Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Beh, Douglas, House, Murphy, Sinclair and Thompson

Robust Synthesis of F-BODIPYs

Michael Helmut Reynolds Beh, Katherine Isabelle Biehn Douglas, Kelsey Taylor Elver House, Alexandra Celeste Murphy, Jackson Scott Testemale Sinclair and Alison Thompson*

Department of Chemistry, Dalhousie University, P.O. Box 15000, Halifax, NS, B3H 4R2, Canada <u>Alison.Thompson@dal.ca</u>

Supporting Information

Table of contents

Determination of yield of <i>F</i> -BODIPYs employing ¹ H NMR spectroscopy Calculation of NMR-based yield	
Effect of varying NEt ₃ in the synthesis of <i>F</i> -BODIPYs	4
Synthetic methods	5
Optimised "rescue" procedure for the synthesis of F-BODIPYs (GP1)	5
General procedure for the synthesis of F-BODIPYs with added water (GP2)	5
General procedure for the synthesis of <i>F</i> -BODIPYs (GP3, anhydrous)	6
¹ H, ¹³ C, ¹¹ B and ¹⁹ F NMR spectra	8
4,4-Difluoro-1,3,5,7-tetramethyl-2,6-di(2-methoxy-2-oxoethyl)-8-H-4-bora-3a,4a-diaz	
indacene (5BF ₂)	
¹ H NMR: 500 MHz. CDCl ₂	8
¹³ C NMR; 125 MHz, CDCl ₃	8
¹¹ B NMR; 160 MHz, CDCl ₃	9
¹⁹ F NMR; 470 MHz, CDCl ₃	9
4,4-Difluoro-1,3,5,7-tetramethyl-2,6-diethoxycarbonyl-8-H-4-bora-3a,4a-diaza-s-inda	
(6BF ₂)	10
(6BF ₂) ¹ H NMR; 500 MHz, CDCl ₃	10
¹³ C NMR; 125 MHz, CDCl ₃	10
¹¹ B NMR; 160 MHz, CDCl ₃	11
¹⁹ F NMR; 470 MHz, CDCl ₃	11

Determination of yield of *F*-BODIPYs employing ¹H NMR spectroscopy

The reaction mixture was evaporated to dryness, and the residue was dissolved in a known volume of deuterated chloroform (CDCl₃). A known volume of benzene was added as an internal standard. A known aliquot of the new mixture, containing benzene, was added to an NMR tube, and then diluted with a known amount of CDCl₃ to reach a volume suitable for ¹H NMR analysis. Figure S1 compares ¹H NMR spectra for starting material (**1HBr**, top), the corresponding product (**1BF**₂, middle) and the product mixture containing both **1HBr** and **1BF**₂ (bottom).

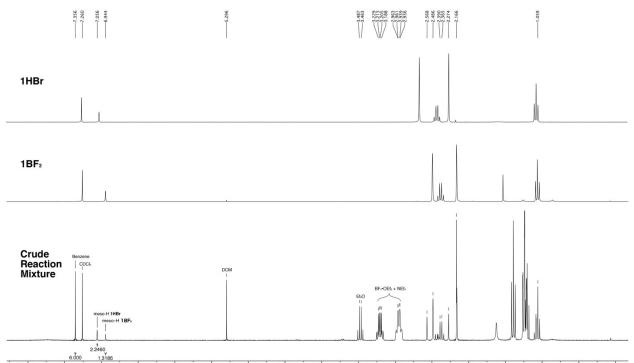


Figure S1: ¹H NMR spectra, in CDCl₃, of **1HBr**, **1BF**₂ and the crude reaction mixture containing **1HBr**, **1BF**₂, NEt₃, BF₃•OEt₂, CH₂Cl₂ and benzene.

Calculation of NMR-based yield

The crude reaction mixture was dissolved in 4.000 mL of CDCl_3 (V_{CDCl3}), to which 4 µL of benzene (V_{benz}) was added. The first step was to calculate the moles of benzene present (n_{benz}). This required using density (d_{benz}, 0.876 g/mL), mass (m_{benz}) and molar mass (mm_{benz}, 78.11 g/mol) of benzene as follows:

$$m = V_{benz} * d_{benz} = 3.50 \text{ x} 10^{-3} \text{ g}$$

$$n_{benz} = \frac{m_{benz}}{mm_{benz}} = 4.49 \text{ x}10^{-5} \text{ mol}$$

Thus, we knew the number of moles of benzene in the 4 mL solution. The concentration of benzene (M_{benz}) in this solution was calculated as follows:

$$M_{benz} = \frac{n_{benz}}{V_{CDCl3}} = \frac{0.0224 \text{ mol/L}}{0.0224 \text{ mol/L}}$$

A 200 µL aliquot of this solution (V_{NMR}) was added to an NMR sample tube and diluted to 600 µL for analysis. Using M_{benz}, the moles of benzene present in this aliquot (n_{benz aliquot}) could be calculated. The integral value for the *meso*-H signal of **1BF**₂ (\int^{1BF_2}) was calculated when the integration of benzene was set to 6.000. Multiplying n_{benz aliquot} by \int^{1BF_2} allowed us to calculate the moles of **1BF**₂ in the 200 µL aliquot (n_{BF aliquot}). This then allows us to calculate the concentration of **1BF**₂ in the original 4 mL solution (M_{BF}):

$$n_{benz \ aliquot} = M_{benz} * V_{NMR} = 2.24 \text{ x} 10^{-6} \text{ mol}$$
$$n_{BF \ aliquot} = n_{benz \ aliquot} * \int 1BF_2 = 2.96 \text{ x} 10^{-6} \text{ mol}$$

$$M_{BF} = \frac{n_{BF\,aliquot}}{V_{NMR}} = \frac{0.0148 \text{ mol/L}}{0.0148 \text{ mol/L}}$$

We were then able to work back and calculate the moles of $\mathbf{1BF}_2$ produced during the reaction (n_{BF}):

$$n_{BF} = M_{BF} * V_{CDCl3} = 5.92 \text{ x}10^{-5} \text{ mol}$$

The number of moles of $1BF_2$ could now be used to calculate the yield. In this case 0.160 mmol of starting material was used and 0.0592 mmol of $1BF_2$ were present, therefore the yield for this reaction was 37%.

Effect of varying NEt₃ in the synthesis of *F*-BODIPYs

Table S1: Effect of varying NEt₃ upon the yield of 1BF₂ BF₃•OEt₂ (9 equiv.) NEt₃ (n equiv.) ≂Ń HŃ-HBr =N CH_2CI_2 P F 1BF₂ 1•HBr Equiv. NEt₃(n) NMR yield (%) 1 0 3 32 5 54 6 86 7 77 12 37

5

Synthetic methods

Optimised "rescue" procedure for the synthesis of F-BODIPYs (GP1)

Naturally air-dried glassware was used, without any provision to exclude air or moisture from the reaction vessel. To a solution of dipyrrin•HBr salt (0.16 mmol, 1 equiv) in CH₂Cl₂ (13 mL, lab grade, non-anhydrous) under air with stirring at room temperature NEt₃ (6 equiv, lab grade, non-anhydrous) was added, and the reaction was stirred for 10 minutes. Anhydrous BF₃•OEt₂ (9 equiv) was then added and the resulting solution was sealed with a septum and stirred for 1.25 h. The septum was then removed, and non-anhydrous lab-grade NEt₃ (6 equiv, lab grade, nonanhydrous) was added. The vessel was resealed and stirred for 5 minutes, after which the septum was again removed and anhydrous BF₃•OEt₂ (9 equiv) was added. The resulting solution was sealed again and then stirred for another 1.25 h. The reaction mixture was concentrated *in vacuo* to yield the crude product, which was dissolved in ether (20 mL) and washed with 1 M hydrochloric acid (4 x 20 mL) and 5 M hydrochloric acid (1 x 20 mL). The organic fraction was dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The resulting residue was purified via column chromatography on silica, using CH₂Cl₂ as eluent, to yield the desired *F*-BODIPY.

General procedure for the synthesis of *F*-BODIPYs with added water (GP2)

Distilled water (2 equiv) was added to a solution of dipyrrin•HBr salt (0.16 mmol, 1 equiv) in anhydrous CH_2Cl_2 (13 mL) under N₂, with stirring at room temperature until the water micelle was no longer visible (~45 min for 2 equiv). Anhydrous NEt₃ (6 equiv) was added, and the reaction was stirred for 10 minutes. BF_3 •OEt₂ (9 equiv) was then added and the resulting solution was stirred, under nitrogen, for 2.5 h. The reaction mixture was concentrated *in vacuo* to yield the crude product which was dissolved in CDCl₃ (4.000 mL) and benzene (4 µL) was added, with stirring. An aliquot (200 µL) of this solution was added to an NMR sample tube and diluted with CDCl₃ (400 µL). A ¹H NMR spectrum of the sample was collected and the NMR- based yield was determined. To gain an isolated yield, the crude product was dissolved in ether (20 mL) and washed with 1 M hydrochloric acid (3 x 20 mL). The organic fraction was dried over anhydrous Na_2SO_4 , and concentrated *in vacuo*. The resulting residue was purified via column chromatography on silica, using CH_2Cl_2 as eluent, to yield the desired *F*-BODIPY.

General procedure for the synthesis of F-BODIPYs (GP3, anhydrous)

These experiments used strictly anhydrous protocols, conditions and reagents (i.e. our control reactions). To a solution of dipyrrin•HBr salt (0.16 mmol, 1 equiv) in anhydrous CH_2Cl_2 (12 mL) under N₂, with stirring at room temperature, anhydrous NEt₃ (6 equiv) was added, and the reaction was stirred for 10 minutes. BF₃•OEt₂ (9 equiv) was then added and the resulting solution was stirred, under N₂, for 2.5 h. The reaction mixture was concentrated *in vacuo* to yield the crude product which was dissolved in ether (20 mL) and washed with 1 M hydrochloric acid (3 x 20 mL). The organic fraction was dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The resulting residue was purified via column chromatography on silica, using CH₂Cl₂ as eluent, to yield the desired *F*-BODIPY.

4,4-Difluoro-1,3,5,7-tetramethyl-2,6-diethyl-8-H-4-bora-3a,4a-diaza-s-indacene (1BF2)

The title compound²⁴ was synthesised from **1HBr**¹⁸ according to the GP3, and was isolated as a dark red solid (40 mg, 82%).

4,4-Difluoro-1,2,3,5,6,7-hexamethyl-8-H-4-bora-3a,4a-diaza-s-indacene (2BF₂)

The title compound¹⁸ was synthesised from **2HBr**¹⁸ according to the GP3, and was isolated as a light orange solid (36 mg, 81%).

4,4-Difluoro-1,3,5,7-tetramethyl-2,6-di-n-pentyl-8-H-4-bora-3a,4a-diaza-s-indacene (3BF2)

The title compound²⁵ was synthesised from **3HBr^{18}** according to the GP3, and was isolated as a dark red solid (47 mg, 76%).

4,4-Difluoro-1,3,5,7-tetramethyl-6-ethyl-2,8-H-4-bora-3a,4a-diaza-s-indacene (4BF₂)

The title compound¹⁰ was synthesised from **4HBr**¹⁹ according to the GP3, and was isolated as a red solid (36 mg, 81%).

4,4-Difluoro-1,3,5,7-tetramethyl-2,6-di(2-methoxy-2-oxoethyl)-8-H-4-bora-3a,4a-diaza-s-

indacene (5BF₂)

The title compound was synthesised from **5HBr**²⁰ according to the GP3, and was isolated as an orange solid (45 mg, 72%).

4,4-Difluoro-1,3,5,7-tetramethyl-2,6-diethoxycarbonyl-8-H-4-bora-3a,4a-diaza-s-indacene

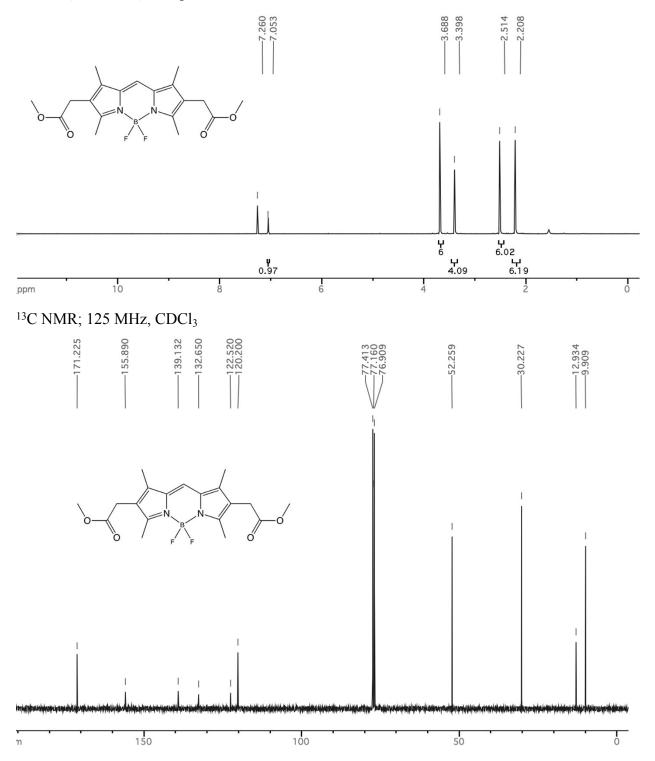
(6BF₂)

The title compound²⁶ was synthesised from **6HBr**²¹ according to the GP3, and was isolated as a pale yellow/orange solid (33 mg, 53%).

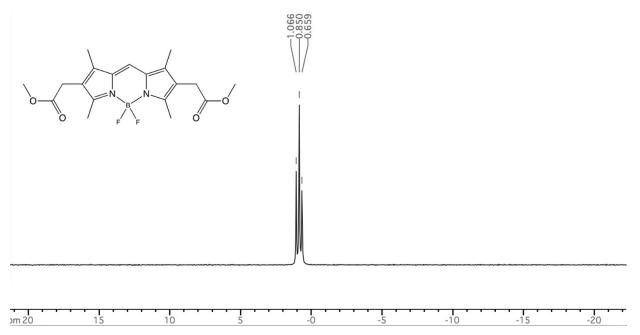
4,4-Difluoro-1,3,5,7-tetramethyl-2,6-diethyl-8-phenyl-4-bora-3a,4a-diaza-s-indacene (7BF₂)

The title compound¹⁰ was synthesised from free-base 7²² according to the GP3, and was isolated as a dark red solid (56 mg, 92%).

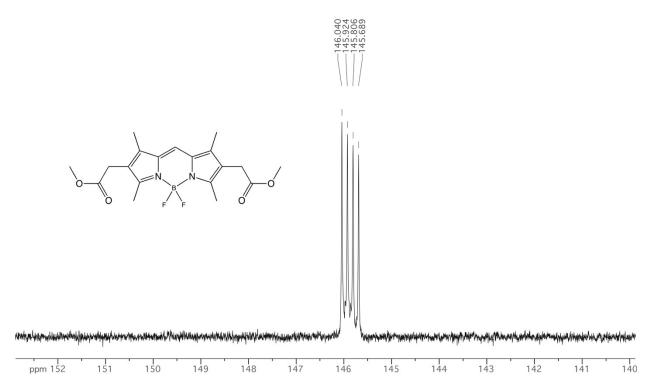
4,4-Difluoro-1,3,5,7,8-pentamethyl-2,6-diethyl-4-bora-3a,4a-diaza-s-indacene (8BF₂)


The title compound¹⁰ was synthesised from **8HCl²³** according to the GP3, and was isolated as a light orange solid (46 mg, 91%).

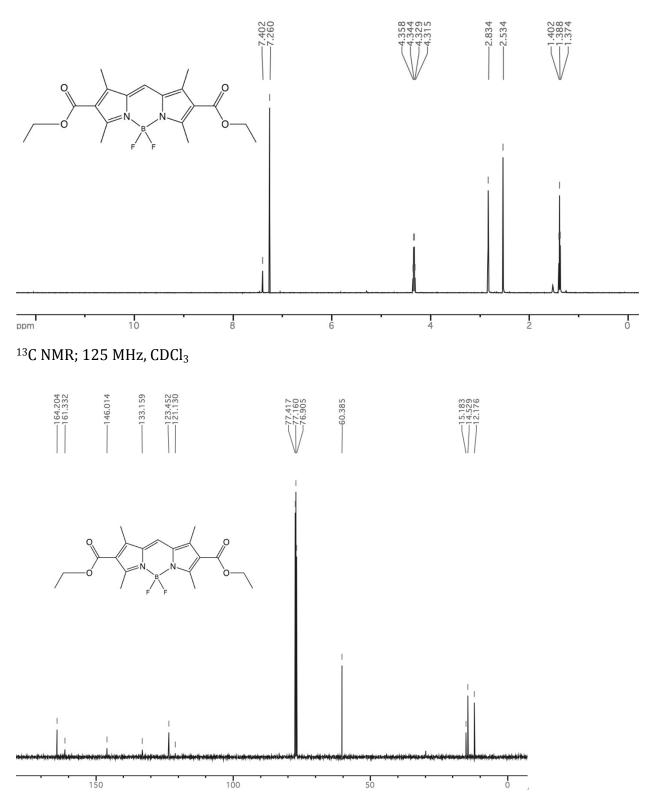
¹H, ¹³C, ¹¹B and ¹⁹F NMR spectra

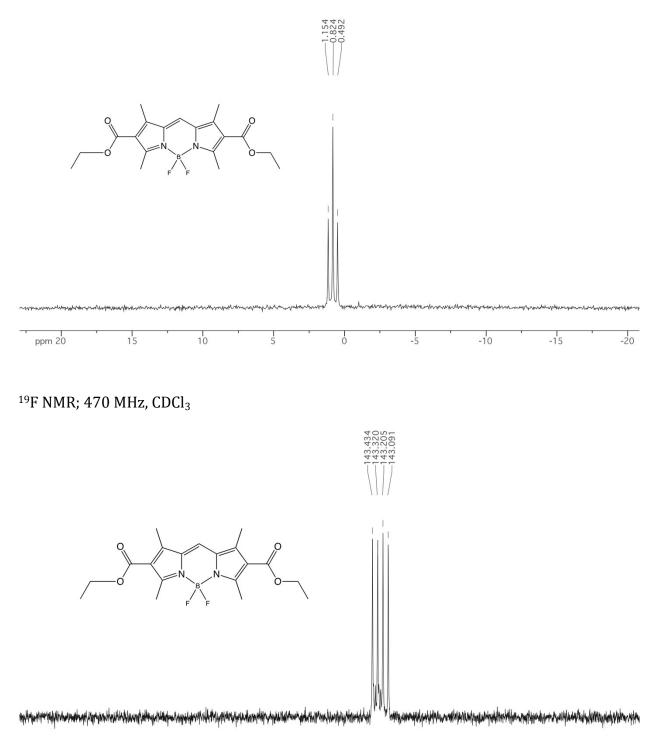

4,4-Difluoro-1,3,5,7-tetramethyl-2,6-di(2-methoxy-2-oxoethyl)-8-H-4-bora-3a,4a-diaza-s-

indacene (5BF₂)


¹H NMR; 500 MHz, CDCl₃

¹¹B NMR; 160 MHz, CDCl₃


¹⁹F NMR; 470 MHz, CDCl₃


4,4-Difluoro-1,3,5,7-tetramethyl-2,6-diethoxycarbonyl-8-H-4-bora-3a,4a-diaza-s-indacene

(6BF₂)

¹H NMR; 500 MHz, CDCl₃

¹¹B NMR; 160 MHz, CDCl₃

