.29
L7	-32.02 ± 2.47	-35.83 ± 2.60	0.13 ± 2.51	-46.38 ± 2.60
L8	-33.01 ± 2.78	-35.84 ± 3.35	-1.16 ± 0.91	-45.34 ± 2.71
L9	-34.64 ± 2.96	-36.90 ± 2.55	-1.58 ± 1.06	-44.42± 2.31
L10	-32.89 ± 2.52	-35.98 ± 2.62	-1.88 ± 1.22	-45.22 ± 2.16
L11	-37.13 ± 2.32	-40.15 ± 2.06	-2.97 ± 1.30	-43.92 ± 2.38
L12	-36.72 ± 2.45	-38.72 ± 2.36	-2.09 ± 1.16	-47.50 ± 2.42
L13	-33.72 ± 2.64	-36.23 ± 2.45	0.85 ± 1.18	-43.80 ± 2.19
L14	-35.24 ± 2.52	-37.77 ± 2.44	-2.52 ± 1.67	-46.60 ± 3.01
L15	-34.84 ± 2.37	-37.06 ± 2.38	-4.91 ± 2.11	-46.09 ± 2.40
	$r_{s} = 0.59$	$r_s = 0.53$	$r_s = 0.72$	$r_s = 0.38$

Table S4. Binding free energies (kcal/mol) calculated for ligands L1-L15.

3. REFERENCES

(1) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09, Revision D.01*; Gaussian, Inc.: Wallingford CT, 2009.