Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

Second-generation total synthesis of aplyronine A featuring Ni/Cr-mediated coupling reaction

Ichiro Hayakawa,*^a Keita Saito,^b Sachiko Matsumoto,^b Shinichi Kobayashi,^b Ayaka Taniguchi,^b Kenichi Kobayashi,^b Yusuke Fujii,^b Takahiro Kaneko^b and Hideo Kigoshi*^b

^{*a*}Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan

^bDepartment of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Japan

Contents

	page
1. Experimental procedures and spectral data for all new compounds	S3
2. ¹ H and ¹³ C NMR spectra of newly synthesized compounds	S45

Experimental Procedures and Spectral Data for All New Compounds.

Experimental.

General: All moisture-sensitive reactions were performed under an atmosphere of argon or nitrogen, and the starting materials were azeotropically dried with benzene before use. Anhydrous MeCN, MeOH, EtOH, CH₂Cl₂, THF, Et₂O, toluene, DMF, DMSO, and pyridine were purchased from Kanto Chemical Co., Inc. or Wako Pure Chemical Industries Ltd. and used without further drying. Anhydrous THF for silvlcupration was distilled from Na-benzophenone ketyl. TLC analysis were conducted on E. Merck precoated silica gel 60 F₂₅₄ (0.25 mm layer thickness). Fuji Silysia silica gel BW-820MH (75-200 µm) and FL-60D (45-75 µm) were used for column chromatography. Optical rotations were measured with a JASCO DIP-370 polarimeter. Infrared (IR) spectra were recorded on a JASCO FT/IR-4100 instrument and only selected peaks are reported in wavenumbers (cm⁻¹). ¹H and ¹³C NMR spectra were recorded on a Bruker AVANCE 600, a Bruker AVANCE 400, or a Bruker DPX 400 spectrometer. The ¹H and ¹³C chemical shifts (δ) were reported in parts per million (ppm) downfield relative to CDCl₃ ($\delta_{\rm H}$ = 7.26 and $\delta_{\rm C}$ = 77.0), CD₃OD ($\delta_{\rm H}$ = 3.33), and acetone- d_6 ($\delta_{\rm H}$ = 2.04), respectively. J values are given in Hz. The following abbreviations are used for spin multiplicity: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, and br = broad. High resolution ESI/TOF mass spectra were recorded on a JEOL AccuTOFCS JMS-T100CS spectrometer.

Procedures and spectroscopic data for the compounds

Synthesis of C14–C19 segment 15

⁽preparation of Me₂PhSiLi)

To a stirred solution of Me₂PhSiCl (4.60 mL, 27.8 mmol) in THF (28 mL) was added Li (734 mg,

106 mmol) at 0 °C. The resultant mixture was stirred at -8 °C for 14 h to afford Me₂PhSiLi solution.

The above-mentioned solution of Me₂PhSiLi was added to a stirred solution of CuCN (1.26 g, 14.1 mmol) in THF (10 mL) at 0 °C. After being stirred for 30 min, the mixture was cooled to -78 °C. A solution of **18** (998 mg, 4.15 mmol) in THF (20 mL) was added dropwise, and stirring was continued for 2 h. The mixture was allowed to warm to 0 °C, and stirring was continued for another 30 min. The mixture was then diluted with a 9 : 1 mixture of saturated aqueous NH₄Cl and 25% NH₃ aq. (20 mL), and extracted with Et₂O (3 × 30 mL). The combined extracts were washed with H₂O (20 mL) and brine (20 mL) successively; dried (Na₂SO₄); filtered; and concentrated. The crude product was purified by column chromatography on silica gel (50 g, hexane–EtOAc 30 : 1 \rightarrow 10 : 1) to give vinylsilane **20** (1.97 g, containing a small quantity of impurity). Vinylsilane **20** was used for the next reaction without further purification.

To a stirred solution of vinylsilane **20** (1.97 g, containing a small quantity of impurity) in MeCN (18 mL) and THF (6 mL) was added NIS (2.32 g, 10.3 mmol) at 0 °C. After being stirred at room temperature for 1.5 h in the dark, the mixture was diluted with saturated aqueous Na₂S₂O₃ (20 mL) at 0 °C and extracted with Et₂O (3 × 25 mL). The combined extracts were washed with brine (20 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by column chromatography on silica gel (60 g, hexane–EtOAc 30 : 1 \rightarrow 10 : 1) to give C14–C19 segment **15** (1.47 g, 96% in 2 steps) as a colorless oil: R_f = 0.51 (hexane : benzene = 9 : 1); The ¹H NMR and ¹³C NMR spectroscopy and optical rotation were full agreement with those of our authentic sample.¹ [α]²²_D+2.2 (*c* 0.42, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.16 (tq, *J* = 7.5, 1.6 Hz, 1H), 3.57–3.48 (m, 2H), 2.36 (d, *J* = 1.6 Hz, 3H), 2.04 (dt, *J* = 14.0, 7.5 Hz, 1H), 1.88 (dt, *J* = 14.0, 7.5 Hz, 1H), 1.72–1.65 (m, 1H), 1.59–1.49 (m, 1H), 1.40–1.29 (m, 1H), 0.89 (s, 9H), 0.89 (d, *J* = 6.5 Hz, 3H), 0.05 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 140.1, 94.1, 61.2, 39.3, 37.9, 29.8, 27.6, 26.0 (3C), 19.4, 18.3, 5.3 (2C).

Optimization of asymmetric Ni/Cr-mediated coupling for preparation of alcohol 22a

Alcohol 22a

(preparation of a MeCN solution of CrCl₂–ligand **21** complex)

MeCN was degassed by freeze-thawing. To a stirred solution of ligand **21** (639 mg, 1.65 mmol) in MeCN (12.5 mL) were added $CrCl_2$ (178 mg, 1.45 mmol) and Proton-sponge[®] (305 mg, 1.42 mmol) at room temperature in a glove box. The mixture was stirred at room temperature for 2 h in a glove box to give a MeCN solution of $CrCl_2$ –ligand **21** complex.

The above-mentioned solution of CrCl₂-ligand **21** complex was added to a mixture of the C5-C13 segment **14** (249 mg, 0.469 mmol), the C14-C19 segment **15** (341 mg, 0.926 mmol), and NiCl₂(dppp) (38.2 mg, 0.0705 mmol) at room temperature in a glove box. After being stirred at room temperature for 1.5 h in a glove box, the mixture was filtered through a column of florisil – silica gel (8.0 g / 8.0 g), and the residue was washed with hexane-EtOAc (1 : 1). The filtrate and the washings were combined and concentrated. The crude product was purified by column chromatography on silica gel (10 g, hexane-EtOAc 50 : $1 \rightarrow 30 : 1 \rightarrow 10 : 1$) to afford a mixture of allylic alcohols **22a** and **22b** (7.3 : 1, 319 mg, 88%) as a colorless oil. The diastereomeric ratio of this product was determined from ¹H NMR (600 MHz) analysis.

Diastereomeric mixture of allylic alcohols **22a** and **22b** (7.3 : 1, 692 mg) was separated by column chromatography on FL-60D (35g, benzene–Et₂O 200 : 1, four times) to give alcohol **22a** (537 mg) and a mixture of allylic alcohols **22a** and **22b** (1 : 1.1, 122 mg).

Allylic alcohol **22a**: $R_f = 0.40$ (benzene : Et₂O = 40 : 1); The ¹H and ¹³C NMR spectroscopy was full agreement with those of our authentic sample.¹¹H NMR (400 MHz, CDCl₃) δ 5.38 (t, J = 7.0 Hz, 1H), 4.22 (dt, J = 10.8, 5.3 Hz, 1H), 4.04 (dt, J = 10.8, 7.5 Hz, 1H), 3.95 (t, J = 6.8 Hz, 1H), 3.75–3.55 (m, 3H), 3.40 (dd, J = 4.7, 2.8 Hz, 1H), 2.05 (dt, J = 14.1, 7.4 Hz, 1H), 1.86 (dt, J = 14.1, 7.4 Hz, 1H), 1.82–1.74 (m, 1H), 1.69–1.51 (m, 5H), 1.59 (s, 3H), 1.51–1.27 (m, 4H), 1.26–1.22 (m, 1H), 1.19 (s, 9H), 0.95 (t, J = 7.8 Hz, 9H), 0.92–0.84 (m, 9H), 0.89 (s, 9H), 0.88 (s, 9H), 0.59 (q, J = 7.8 Hz, 6H), 0.04 (s, 6H), 0.04 (s, 3H), 0.03 (s, 3H) A signal due to one proton (OH) was not observed; ¹³C NMR (100 MHz, CDCl₃) δ 178.5, 137.8, 126.1, 78.9, 77.1, 71.5, 61.7, 61.4, 41.2, 39.7, 38.9, 38.7, 34.9, 33.1, 31.0, 30.1, 27.9, 27.2 (3C), 26.1 (3C), 26.0 (3C), 19.6, 18.5, 18.3, 16.0, 11.0, 10.1, 7.0 (3C), 5.1 (3C), -3.4, -4.0, -5.3, -5.3.

Synthesis of the C21–C28 segment 16

The synthesis of the C21–C28 segment **16** started from the known aldehyde **S1** (Scheme S1).² The Mukaiyama–Paterson Sn(II)-promoted aldol reaction³ between aldehyde **S1** and ketone **S2**⁴ gave aldol adduct **S3** as a single diastereomer. The stereochemistry of the newly generated secondary hydroxy group in **S3** was confirmed by modified Mosher's method.⁵ 1,3-Anti-selective reduction of aldol adduct **S3** with Me₄NBH(OAc)₃⁶ afforded diol **S4**. The stereochemistry of **S4** was determined by NMR analysis. ¹³C chemical shifts⁷ and ¹H–¹H coupling constants of the corresponding acetonide derivative.⁸ Oxidative acetalization of **S4** with DDQ gave anisylidene acetal **S5**. Removal of the TBS group in **S6** afforded a 1,3-diol, which was converted into silylene acetal **S7**. Hydrogenolysis of anisylidene acetal **S7** and subsequent selective protection of the primary and secondary hydroxy groups afforded **S10**. Reduction of the pivaloyl group in **S10** and oxidation of the resultant primary hydroxy group gave aldehyde **S12**, which was transformed into vinyl iodide **16** as a C21–C28 segment by using Takai olefination.⁹

Scheme S1. Synthesis of C21–C28 segment 16

To a stirred solution of Sn(OTf)₂ (2.64 g, 6.34 mmol) in CH₂Cl₂ (32 mL) were added Et₃N (0.950 mL, 6.80 mmol) and a solution of ketone **S2** (1.01 g, 4.28 mmol) in CH₂Cl₂ (13 mL) at -78 °C, and the mixture was stirred at -78 °C for 2 h. After a solution of aldehyde **S1** (2.40 g, 12.8 mmol) in CH₂Cl₂ (13 mL) was added, the reaction mixture was stirred at -78 °C for 2 h. The resultant mixture was warmed to -50 °C and stirred for 30 min. The mixture was diluted with 0.2 M phosphate buffer (pH 7.0, 120 mL) and filtered through a pad of Celite, and the Celite was washed with Et₂O. The filtrate and washings were combined, and the layers were separated. The aqueous layer was extracted with Et₂O (3 × 20 mL). The combined organic layer and extracts were dried (MgSO₄), filtered, and concentrated. The residual oil was purified by column chromatography on silica gel (86 g, hexane–EtOAc 9 : 1) to give aldol **S3** (1.71 g, 95%) as a colorless oil: $R_f = 0.40$ (hexane : EtOAc = 4 : 1); $[\alpha]^{24}$ _D -6.51 (*c* 1.40, CHCl₃); IR (CHCl₃) 3462, 3006, 2957, 2931, 2858, 1708, 1613, 1513, 1464, 1251, 1084, 837 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.19 (d, *J* = 8.5 Hz,

2H), 6.86 (d, J = 8.5 Hz, 2H), 4.40 (d, J = 11.4 Hz, 1H), 4.36 (d, J = 11.4 Hz, 1H), 4.15 (m, 1H), 3.80 (s, 3H), 3.75–3.68 (m, 2H), 3.62 (dd, J = 8.8, 8.8 Hz, 1H), 3.41 (dd, J = 8.8, 5.0 Hz, 1H), 3.39 (d, J = 2.6 Hz, 1H), 3.18 (ddq, J = 8.8, 5.0, 7.0 Hz, 1H), 2.78 (dq, J = 4.6, 7.0 Hz, 1H), 1.63–1.54 (m, 2H), 1.11 (d, J = 7.0 Hz, 3H), 1.02 (d, J = 7.0 Hz, 3H), 0.89 (s, 9H), 0.05 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 217.1, 159.2, 129.8, 129.3 (2C), 113.8 (2C), 73.0, 72.6, 70.2, 61.5, 55.2, 51.4, 45.2, 36.1, 25.9 (3C), 18.2, 13.7, 10.5, -5.5 (2C); HRMS (ESI) *m/z* 447.2551, calcd for C₂₃H₄₀NaO₅Si [M+Na]⁺ 477.2543.

Determination of the absolute configuration of C23 in S3

For the determination of the absolute configuration of C23 in S3, aldol S3 was converted into (*S*)and (*R*)-MTPA esters S3a and S3b.⁵ The $\Delta\delta$ values for these MTPA esters are described below:

 $\Delta\delta$ values ($\delta_S - \delta_R$) for these MTPA esters in ppm (400 MHz).

To a stirred solution of $Me_4NBH(OAc)_3$ (342 mg, 1.30 mmol) in MeCN (1.25 mL) and AcOH (1.25 mL) was added a solution of aldol **S3** (106 mg, 0.250 mmol) in MeCN (0.4 mL) at -25 °C. After stirring for 46 h at same temperature, the mixture was diluted with saturated aqueous Na/K tartrate (5 mL), allowed to warm to room temperature, and stirred for 30 min. The resultant mixture was diluted saturated aqueous NaHCO₃ (5 mL) and extracted with CH₂Cl₂ (3 × 5.0 mL). The combined

extracts were washed with saturated aqueous NaHCO₃ (10 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by column chromatography on silica gel (8.8 g, hexane–EtOAc 5 : 1 \rightarrow 3 : 1) to give diol **S4** (87.1 mg, 82%) as a colorless oil: R_f = 0.27 (hexane : EtOAc = 4 : 1); [α]²⁴_D –0.483 (*c* 1.55, CHCl₃); IR (CHCl₃) 3433, 2958, 2930, 2859, 1613, 1513, 1464, 1252, 1111, 1082, 837 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, *J* = 8.5 Hz, 2H), 6.89 (d, *J* = 8.5 Hz, 2H), 4.45 (s, 2H), 4.29 (d, *J* = 3.4 Hz, 1H), 4.16 (m, 1H), 3.97 (d, *J* = 1.1 Hz, 1H), 3.85–3.74 (m, 2H), 3.81 (s, 3H), 3.60–3.51 (m, 3H), 2.09 (m, 1H), 1.81 (m, 1H), 1.74 (m, 1H), 1.50 (m,1H), 1.00 (d, *J* = 7.1 Hz, 3H), 0.891 (s, 9H), 0.890 (d, *J* = 6.1 Hz, 3H), 0.06 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 129.8, 129.3 (2C), 113.8 (2C), 81.1, 74.7, 73.1, 70.3, 61.6, 55.2, 38.3, 36.5, 35.9, 25.8 (3C), 18.1, 14.1, 11.5, -5.5 (2C); HRMS (ESI) *m/z* 449.2702, calcd for C₂₃H₄₂NaO₅Si [M+Na]⁺449.2700.

Determination of the absolute configurations of C24 and C25 in S4

The stereochemistry of **S4** was determined as follows. Diol **S4** was converted into 1,3-acetonide **S4a**, the stereochemistry of which was confirmed to be *anti* by the ¹³C chemical shifts of two acetonide methyls (δ_C 23.6 and 25.5).⁷ Also, stereochemistry of C24 in **S4** was determined by a comparison of all possible stereoisomers of 1,3-acetonide derivatives.⁸ Thus, ¹H-¹H coupling constants of 1,3-acetonide **S4a** was similar to that of *syn–anti* compound.

Determination of the absolute configurations of C24 and C25 in S4

To a stirred solution of DDQ (46.4 mg, 0.204 mmol) and MS4A (106 mg) in CH₂Cl₂ (1.0 mL) was added a solution of diol **S4** (87.1 mg, 0.204 mmol) in CH₂Cl₂ (1.0 mL) at -30 °C. After stirring for 15 h at same temperature, the mixture was filtered through a pad of Celite, and the pad was washed with Et₂O. The filtrate and washings were combined, washed with saturated aqueous NaHCO₃ (10 mL) and brine (10 mL) successively; dried (Na₂SO₄); filtered; and concentrated. The crude product was purified by column chromatography on silica gel (FL-60D 2.0 g, hexane–EtOAc 20 : 1 \rightarrow 10 : 1) to give anisylidene acetal **S5** (57.3 mg, 66%) and its isomer (14.6 mg, 17%) as colorless oils, respectively.

Anisylidene acetal **S5**: $R_f = 0.56$ (hexane : EtOAc = 3 : 1); $[\alpha]^{24}{}_{D} - 13.7$ (*c* 1.03, CHCl₃); IR (CHCl₃) 3519, 3009, 2958, 2931, 2856, 1615, 1518, 1463, 1390, 1252, 1173, 1122, 1094, 836 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 8.6 Hz, 2H), 6.86 (d, *J* = 8.6 Hz, 2H), 5.38 (s, 1H), 4.28 (dd, *J* = 8.4, 4.5 Hz, 1H), 4.14 (dd, *J* = 11.2, 4.6 Hz, 1H), 3.79 (s, 3H), 3.74 (t, *J* = 5.8 Hz, 2H), 3.54– 3.67 (m, 2H), 3.12 (brs, 1H), 2.24 (m, 1H), 1.88 (m, 1H), 1.80 (m, 1H), 1.54 (ddq *J* = 4.5, 6.8, 6.8 Hz, 1H), 1.11 (d, *J* = 7.1 Hz, 3H), 0.90 (s, 9H), 0.78 (d, *J* = 6.8 Hz, 3H), 0.07 (s, 3H), 0.06 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 130.8, 127.1 (2C), 113.6 (2C), 101.9, 89.2, 73.0, 67.0, 60.4, 55.2, 37.9, 36.9, 31.0, 25.9 (3C), 18.2, 12.1, 11.0, -5.3 (2C); HRMS (ESI) *m/z* 447.2551, calcd for C₂₃H₄₀NaO₅Si [M+Na]⁺ 447.2543.

Isomer of **S5**: $R_f = 0.49$ (hexane : EtOAc = 3 : 1); $[\alpha]^{24}_D$ -5.50 (*c* 1.08, CHCl₃); IR (CHCl₃) 3511, 3007, 2958, 2930, 2858, 1613, 1510, 1463, 1252, 1170, 1096, 1027, 837 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.6 Hz, 2H), 6.92 (d, *J* = 8.6 Hz, 2H), 5.96 (s, 1H), 4.28 (m, 1H), 3.92 (dd, *J* = 11.3, 3.9 Hz, 1H), 3.82 (s, 3H), 3.80-3.72 (m, 2H), 3.59 (dd, *J* = 6.1, 7.0 Hz, 1H), 3.58 (dd, *J* = 7.4, 11.3 Hz, 1H), 3.06 (d, *J* = 1.3 Hz, 1H), 2.08 (m, 1H), 2.02 (ddt, *J* = 12.6, 1.6, 5.7 Hz, 1H), 1.82 (m, 1H), 1.56 (m, 1H), 1.06 (d, *J* = 7.0 Hz, 3H), 0.92 (d, *J* = 6.8 Hz, 3H), 0.89 (s, 9H), 0.060 (s, 3H),

0.056 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.6, 129.9, 127.9 (2C), 113.9 (2C), 96.1, 80.7, 67.6, 66.7, 60.9, 55.3, 37.3, 36.5, 30.5, 25.9 (3C), 18.2, 14.8, 10.7, -5.38, -5.40; HRMS (ESI) *m/z* 447.2514, calcd for C₂₃H₄₀NaO₅Si [M+Na]⁺ 447.2543.

To a stirred solution of the mixture of anisylidene acetal **S5** and its isomer (1.46 g, 3.44 mmol) in THF (35 mL) was added ^{*n*}Bu₄NF (1.0 M THF solution, 6.8 mL, 6.8 mmol) at 0 °C. After stirring for 3.5 h at room temperature, the mixture was concentrated. The crude product was purified by column chromatography on silica gel (36 g, hexane–EtOAc 3 : 7) to give a diastereomeric mixture (4 : 1) of diol **S6** (1.16 g, 94%) as a colorless oil.

Diol **S6**: $R_f = 0.32$ (hexane : EtOAc = 3 : 7); $[\alpha]^{24}{}_D + 0.245$ (*c* 1.63, CHCl₃); IR (CHCl₃) 3501, 3010, 2969, 2931, 2842, 1616, 1519, 1462, 1252, 1113, 1034, 833, 666 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 8.7 Hz, 2H), 6.88 (d, *J* = 8.7 Hz, 2H), 5.37 (s, 1H), 4.35 (dd, *J* = 10.3, 2.3 Hz, 1H), 4.15 (dd, *J* = 11.3, 4.7 Hz, 1H), 3.88–3.82 (m, 2H), 3.80 (s, 3H), 3.54 (dd, *J* = 10.3, 1.5 Hz, 1H), 3.49 (dd, *J* = 11.3, 11.3 Hz, 1H), 3.36 (brs, 1H), 2.82 (brs, 1H), 2.25 (m, 1H), 1.92 (m, 1H), 1.81 (m, 1H), 1.44 (m, 1H), 1.14 (d, *J* = 7.2 Hz, 3H), 0.77 (d, *J* = 6.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.0, 130.6, 127.1 (2C), 113.7 (2C), 101.9, 89.3, 72.9, 70.5, 62.0, 55.3, 37.3, 36.6, 30.9, 12.2, 11.3; HRMS (ESI) *m/z* 333.1680, calcd for C₁₇H₂₆NaO₅ [M+Na]⁺ 333.1678.

Isomer of **S6**: $R_f = 0.16$ (hexane : EtOAc = 3 : 7); $[\alpha]^{24}{}_{D}-5.00$ (*c* 1.57, CHCl₃); IR (CHCl₃) 3498, 3011, 2965, 2934, 2877, 1613, 1510, 1463, 1251, 1116, 1035, 666 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.8 Hz, 2H), 6.93 (d, *J* = 8.8 Hz, 2H), 6.03 (s, 1H), 4.36 (m, 1H), 3.88–3.80 (m, 2H), 3.86 (dd, *J* = 11.3, 4.7 Hz, 1H), 3.83 (s, 3H), 3.55 (dd, *J* = 8.2, 4.7 Hz, 1H), 3.54 (dd, *J* = 11.6, 8.2 Hz, 1H), 3.33 (brs, 1H), 2.76 (brs, 1H), 2.18 (m, 1H), 1.99–1.87 (m, 2H), 1.47 (m, 1H), 1.13 (d, *J* = 7.1 Hz, 3H), 0.80 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.6, 129.3,

127.9 (2C), 114.0 (2C), 96.3, 80.9, 70.3, 66.3, 61.9, 55.2, 36.8, 36.3, 30.8, 14.1, 11.0; HRMS (ESI) *m/z* 333.1664, calcd for C₁₇H₂₆NaO₅ [M+Na]⁺ 333.1678.

To a stirred solution of a mixture of diol **S6** and its isomer (1.53 g, 4.92 mmol) in CH₂Cl₂ (22 mL) were added 2,6-lutidine (3.80 mL, 32.7 mmol) and ^{*t*}Bu₂Si(OTf)₂ (2.20 mL, 6.74 mmol) at 0 °C. After stirring for 30 min at same temperature, the mixture was diluted with CH₂Cl₂ (10 mL) and saturated aqueous NaHCO₃ (20 mL). The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (2 × 10 mL). The organic layer and extracts were combined, dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by column chromatography on silica gel (70 g, hexane–EtOAc 5 : 1 \rightarrow 2 : 1 \rightarrow 1 : 1) to give a diastereomeric mixture (3 : 5) of **S7** (1.63 g, 74%) as a colorless oil.

S7: $R_f = 0.71$ (hexane : EtOAc = 3 : 7); $[\alpha]^{24}{}_{D}$ +40.1 (*c* 0.667, CHCl₃); IR (CHCl₃) 3008, 2965, 2934, 2859, 1616, 1518, 1473, 1394, 1303, 1115, 1034, 973, 892, 652 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 8.8 Hz, 2H), 6.87 (d, *J* = 8.8 Hz, 2H), 5.38 (s, 1H), 4.37 (ddd, *J* = 11.3, 3.9, 1.8 Hz, 1H), 4.13–4.09 (m, 2H), 4.07 (dd, *J* = 11.3, 4.8 Hz, 1H), 3.80 (s, 3H), 3.51–3.43 (m, 2H), 2.13 (m, 1H), 2.03 (m, 1H), 1.86 (m, 1H), 1.57 (dd, *J* = 13.9, 2.0 Hz, 1H), 1.11 (d, *J* =7.1 Hz, 3H), 1.00 (s, 18H), 0.84 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 131.5, 127.3 (2C),116.8 (2C), 94.7, 78.9, 72.0, 67.8, 65.1, 55.3, 38.0, 34.5, 28.9, 27.5 (3C), 27.2 (3C), 22.9, 20.1, 28.1, 10.3; HRMS (ESI) *m/z* 473.2682, calcd for C₂₅H₄₂NaO₅ [M+Na]⁺ 473.2699.

Isomer of **S7**: $R_f = 0.68$ (hexane : EtOAc = 3 : 7); $[\alpha]^{24}_{D}$ +44.6 (*c* 0.707, CHCl₃); IR (CHCl₃) 3026, 2966, 2934, 2859, 1615, 1517, 1466, 1387, 1250, 1118, 972, 894, 828, 651 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 8.7 Hz, 2H), 6.88 (d, *J* = 8.7 Hz, 2H), 5.66 (s, 1H), 4.51 (dt, *J* = 11.6, 1.7 Hz, 1H), 4.15–4.09 (m, 3H), 3.81 (s, 3H), 3.75 (dd, *J* = 11.2, 2.0 Hz, 2H), 2.24 (m, 1H), 2.09 (m,

1H), 1.78 (m, 1H), 1.40 (dd, J = 13.9, 1.9 Hz, 1H), 1.35 (d, J = 7.0 Hz, 3H), 1.00 (s, 9H), 0.97 (s, 9H), 0.95 (d, J = 6.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 131.5, 127.3 (2C), 113.5 (2C), 94.7, 78.9, 72.0, 67.8, 65.1, 55.3, 38.0, 34.5, 28.9, 27.5 (3C), 27.2 (3C), 22.9, 20.1, 18.2, 10.3; HRMS (ESI) *m*/*z* 473.2670, calcd for C₂₅H₄₂NaO₅ [M+Na]⁺ 473.2699.

A mixture of a diastereomeric mixture of **S7** (61.8 mg, 137 µmol) and 20% Pd(OH)₂/C (ca. 50% wetted with water, 12.6 mg) in ^{*i*}PrOH (1.3 mL) was stirred under a hydrogen atmosphere at room temperature for 1.5 h. The mixture was filtered through a pad of Celite, and the residue was washed with EtOAc. The filtrate and the washings were combined and concentrated. The residual oil was purified by column chromatography on silica gel (1.5 g, hexane–EtOAc 2 : 1) to give diol **S8** (46.4 mg, quant) as a colorless oil: $R_f = 0.25$ (hexane : EtOAc = 2 : 1); $[\alpha]^{24}_{D} + 24.0$ (*c* 0.902, CHCl₃); IR (CHCl₃) 3433, 3009, 2966, 2934, 2879, 2861, 1472, 1252, 1112, 957, 887, 827, 653 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.63 (dt, *J* = 11.4, 1.9 Hz, 1H), 4.26 (d, *J* = 7.9 Hz, 1H), 4.17 (t, *J* = 2.1 Hz, 1H), 4.15 (d, *J* = 2.1 Hz, 1H), 3.86 (m, 1H), 3.72–3.69 (m, 2H), 3.49 (m, 1H), 2.15 (m, 1H), 2.04 (m, 1H), 1.74 (m, 1H), 1.37 (m, 1H), 1.15 (d, *J* = 7.1 Hz, 3H), 1.06 (s, 9H), 1.01 (s, 9H), 0.80 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz) δ 83.8, 75.4, 69.0, 64.8, 38.5, 38.3, 33.7, 27.4 (3C), 27.1 (3C), 22.8, 20.1, 13.9, 11.7; HRMS (ESI) *m/z* 355.2276, calcd for C₁₇H₃₆NaO4Si [M+Na]⁺ 355.2275.

To a stirred solution of diol **S8** (345 mg, 1.05 mmol) in pyridine (10 mL) was added PivCl (0.39 mL, 3.2 mmol) at 0 °C. After stirring for 1 h at same temperature, the mixture was diluted with

saturated aqueous NaHCO₃ (10 mL). The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (2 × 8.0 mL). The organic layer and extracts were combined, washed with brine (10 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by column chromatography on silica gel (15 g, hexane–EtOAc 10 : 1) to give **S9** (439 mg, quant) as a yellow oil: $R_f = 0.28$ (hexane : EtOAc = 9 : 1); $[\alpha]^{25}_{D}$ +0.146 (*c* 1.72, CHCl₃); IR (CHCl₃) 3485, 3022, 2970, 2932, 2864, 1720, 1480, 1365, 1288, 1172, 1106, 1018, 960, 890, 827 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.55 (dt, *J* = 11.3, 1.7 Hz, 1H), 4.37 (dd, *J* = 10.7, 3.8 Hz, 1H), 4.17–4.09 (m, 3H), 3.49–3.41 (m, 2H), 2.20–2.06 (m, 2H), 1.75 (m, 1H), 1.37 (m, 1H), 1.21 (s, 9H), 1.13 (d, *J* = 7.0 Hz, 3H), 1.04 (s, 9H), 1.01 (s, 9H), 0.96 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 178.6, 77.6, 75.3, 66.5, 64.9, 38.9, 38.6, 37.0, 33.6, 27.2 (3C), 27.0 (3C), 26.5 (3C), 22.8, 20.1, 14.5, 11.9; HRMS (ESI) *m/z* 439.2842, calcd for C₂₂H₄₄NaO₅Si [M+Na]⁺ 439.2856.

A solution of **S9** (347 mg, 0.833 mmol), imidazole (1.70 g, 25.0 mmol), and TBSCl (1.89 g, 12.5 mmol) in DMF (1.7 mL) was heated to 60 °C for 22 h. The mixture was cooled to room temperature and diluted with Et₂O (7.0 mL) and H₂O (5.0 mL). The layers were separated, and the aqueous layer was extracted with Et₂O (2 × 10 mL). The organic layer and extracts were combined; washed with saturated aqueous NaHCO₃ (10 mL) and brine (10 mL) successively; dried (Na₂SO₄); filtered; and concentrated. The crude product was purified by column chromatography on silica gel (15 g, hexane–EtOAc 60 : 1) to give TBS ether **S10** (436 mg, 98%) as a colorless oil: R_f = 0.58 (hexane : EtOAc = 9 : 1); [α]²⁵_D –7.46 (*c* 0.650, CHCl₃); IR (CHCl₃) 2956, 2932, 2859, 1718, 1472, 1364, 1288, 1259, 1259, 1162, 1109, 1021, 973, 827, 651 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.32 (dd, *J* = 10.9, 4.2 Hz, 1H), 4.12 (m, 1H), 4.11 (d, *J* = 7.1 Hz, 2H), 3.85 (dd, *J* = 10.9, 9.0 Hz, 1H), 3.70 (dd, *J* = 3.5, 3.5 Hz, 1H), 2.26 (m, 1H), 1.98 (m, 1H), 1.66 (m, 1H), 1.51 (dd, *J* = 14.0, 2.0 Hz,

1H), 1.18 (s, 9H), 1.07 (d, J = 7.1 Hz, 3H), 1.03 (s, 9H), 1.01 (d, J = 7.3 Hz, 3H), 0.99 (s, 9H), 0.89 (s, 9H), 0.07 (s, 3H), 0.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.5, 77.9, 75.4, 67.0, 64.7, 46.6, 38.8, 35.8, 35.3, 27.5 (3C), 27.2 (3C), 27.1 (3C), 25.9 (3C), 22.8, 20.0, 18.2, 16.6, 9.8, -4.2, -4.5. HRMS (ESI) *m/z* 553.3698, calcd for C₂₈H₅₈NaO₅Si₂ [M+Na]⁺ 553.3720.

To a stirred solution of **S10** (640 mg, 1.21 mmol) in CH₂Cl₂ (12 mL) was added DIBAL (1.04 M solution in hexane, 2.40 mL, 2.50 mmol) at -78 °C. After stirring for 1 h at same temperature, the mixture was diluted with MeOH (2.5 mL) and saturated aqueous Na/K tartrate (10 mL) and stirred at room temperature for 1 h. The layers were separated, and the aqueous layer was extracted with Et₂O (3 × 5.0 mL). The organic layer and extracts were combined, washed with brine (5.0 mL), dried (MgSO₄), filtered, and concentrated. The crude product was purified by column chromatography on silica gel (10 g, hexane–EtOAc 10 : 1) to give **S11** (540 mg, quant) as a colorless oil: $R_f = 0.28$ (hexane : EtOAc = 9 : 1); $[\alpha]^{25}_{D}+5.79$ (*c* 1.12, CHCl₃); IR (CHCl₃) 3497, 3003, 2956, 2932, 2859, 1472, 1387, 1364, 1256, 1128, 1020, 985, 886, 838, 827, 651 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.12–4.05 (m, 3H), 3.82 (dt, *J* = 10.9, 3.9 Hz, 1H), 3.77 (dd, *J* = 4.2, 3.6 Hz, 1H), 3.57 (dt, *J* = 10.9, 5.4 Hz, 1H), 2.76 (dd, *J* = 6.0, 5.1 Hz, 1H), 2.08 (m, 1H), 1.98 (m, 1H) 1.73 (m, 1H), 1.51 (m, 1H), 1.12 (d, *J* = 7.1 Hz, 3H), 1.06 (d, *J* = 7.1 Hz, 3H), 1.02 (s, 9H), 1.00 (s, 9H), 0.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 80.7, 75.4, 66.4, 64.6, 47.2, 36.4, 35.4, 27.5 (3C), 27.2 (3C), 25.9 (3C), 22.8, 20.0, 18.1, 17.4, 9.1, -4.3, -4.7; HRMS (ESI) *m*/z 469.3172, calcd for C₂₃H₅₀NaO₄Si₂[M+Na]⁺ 469.3145.

To a stirred solution of alcohol **S11** (472 mg, 1.04 mmol) in CH₂Cl₂ (10 mL) was added Dess–Martin periodinane (1.32 g, 3.12 mmol) at room temperature. After stirring for 35 min at room temperature, the mixture was diluted with a 1 : 1 : 1 mixture of saturated aqueous Na₂S₂O₃, saturated aqueous NaHCO₃, and H₂O (15 mL). The layers were separated, and the aqueous layer was extracted with Et₂O (3 × 15 mL). The organic layer and extracts were combined; washed with saturated aqueous NaHCO₃ (20 mL) and brine (20 mL) successively; dried (Na₂SO₄); filtered; and concentrated. The crude product was purified by column chromatography on silica gel (6.0 g, hexane–EtOAc 20 : 1) to give aldehyde **S12** (444 mg, 96%) as a colorless oil: R_f = 0.29 (hexane : EtOAc = 19 : 1); [α]²⁵_D –11.0 (*c* 0.894, CHCl₃); IR (CHCl₃) 3009, 2956, 2932, 2859, 1718, 1472, 1387, 1364, 1254, 1163, 1126, 984, 886 827, 653 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 9.87 (d, *J* = 2.2 Hz, 1H), 4.20–4.11 (m, 3H), 3.95 (dd, *J* = 4.3, 2.0 Hz, 1H), 2.88 (m, 1H), 1.97 (m, 1H), 1.72 (m, 1H), 1.45 (m, 1H), 1.14 (d, *J* = 7.0 Hz, 3H), 1.03 (s, 9H), 1.02 (d, *J* = 7.0 Hz, 3H), 1.00 (s, 9H), 0.89 (s, 9H), 0.08 (s, 3H), 0.07 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 205.2, 78.3, 75.4, 64.6, 49.1, 46.7, 34.9, 27.5 (3C), 27.1 (3C), 25.8 (3C), 22.8, 20.0, 18.0, 13.3, 9.1, –4.3, –4.7; HRMS (ESI) *m/z* 467.3011, calcd for C₂₃H₄₈NaO₄Si₂[M+Na]⁺ 467.2989.

THF was degassed by freeze-thawing. To a stirred solution of aldehyde **S12** (444 mg, 0.998 mmol) in THF (10 mL) were added $CrCl_2$ (735 mg, 5.99 mmol) and CHI_3 (785 mg, 1.99 mmol) at room temperature in a glove box. After stirring for 1.5 h at room temperature in a glove box, the resultant mixture was diluted with H₂O (10 mL). The layers were separated, and the aqueous layer was

extracted with Et₂O (4 × 20 mL). The organic layer and extracts were combined, washed with brine (25 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by column chromatography on silica gel (15 g, hexane–EtOAc 100 : 1) to give C21–C28 segment **16** (*E* / *Z* = 50 : 1) (469 mg, 83%) as a colorless oil: R_f = 0.35 (hexane : EtOAc = 19 : 1); [α]²⁵_D–17.6 (*c* 1.20, CHCl₃); IR (CHCl₃) 2959, 2889, 2858, 1472, 1364, 1252, 1161, 1128, 1076, 1021, 889, 827, 651 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.68 (dd, *J* = 14.5, 8.8 Hz, 1H), 5.91 (d, *J* = 14.5 Hz, 1H), 4.12–4.06 (m, 3H), 3.60 (dd, *J* = 4.3, 2.4 Hz, 1H), 2.71 (m, 1H), 1.99 (m, 1H), 1.63 (m, 1H), 1.45 (m, 1H), 1.03 (d, *J* = 7.2 Hz, 3H), 1.03 (s, 9H), 1.00 (s, 9H), 0.96 (d, *J* = 7.2 Hz, 3H), 0.92 (s, 9H), 0.06 (s, 3H), 0.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.8, 78.8, 75.6, 73.9, 64.7, 47.0, 43.5, 35.4, 27.6 (3C), 27.2 (3C), 26.0 (3C), 22.9, 20.1, 19.8, 18.2, 9.4, -4.1, -4.5; HRMS (ESI) *m*/*z* 591.2140, calcd for C₂₄H₄₉INaO₃Si₂ [M+Na]⁺ 591.2163.

Synthesis of C20-C34 segment 13

(preparation of a MeCN solution of CrCl₂-ligand 21 complex)

MeCN was degassed by freeze-thawing. To a stirred solution of ligand **21** (77.3 mg, 0.200 mmol) in MeCN (1.3 mL) were added $CrCl_2$ (24.6 mg, 0.200 mmol) and Proton-sponge[®] (42.9 mg, 0.200 mmol) at room temperature in a glove box. The mixture was stirred at room temperature for 2 h in a glove box to give a MeCN solution of $CrCl_2$ –ligand **21** complex.

The above–mentioned solution of $CrCl_2$ –ligand **21** complex was added to a mixture of the C21–C28 segment **16** (23.9 mg, 0.040 mmol), the C29–C34 segment **17** (17.8 mg, 0.040 mmol), and NiCl₂(dppp) (4.4 mg, 8.1 µmol) at room temperature in a glove box. After being stirred at room temperature for 3 h in a glove box, the mixture was filtered through a pad of florisil, and the residue

was washed with hexane–EtOAc (1 : 1). The filtrate and the washings were combined and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (FL-60D 3.1 g, hexane–EtOAc 50 : 1 \rightarrow 20 : 1 \rightarrow 1 : 1) to afford allylic alcohol **23** (22.8 mg, 64%) as a colorless oil: $R_f = 0.56$ (benzene : EtOAc = 20 : 1); $[\alpha]^{22}{}_{D}+5.75$ (*c* 1.01, CHCl₃); IR (CHCl₃) 3449, 2958, 2931, 2858, 1712, 1471, 1375, 1255, 1220, 1075 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.45–7.43 (m, 6H), 7.31–7.27 (m, 6H), 7.24–7.21 (m, 3H), 5.88 (ddd, *J* = 15.5, 7.1, 1.3 Hz, 1H), 5.40 (dd, *J* = 15.5, 5.2 Hz, 1H), 4.85 (dd, *J* = 9.8, 2.8 Hz, 1H), 4.16–4.05 (m, 3H), 4.05 (br s, 1H), 3.67 (dd, *J* = 5.0, 2.2 Hz, 1H), 3.22 (m, 1H), 3.00 (td, *J* = 8.7, 6.0 Hz, 1H), 2.62 (m, 1H), 2.36 (d, *J* = 3.6 Hz, 1H), 2.07 (s, 3H), 2.04 (m, 1H), 1.96 (m, 1H), 1.91–1.77 (m, 2H), 1.62 (m, 1H), 1.50 (m, 1H), 1.35 (m, 1H), 1.07 (d, *J* = 7.2 Hz, 3H), 1.04 (s, 9H), 1.00 (s, 9H), 0.99 (d, *J* = 7.3 Hz, 3H), 0.91 (s, 9H), 0.90 (d, *J* = 7.0 Hz, 3H), 0.73 (d, *J* = 6.8 Hz, 3H), 0.08 (s, 3H), 0.06 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 144.4 (3C), 134.2, 129.6, 128.6 (6C), 127.7 (6C), 126.9 (3C), 86.5, 80.0, 78.6, 75.5, 70.7, 64.7, 61.4, 46.8, 40.1, 39.7, 35.4, 30.5, 29.6, 27.6 (3C), 27.2 (3C), 26.1 (3C), 22.8, 20.9, 20.1, 19.7, 18.3, 16.9, 10.5, 9.3, -4.0, -4.3; HRMS (ESI) *m*/z 909.5501, calcd for C₅₃H₈₂NaO₇Si₂[M+Na]⁺ 909.5497.

Determination of the absolute configuration of C29 in 23

For the determination of the absolute configuration of C29 in 23, allylic alcohol 23 was converted into (*S*)- and (*R*)-MTPA esters 23a and 23b.⁵ The $\Delta\delta$ values for these MTPA esters are described below:

 $\Delta\delta$ values ($\delta_S - \delta_R$) for these MTPA esters in ppm (400 MHz).

A mixture of allylic alcohol **23** (92.7 mg, 0.104 mmol), 20% Pd(OH)₂/C (ca. 60% wetted with water, 18.4 mg), and NaHCO₃ (17.5 mg, 0.208 mmol) in EtOH (9.4 mL) was stirred under a hydrogen atmosphere at room temperature for 1.5 h. The mixture was filtered through a pad of Celite, and the residue was washed with EtOAc. The filtrate and the washings were combined and concentrated. The residual oil was purified by column chromatography on silica gel (2.9 g, hexane–EtOAc 20 : 1 \rightarrow 10 : 1) to give alcohol **S13** (85.2 mg, 92%) as a colorless oil: $R_f = 0.49$ (benzene : EtOAc = 19 : 1); $[\alpha]^{24}{}_{\rm D}$ +4.62 (*c* 0.943, CHCl₃); IR (CHCl₃) 3524, 3007, 2957, 2933, 2858, 1709, 1472, 1258, 1071, 1022, 827, 707 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.45–7.43 (m, 6H), 7.31–7.28 (m, 6H), 7.25–7.21 (m, 3H), 4.80 (dd, *J* = 9.9, 2.9 Hz, 1H), 4.15–4.09 (m, 3H), 3.56 (m, 1H), 3.42 (m, 1H), 3.23 (m, 1H), 3.00 (m, 1H), 2.55 (d, *J* = 3.4 Hz, 1H), 2.08 (s, 3H), 2.05 (m, 1H), 1.96–1.83 (m, 2H), 1.75–1.59 (m, 5H), 1.48–1.42 (m, 2H), 1.38–1.31 (m, 2H), 1.04–1.02 (m, 3H), 1.03 (s, 9H), 1.00 (s, 9H), 0.94 (d, *J* = 6.9 Hz, 3H), 0.90 (s, 9H), 0.88 (d, *J* = 6.2 Hz, 3H), 0.72 (d, *J* = 6.8 Hz, 3H), 0.07 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 144.3 (3C), 128.6 (6C), 127.7 (6C), 126.9 (3C), 86.5, 80.4, 79.4, 75.4, 70.1, 64.7, 61.3, 46.0, 38.3, 37.0, 35.7, 32.3, 30.3, 29.5, 28.7, 27.6 (3C), 27.2 (3C), 26.1 (3C), 22.8, 20.8, 20.0, 18.4, 17.7, 16.9, 11.7, 8.4, –3.9, –4.2; HRMS (ESI) *m/z* 911.5661, calcd

(preparation of DMBOMCl)

To a stirred solution of 3,4-dimethoxybenzyl (methylthio)methyl ether (519 mg, 2.27 mmol) in CH_2Cl_2 (3.8 mL) was added SO_2Cl_2 (0.20 mL, 2.5 mmol) at -78 °C. The mixture was stirred at -78 °C for 50 min and concentrated at 0 °C to give DMBOMCl.

To a stirred solution of alcohol **S13** (100 mg, 0.113 mmol) in CH₂Cl₂ (3.0 mL) were added ^{*i*}Pr₂NEt (1.50 mL, 8.61 mmol) and the above-mentioned solution of DMBOMCl in CH₂Cl₂ (1.5 mL) at 0 °C. After being stirred at 30 °C for 22 h, the mixture was cooled to 0 °C, and diluted H₂O (10 mL). The layers were separated, and the aqueous layer was extracted with Et₂O (3×10 mL). The organic layer and extracts were combined; washed with 0.5 M aqueous HCl (20 mL), saturated aqueous NaHCO₃ (10 mL) and brine (20 mL) successively; dried (Na₂SO₄); filtered; and concentrated. The crude product was purified by column chromatography on silica gel (4.0 g, hexane–EtOAc 20 : 1 \rightarrow $10: 1 \rightarrow 4: 1$) to give DMBOM ether **S14** (114 mg, 94%) as a colorless oil: $R_f = 0.20$ (hexane: EtOAc = 17: 3; $[\alpha]^{25}_{D} + 9.96$ (c 1.36, CHCl₃); IR (CHCl₃) 3010, 2960, 2934, 2858, 1724, 1517, 1465, 1253, 1106, 1030, 827, 707 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.45–7.43 (m, 6H), 7.31– 7.27 (m, 6H), 7.24–7.21 (m, 3H), 6.90–6.85 (m, 2H), 6.80 (d, J = 8.0 Hz, 1H), 4.98 (dd, J = 9.7, 2.3Hz, 1H), 4.76 (d, J = 6.9 Hz, 1H), 4.67 (d, J = 6.9 Hz, 1H), 4.61 (d, J = 11.7 Hz, 1H), 4.49 (d, J = 1.7 Hz, 1H), 4.49 (d, 11.7 Hz, 1H), 4.12-4.08 (m, 3H), 3.87 (s, 3H), 3.86, (s, 3H), 3.51 (dd, J = 4.3, 4.3 Hz, 1H), 3.40 (dt, J = 1.6, 6.8 Hz, 1H), 3.19 (m, 1H), 2.98 (m, 1H), 2.02 (m, 1H), 2.00 (s, 3H), 1.94–1.84 (m, 3H), 1.71–1.61 (m, 5H), 1.55–1.49 (m, 2H), 1.31 (m, 1H), 1.04–0.87 (m, 9H), 1.02 (s, 9H), 0.99 (s, 9H), $0.90 (s, 9H), 0.70 (d, J = 6.8 Hz, 3H), 0.071 (s, 3H), 0.066 (s, 3H); {}^{13}C NMR (100 MHz, CDCl₃) \delta$

170.8, 149.0, 148.5, 144.4 (3C), 130.8, 128.7 (6C), 127.7 (6C), 126.9 (3C), 120.4, 111.2, 110.9, 95.2, 86.5, 79.5, 78.8, 78.6, 75.4, 69.5, 64.6, 61.3, 55.9, 55.8, 46.3, 36.64, 36.58, 35.7, 31.0, 30.5, 29.4, 28.1, 27.5 (3C), 27.2 (3C), 26.1 (3C), 22.8, 21.0, 20.0, 18.4, 17.7, 16.9, 11.7, 9.3, -3.8, -4.2; HRMS (ESI) *m*/*z* 1091.6412, calcd for C₆₃H₉₆NaO₁₀Si₂ [M+Na]⁺ 1091.6440.

To a stirred solution of DMBOM ether S14 (238 mg, 0.222 mmol) in THF (2.2 mL) were added AcOH (1.0 M THF solution, 1.1 mL, 1.1 mmol) and "Bu₄NF (1.0 M THF solution, 1.1 mL, 1.1 mmol) at -20 °C. After being stirred at -5 °C for 23 h, the mixture was diluted with saturated aqueous NH₄Cl (2.0 mL) and H₂O (2.0 mL) at -5 °C. The layers were separated, and the aqueous layer was extracted with EtOAc (4×4.0 mL). The organic layer and extracts were combined; washed with saturated aqueous NaHCO₃ (15 mL) and brine (15 mL) successively; dried (Na₂SO₄); filtered; and concentrated. The crude product was purified by column chromatography on silica gel (7.0 g, hexane–EtOAc 1 : 1) to afford diol 24 (189 mg, 91%) as a colorless oil: $R_f = 0.38$ (hexane: EtOAc = 1 : 1); $[\alpha]_{D}^{25}$ +9.69 (c 0.537, CHCl₃); IR (CHCl₃) 3466, 3010, 2956, 2936, 2859, 1724, 1672, 1517, 1465, 1255, 1094, 1029, 836 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.42 (m, 6H), 7.31-7.27 (m, 6H), 7.24-7.21 (m, 3H), 6.89-6.86 (m, 2H), 6.82 (d, J = 7.9 Hz, 1H), 4.99 (dd, J = 7.9 Hz, 1H), 9.7, 2.2 Hz, 1H), 4.77 (d, J = 7.0 Hz, 1H), 4.68 (d, J = 7.0 Hz, 1H), 4.62 (d, J = 11.6 Hz, 1H), 4.49 (d, J = 11.6 Hz, 1H), 4.31 (m, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.80-3.78 (m, 2H), 3.63 (brs, 1H),3.52 (dd, J = 6.7, 2.1 Hz, 1H), 3.42 (m, 1H), 3.20 (m, 1H), 3.00 (dt, J = 6.1, 8.9 Hz, 1H), 2.71 (brs, 1H),1H), 2.03 (m, 1H), 2.01 (s, 3H), 1.96–1.80 (m, 3H), 1.76–1.52 (m, 6H), 1.37 (m, 1H), 1.28 (m, 1H), 1.01 (d, J = 7.1 Hz, 3H), 0.96–0.92 (m, 6H), 0.92 (s, 9H), 0.72 (d, J = 6.8 Hz, 3H), 0.13 (s, 3H), 0.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 149.0, 148.6, 144.4 (3C), 130.7, 128.6 (6C), 127.7 (6C), 126.9 (3C), 120.3, 111.2, 110.9, 95.4, 86.5, 83.4, 79.0, 78.4, 71.4, 69.6, 62.1, 61.3, 55.9, 55.8, 38.5, 38.2, 36.8, 36.7, 31.0, 30.7, 29.6, 29.5, 26.2 (3C), 21.0, 18.3, 16.9, 15.8, 12.9, 9.6, −3.77, −3.82; HRMS (ESI) *m/z* 951.5411, calcd for C₅₅H₈₀NaO₁₀Si [M+Na]⁺ 951.5418.

To a stirred solution of diol 24 (225 mg, 0.242 mmol) in DMF (2.4 mL) were added imidazole (165 mg, 2.42 mmol) and TESCI (0.20 mL, 1.2 mmol) at room temperature. After being stirred at room temperature for 1.5 h, the mixture was diluted with saturated aqueous NH₄Cl (2.0 mL) and H₂O (2.0 mL) at 0 °C. The layers were separated, and the aqueous layer was extracted with EtOAc (4×3.0 mL). The organic layer and extracts were combined, washed with brine (10 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by column chromatography on silica gel (7.9 g, hexane–EtOAc 5 : 1) to afford di-TES ether S15 (298 mg, quant) as a colorless oil: $R_f = 0.40$ (hexane: EtOAc = 4 : 1), $[\alpha]^{25}_{D}$ +4.26 (c 1.62, CHCl₃), IR (CHCl₃) 3005, 2957, 2877, 1724, 1517, 1465, 1384, 1252, 1139, 1068, 1030, 836 cm⁻¹, ¹H NMR (400 MHz, CDCl₃) & 7.45–7.43 (m, 6H), 7.31-7.27 (m, 6H), 7.24-7.20 (m, 3H), 6.89-6.87 (m, 2H), 6.81 (d, J = 8.0 Hz, 1H), 4.99 (dd, J =9.6, 2.4 Hz, 1H), 4.76 (d, J = 6.9 Hz, 1H), 4.67 (d, J = 6.9 Hz, 1H), 4.61 (d, J = 11.7 Hz, 1H), 4.49 (d, J = 11.7 Hz, 1H), 3.89 (m, 1H), 3.87 (s, 3H), 3.86 (s, 3H), 3.62 (t, J = 7.1 Hz, 2H), 3.65 (dd, J = 1.17 Hz, 2H)6.1, 2.7 Hz, 1H), 3.40 (m, 1H), 3.20 (m, 1H), 2.98 (m, 1H), 2.03 (m, 1H), 2.02 (s, 3H), 2.00–1.59 (m, 7H), 1.47 (m, 1H), 1.34–1.25 (m, 3H), 0.97–0.87 (m, 24H), 0.90 (s, 9H), 0.86 (d, J = 7.0 Hz, 3H), 0.70 (d, J = 6.8 Hz, 3H), 0.63–0.55 (m, 12H), 0.07 (s, 6H), ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 149.0, 148.5, 144.4 (3C), 130.8, 128.6 (6C), 127.7 (6C), 126.9 (3C), 120.4, 111.2, 110.9, 95.1, 86.4, 78.8, 78.6, 78.5, 71.0, 69.5, 61.3, 59.7, 55.9, 55.8, 44.1, 39.1, 36.7, 36.0, 31.0, 30.6, 29.7, 29.4, 26.2 (3C), 21.0, 18.5, 18.0, 16.8, 10.8, 9.4, 7.1 (3C), 6.8 (3C), 5.7 (3C), 4.4 (3C), -3.6, -4.0, HRMS (ESI) m/z 1179.7176, calcd for C₆₇H₁₀₈NaO₁₀Si₃ [M+Na]⁺ 1179.7148.

To a stirred solution of di-TES ether S15 (15.2 mg, 0.0131 mmol) in MeOH (0.30 mL) was added NH₄F (4.0 mg, 0.11 mmol) at room temperature. After being stirred at room temperature for 2.5 h, the mixture was diluted with saturated aqueous NH₄Cl (2.0 mL) and H₂O (1.0 mL) at 0 °C. The resultant reaction mixture was extracted with Et₂O (3×8.0 mL). The extracts were combined, washed with brine (8.0 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by column chromatography on silica gel (1.5 g, hexane–EtOAc 5 : $1 \rightarrow 4$: $1 \rightarrow 3$: 1) to afford alcohol S16 (14.1 mg, quant) as a colorless amorphous solid: $R_f = 0.50$ (hexane : EtOAc = 2 : 1); $\left[\alpha\right]^{24}_{D}$ +7.65 (c 0.902, CHCl₃); IR (CHCl₃) 3486, 3010, 2958, 2937, 2879, 1724, 1517, 1465, 1252, 1030, 837 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.45–7.43 (m, 6H), 7.31–7.21 (m, 9H), 6.90– 6.87 (m, 2H), 6.81 (d, J = 8.0 Hz, 1H), 4.99 (dd, J = 9.7, 2.3 Hz, 1H), 4.76 (d, J = 7.0 Hz, 1H), 4.68 (d, J = 7.0 Hz, 1H), 4.61 (d, J = 11.6 Hz, 1H), 4.49 (d, J = 11.6 Hz, 1H), 3.94 (m, 1H), 3.88 (s, 3H),3.86 (s, 3H), 3.80 (m, 1H), 3.69 (m, 1H), 3.50 (dd, J = 5.5, 3.4 Hz, 1H), 3.40 (m, 1H), 3.20 (m, 1H), 2.99 (td, J = 8.8, 6.9 Hz, 1H), 2.11 (m, 1H), 2.02 (m, 1H), 2.00 (s, 3H), 1.95–1.84 (m, 3H), 1.81– 1.72 (m, 2H), 1.68–1.62 (m, 2H), 1.54–1.47 (m, 2H), 1.30 (m, 1H), 0.99–0.88 (m, 9H), 0.97 (t, J =7.8 Hz, 9H), 0.90 (s, 9H), 0.70 (d, J = 6.8 Hz, 3H), 0.63 (q, J = 7.8 Hz, 6H), 0.08 (s, 3H), 0.08 (s, 3H). A signal due to one proton (OH) was not observed; ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 149.0, 148.5, 144.4 (3C), 130.7, 128.6 (6C), 127.7 (6C), 126.9 (3C), 120.4, 111.2, 110.9, 95.1, 86.5, 79.0, 78.6, 72.6, 69.5, 61.3, 60.1, 55.9, 55.9, 43.1, 37.5, 36.7, 36.5, 31.0, 30.6, 29.7, 29.4, 27.8, 26.1 (3C), 21.0, 18.4, 17.8, 16.9, 12.3, 9.5, 7.1 (3C), 5.5 (3C), -3.6, -4.9; HRMS (ESI) m/z 1065.6283, calcd for $C_{61}H_{94}NaO_{10}Si_2[M+Na]^+$ 1065.6278.

To a stirred solution of alcohol S16 (83.1 mg, 0.0796 mmol) in CH₂Cl₂ (0.80 mL) and pyridine (45.0 µL) was added Dess-Martin periodinane (84.8 mg, 0.200 mmol) at 0 °C. After stirring for 3 h at room temperature, the mixture was diluted with a 1:1:1 mixture of saturated aqueous Na₂S₂O₃, saturated aqueous NaHCO₃, and H₂O (3.0 mL). The layers were separated, and the aqueous layer was extracted with Et₂O (3×5.0 mL). The organic layer and extracts were combined, washed with brine (20 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by column chromatography on silica gel (3.2 g, hexane–EtOAc 5 : $1 \rightarrow 3$: 1) to give aldehyde 25 (77.5 mg, 93%) as a colorless oil: $R_f = 0.33$ (hexane: EtOAc = 4 : 1); $[\alpha]^{24}_{D} + 9.18$ (c 0.561, CHCl₃); IR (CHCl₃) 3010, 2958, 2937, 2878, 1723, 1517, 1465, 1253, 1158, 1030, 837, 707, 633 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 9.82 (t, J = 2.2 Hz, 1H), 7.44–7.43 (m, 6H), 7.31–7.21 (m, 9H), 6.89– 6.87 (m, 2H), 6.82 (d, J = 8.0 Hz, 1H), 4.99 (dd, J = 9.8, 2.4 Hz, 1H), 4.76 (d, J = 7.0 Hz, 1H), 4.67 (d, J = 7.0 Hz, 1H), 4.61 (d, J = 11.6 Hz, 1H), 4.49 (d, J = 11.6 Hz, 1H), 4.24 (m, 1H), 3.88 (s, 3H),3.86 (s, 3H), 3.49 (dd, J = 5.2, 4.1 Hz, 1H), 3.40 (m, 1H), 3.20 (m, 1H), 2.99 (dt, J = 6.0, 8.8 Hz, 1H), 2.70–2.58 (m, 2H), 2.01 (m, 1H), 2.00 (s, 3H), 1.93–1.84 (m, 2H), 1.76 (m, 1H), 1.68–1.62 (m, 2H), 1.46 (m, 1H), 1.32–1.26 (m, 3H), 0.97–0.88 (m, 9H), 0.95 (t, J = 8.0 Hz, 9H), 0.90 (s, 9H), 0.70 (d, J = 6.8 Hz, 3H), 0.60 (q, J = 8.0 Hz, 6H), 0.08 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 202.1, 170.8, 149.0, 148.5, 144.4 (3C), 130.7, 128.6 (6C), 127.7 (6C), 126.9 (3C), 120.4, 111.2, 110.9, 95.2, 86.5, 79.0, 78.9, 78.5, 69.7, 69.5, 61.3, 55.9, 55.8, 50.5, 44.0, 37.3, 36.7, 31.0, 30.6, 29.4, 28.0, 26.1 (3C), 21.0, 18.4, 17.2, 16.8, 13.4, 9.4, 7.0 (3C), 5.4 (3C), -3.6, -4.1; HRMS (ESI) m/z 1063.6111, calcd for C₆₁H₉₂NaO₁₀Si₂ [M+Na]⁺ 1063.6121.

THF was degassed by freeze-thawing. To a stirred solution of aldehyde **25** (151 mg, 0.145 mmol) in THF (0.22 mL) were added $CrCl_2$ (103 mg, 0.838 mmol) and CHI_3 (117 mg, 0.297 mmol) at room

temperature in a glove box. The mixture was stirred at room temperature for 1.5 h, diluted with brine (5.0 mL) and H₂O (1.0 mL), and extracted with Et₂O (5 \times 15 mL). The combined extracts was washed with brine (20 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by column chromatography on silica gel (4.0 g, hexane–EtOAc 1 : $0 \rightarrow 10$: $1 \rightarrow 5$: 1) to give S17 (153 mg, 91%, E: Z = 4.5: 1) as a colorless amorphous solid: $R_f = 0.57$ (hexane : EtOAc = 3 : 1); $[\alpha]^{25}_{D}$ +7.25 (*c* 1.09, CHCl₃); IR (CHCl₃) 3010, 2957, 2937, 2878, 1724, 1517, 1465, 1253, 1030, 836, 707 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) & 7.47–7.45 (m, 6H), 7.33–7.23 (m, 9H), 6.92– 6.90 (m, 2H), 6.84 (d, J = 8.0 Hz, 1H), 6.51 (dt, J = 14.4, 7.8 Hz, 1H), 6.06 (d, J = 14.4 Hz, 1H), 5.01 (dd, J = 9.8, 2.3 Hz, 1H), 4.79 (d, J = 7.0 Hz, 1H), 4.71 (d, J = 7.0 Hz, 1H), 4.64 (d, J = 11.6Hz, 1H), 4.52 (d, J = 11.6 Hz, 1H), 3.90 (s, 3H), 3.88 (s, 3H), 3.83 (m, 1H), 3.49 (m, 1H), 3.43 (m, 1H), 3.22 (m, 1H), 3.01 (td, J = 8.7, 5.7 Hz, 1H), 2.34-2.22 (m, 2H), 2.04 (m, 1H), 2.02 (s, 3H), 1.97-1.86 (m, 2H), 1.71-1.66 (m, 3H), 1.47 (m, 1H), 1.33 (m, 1H), 1.13-1.03 (m, 2H), 1.00-0.89 (m, 9H), 0.95 (t, J = 7.8 Hz, 9H), 0.93 (s, 9H), 0.70 (d, J = 6.8 Hz, 3H), 0.61 (q, J = 7.8 Hz, 6H), 0.09 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 149.0, 148.5, 144.4 (3C), 143.1, 137.7, 130.8, 128.6 (6C), 128.3, 127.7 (6C), 126.9 (3C), 120.4, 111.2, 110.9, 95.2, 86.5, 79.0, 78.6, 72.5, 69.5, 61.3, 55.9, 55.8, 43.2, 42.6, 36.7, 36.4, 31.0, 30.6, 29.4, 27.6, 26.2 (3C), 21.1, 18.5, 17.9, 16.9, 11.8, 9.5, 7.1 (3C), 5.5 (3C), -3.5, -4.0; HRMS (ESI) m/z 1187.5299, calcd for C₆₂H₉₃INaO₉Si₂ [M+Na]⁺ 1187.5295.

To a stirred solution of **S17** (135 mg, 0.116 mmol) in THF (2.1 mL) was added a 4 : 1 mixture of acetic acid and H₂O (2.8 mL) at room temperature. After stirring for 15 h at room temperature, the mixture was poured into saturated aqueous NaHCO₃ (20 mL) at 0 °C and stirred for 10 min. The resultant mixture was extracted with Et₂O (3 × 20 mL). The combined extracts were washed with

saturated aqueous NaHCO₃ (20 mL) and brine (20 mL) successively; dried (Na₂SO₄); filtered; and concentrated. The crude product was purified by column chromatography on silica gel (4.0 g, hexane-EtOAc 5 : 1 \rightarrow 3 : 1) to give C20-C34 segment 13 (105 mg, 86%) as a colorless amorphous solid: $R_f = 0.42$ (benzene : EtOAc = 3 : 1); $[\alpha]_{D}^{15} + 2.6$ (c 0.80, CHCl₃); IR (CHCl₃) 3470, 2958, 2936, 1725, 1594, 1515, 1464, 1372, 1257, 1028, 836, 706 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) § 7.46–7.42 (m, 6H), 7.32–7.28 (m, 6H), 7.25–7.21 (m, 3H), 6.92–6.87 (m, 2H), 6.82 (d, J = 8.1 Hz, 1H), 6.53 (dt, J = 14.6, 4.9 Hz, 1H), 6.10 (d, J = 14.6 Hz, 1H), 5.00 (dd, J = 9.8, 2.3 Hz, 1H), 4.77 (d, J = 7.0 Hz, 1H), 4.68 (d, J = 7.0 Hz, 1H), 4.62 (d, J = 11.6 Hz, 1H), 4.48 (d, J = 11.6Hz, 1H), 4.10 (m, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.51 (dd, J = 5.6, 3.0 Hz, 1H), 3.42 (m, 1H), 3.21 (m, 1H), 3.00 (td, J = 8.9, 5.8 Hz, 1H), 2.32–2.28 (m, 1H), 2.06–2.00 (m, 2H), 2.02 (s, 3H), 1.97– 1.86 (m, 3H), 1.71–1.66 (m, 4H), 1.56–1.52 (m, 1H), 1.33–1.27 (m, 1H), 0.98 (d, J = 7.8 Hz, 3H), 0.95-0.89 (m, 6H), 0.92 (s, 9H), 0.72 (d, J = 6.8 Hz, 3H), 0.12 (s, 3H), 0.11 (s, 3H). A signal due to one proton (OH) was not observed; ¹³C NMR (150 MHz, CDCl₃) δ 170.7, 149.0, 148.6, 144.3 (3C), 143.3, 130.7, 128.6 (6C), 127.7 (6C), 126.9 (3C), 120.3, 111.2, 111.0, 95.5, 86.5, 83.2, 79.0, 78.4, 76.6, 69.4, 69.6, 61.3, 55.9, 55.8, 41.3, 38.4, 36.9, 36.8, 31.0, 30.7, 29.6, 29.5, 26.2 (3C), 21.1, 18.3, 16.9, 15.8, 12.3, 9.6, -3.7, -3.8; HRMS (ESI) m/z 1073.4420, calcd for C₅₆H₇₉INaO₉Si [M+Na]⁺ 1073.4436.

To a stirred solution of the C1–C19 segment **12** (22.0 mg, 0.0301 mmol) in THF (0.30 mL) were added Et₃N (0.20 M solution in THF, 0.31 mL, 0.062 mmol) and 2,4,6-Cl₃C₆H₂COCl (0.20 M solution in THF, 0.22 mL, 0.044 mmol) at 0 °C. After being stirred at room temperature for 1 h, Et₃N (0.20 M solution in THF, 0.31 mL, 0.062 mmol) and 2,4,6-Cl₃C₆H₂COCl (0.20 M solution in

THF, 0.22 mL, 0.044 mmol) were added. After being stirred at room temperature for 45 min, a solution of the C20-C34 segment 13 (85.1 mg, 0.0810 mmol) in toluene (0.80 mL) and DMAP (12.2 mg, 0.0999 mmol) were added. The resulting mixture was stirred at room temperature for 4 h, poured into saturated aqueous NaHCO₃ (5.0 mL), and extracted with Et₂O (3×15 mL). The combined extracts were washed with brine (10 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by column chromatography on silica gel (6.0 g, hexane-EtOAc 6 : 1 \rightarrow $5: 1 \rightarrow 3: 1$) to afford ester **26** (51.3 mg, 95%) as a colorless amorphous solid: $R_f = 0.54$ (hexane : EtOAc = 3 : 1); $[\alpha]_{D}^{15}$ -1.5 (*c* 1.02, CHCl₃); IR (CHCl₃) 3008, 2956, 2930, 2857, 1723, 1708, 1641, 1515, 1463, 1383, 1361, 1255, 1214, 1089, 1030, 836 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.43 (m, 6H), 7.29 (m, 6H), 7.247.21 (m, 4H), 6.90–6.87 (m, 2H), 6.82 (d, J = 8.0 Hz, 1H), 6.45 (dt, J = 14.4, 7.3 Hz, 1H), 6.29–6.15 (m, 2H), 6.08 (d, J = 14.4 Hz, 1H), 5.78 (d, J = 15.4 Hz, 1H), 5.35 (t, J6.7 Hz, 1H), 5.12 (dd, J = 10.6, 6.2 Hz, 1H), 4.98 (dd, J = 9.7, 2.2 Hz, 1H), 4.76 (d, J = 7.0 Hz, 1H), 4.68 (d, J = 7.0 Hz, 1H), 4.62–4.58 (m, 3H), 4.49 (d, J = 11.6 Hz, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.69-3.55 (m, 4H), 3.42-3.37 (m, 3H), 3.20 (m, 1H), 3.16 (s, 3H), 2.99 (td, J = 8.8, 5.7 Hz, 1H), 2.47-2.42 (m, 1H), 2.38-2.35 (m, 2H), 2.32-2.28 (m, 1H), 2.14 (s, 3H), 2.13-2.08 (m, 1H), 2.06-2.00 (m,1H), 2.01 (s, 3H), 1.97–1.80 (m, 6H), 1.71–1.66 (m, 3H), 1.60–1.50 (m, 5H), 1.50 (s, 3H), 1.49-1.34 (m, 2H), 1.33-1.28 (m, 3H), 0.96 (d, J = 7.0 Hz, 3H) 0.96 (d, J = 6.8 Hz, 3H), 0.89-0.86(m, 9H) 0.88 (s, 9H), 0.88 (s, 9H), 0.88 (s, 9H), 0.84 (d, J = 7.0 Hz, 3H), 0.70 (d, J = 6.8 Hz, 3H), 0.07 (s, 3H), 0.06 (s, 6H), 0.05 (s, 3H) 0.04 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 170.8, 166.6, 149.0, 148.5, 144.8, 144.4 (3C), 141.7, 140.8, 134.9, 130.7, 130.4, 128.6 (6C), 127.9, 127.7 (6C), 126.9 (3C), 120.4, 119.8, 111.3, 111.0, 95.2, 88.2, 86.5, 79.0, 78.9, 78.6, 78.6, 77.4, 75.9, 73.3, 72.4, 69.5, 61.4, 55.9, 55.8, 55.6, 40.2, 39.7, 39.5, 37.6, 36.9, 36.8, 34.9, 33.6, 31.8, 31.0, 30.6, 30.2, 29.5, 27.6, 26.2 (3C), 26.1 (3C), 26.0 (6C), 21.1, 19.7, 18.5, 18.4, 18.3, 17.2, 16.9, 15.6, 14.4, 12.0, 10.9, 10.4, 9.6, -3.6, -3.8, -3.9 (2C), -5.3, -5.3; HRMS (ESI) m/z 1769.9062, calcd for C₉₄H₁₅₁INaO₁₄SSi₃ [M+Na]⁺ 1769.9075.

To a stirred solution of ester 26 (120 mg, 0.0690 mmol) in THF (3.6 mL) was added a 4 : 1 mixture of acetic acid and H₂O (4.8 mL) at room temperature. After stirring for 24 h at same temperature, the mixture was poured into saturated aqueous NaHCO₃ (45 mL) at 0 °C and stirred for 10 min. The resultant mixture was extracted with Et₂O (3×40 mL). The combined extracts were washed with saturated aqueous NaHCO₃ (2×40 mL) and brine (40 mL) successively; dried (Na₂SO₄); filtered; and concentrated. The crude product was purified by column chromatography on silica gel (8.0 g, hexane–EtOAc 4 : 1) to give alcohol 27 (108 mg, 96%) as a colorless amorphous solid: $R_f = 0.22$ (hexane : EtOAc = 3 : 1); $[\alpha]_{D}^{16} - 2.7$ (c 0.84, CHCl₃); IR (CHCl₃) 3010, 2957, 2931, 1724, 1709, 1641, 1515, 1463, 1382, 1255, 1213, 1031, 836 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.44–7.42 (m. 6H), 7.30–7.27 (m, 6H), 7.24–7.21 (m, 4H), 6.90–6.87 (m, 2H), 6.82 (d, J = 7.9 Hz, 1H), 6.45 (dt, J = 14.4, 7.3 Hz, 1H), 6.30–6.14 (m, 2H), 6.08 (d, J = 14.5 Hz, 1H), 5.78 (d, J = 15.3 Hz, 1H), 5.35 (t, *J* = 7.2 Hz, 1H), 5.12 (dd, *J* = 10.6, 5.4 Hz, 1H), 4.98 (d, *J* = 9.4 Hz, 1H), 4.76 (d, *J* = 6.8 Hz, 1H), 4.68 (d, J = 7.0 Hz, 1H), 4.62–4.58 (m, 3H), 4.49 (d, J = 11.6 Hz, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.69–3.66 (m, 2H), 3.61 (m, 1H), 3.56 (m, 1H), 3.42–3.38 (m, 3H), 3.20 (m, 1H), 3.16 (s, 3H), 2.98 (td, J = 8.8, 5.7 Hz, 1H), 2.47-2.42 (m, 1H), 2.38-2.35 (m, 2H), 2.32-2.26 (m, 1H), 2.14 (s, 3H),2.13–2.08 (m, 1H), 2.06–2.00 (m, 1H), 2.01 (s, 3H), 1.95–1.80 (m, 5H), 1.71–1.50 (m, 7H), 1.50 (s, 3H), 1.48–1.25 (m, 7H), 0.96–0.86 (m, 15H), 0.90 (s, 9H), 0.89 (s, 9H), 0.84 (d, J = 6.8 Hz, 3H), 0.70 (d, J = 6.7 Hz, 3H), 0.07 (s, 3H), 0.06 (s, 6H), 0.05 (s, 3H). A signal due to one proton (OH) was not observed; ¹³C NMR (150 MHz, CDCl₃) δ 170.8, 166.6, 149.0, 148.5, 144.9, 144.4 (3C), 141.7, 140.8, 135.0, 130.8, 130.4, 128.6 (6C), 127.7, 127.6 (6C), 126.9 (3C), 120.4, 119.8, 111.3, 111.0, 95.2, 88.1, 86.5, 79.0, 78.9, 78.6, 78.5, 77.4, 75.8, 73.3, 72.5, 69.5, 61.3, 61.1, 55.9, 55.8, 55.7, 40.2, 39.6, 39.6, 37.5, 36.9, 36.8, 34.9, 33.5, 31.7, 31.0, 30.6, 30.2, 29.5, 28.7, 27.6, 26.2 (3C), 26.1 (3C), 21.1, 19.7, 18.5, 18.4, 18.3, 17.2, 16.9, 15.5, 14.4, 12.0, 11.0, 10.4, 9.5, -3.7, -3.8, -3.9,

-3.9; HRMS (ESI) *m*/*z* 1655.8225, calcd for C₈₈H₁₃₇INaO₁₄SSi₂ [M+Na]⁺ 1655.8210.

To a stirred solution of alcohol 27 (40.2 mg, 0.0246 mmol) in CH₂Cl₂ (0.70 mL) was added Dess-Martin periodinane (14.2 mg, 0.0586 mmol) at room temperature. After stirring for 30 min at room temperature, the mixture was diluted with a 1 : 1 : 1 mixture of saturated aqueous Na₂S₂O₃, saturated aqueous NaHCO₃, and H₂O (3.0 mL) at 0 °C. The resultant reaction mixture was extracted with Et₂O (3×6.0 mL). The combined extracts were washed with brine (10 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by column chromatography on silica gel (6.0 g, hexane–EtOAc 4 : 1) to give aldehyde 11 (37.4 mg, 93%) as a colorless amorphous solid: R_f = 0.59 (hexane : EtOAc = 2 : 1): $[\alpha]_{D}^{16}$ -1.0 (c 0.97, CHCl₃): IR (CHCl₃) 3009, 2957, 2931, 2727. 1723, 1641, 1612, 1515, 1463, 1254, 1217, 1212, 1138, 1030, 836 cm⁻¹; ¹H NMR (600 MHz, $CDCl_3$) δ 9.76 (t, J = 2.1 Hz, 1H), 7.44–7.42 (m, 6H), 7.30–7.26 (m, 6H), 7.24–7.21 (m, 4H), 6.90– 6.87 (m, 2H), 6.82 (d, J = 8.1 Hz, 1H), 6.45 (dt, J = 14.4, 7.3 Hz, 1H), 6.29–6.15 (m, 2H), 6.08 (t, J = 14.4, 7.3 Hz, 1H), 6.29 = 6.8 Hz, 1H), 5.79 (d, J = 15.4 Hz, 1H), 5.33 (t, J = 6.8 Hz, 1H), 5.12 (dd, J = 10.6, 6.2 Hz, 1H), 4.99 (dd, J = 9.7, 2.4 Hz, 1H), 4.76 (d, J = 6.9 Hz, 1H), 4.68 (d, J = 7.0 Hz, 1H), 4.62-4.58 (m, 3H),4.49 (d, J = 11.6 Hz, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.62–3.59 (m, 1H), 3.58–3.52 (m, 1H), 3.42– 3.37 (m, 3H), 3.20 (m, 1H), 3.16 (s, 3H), 2.99 (dt, J = 6.0, 8.9 Hz, 1H), 2.47–2.42 (m, 2H), 2.34– 2.26 (m, 2H), 2.18–2.09 (m, 2H), 2.14 (s, 3H), 2.13–2.08 (m, 1H), 2.06–2.98 (m, 2H), 2.01 (s, 3H), 1.94–1.80 (m, 4H), 1.71–1.62 (m, 2H), 1.60–1.50 (m, 5H), 1.50 (s, 3H), 1.49–1.34 (m, 2H), 1.33– 1.24 (m, 3H), 0.99–0.97 (d, J = 6.5 Hz, 3H), 0.96–0.94 (m, 6H), 0.92 (d, J = 7.0 Hz, 3H), 0.90 (s, 9H), 0.89 (s, 9H), 0.88 (d, J = 6.7 Hz, 3H), 0.84 (d, J = 7.0 Hz, 3H), 0.70 (d, J = 6.8 Hz, 3H), 0.07 (s, 3H), 0.06 (s, 6H), 0.05 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 202.5, 170.8, 166.6, 149.0, 148.5, 144.8, 144.4 (3C), 141.7, 140.7, 135.0, 130.8, 130.4, 128.6 (6C), 127.7 (6C), 127.6 (3C), 126.3,

120.4, 119.8, 111.3, 111.0, 95.2, 88.0, 86.5, 78.9, 78.9, 78.6, 78.5, 77.4, 75.8, 73.3, 72.4, 69.5, 61.3, 55.9, 55.8, 55.8, 50.6, 40.2, 39.7, 39.6, 37.6, 36.9, 36.8, 34.7, 33.5, 31.8, 31.0, 30.6, 29.5, 28.7, 28.6, 27.6, 26.2 (3C), 26.1 (3C), 21.1, 20.0, 18.5, 18.4, 17.2, 16.9, 15.7, 14.4, 12.0, 11.0, 10.6, 9.5, -3.7, -3.8 (2C), -3.9; HRMS (ESI) *m*/*z* 1653.8062, calcd for C₈₈H₁₃₅INaO₁₄SSi₂ [M+Na]⁺ 1653.8053.

DMSO was degassed by freeze-thawing. To a stirred solution of aldehyde **11** (46.0 mg, 0.0282 mmol) in DMSO (2.8 mL) was added CrCl₂ doped with NiCl₂ (2.0 w/w%) (18.5 mg, CrCl₂ 0.128 mmol, NiCl₂ 0.00280 mmol) at room temperature in a glove box. The mixture was stirred at room temperature for 4 h in a glove box. The resultant reaction mixture was diluted with brine (25 mL) and extracted with Et₂O (4 × 20 mL). The combined extracts were washed with brine (20 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by column chromatography on silica gel (2.0 g, hexane–EtOAc $3.5 : 1 \rightarrow 3 : 1 \rightarrow 2 : 1$) to afford desired allylic alcohol **28** (22.8 mg, 54%) and undesired allylic alcohol **29** (15.1 mg, 36%) as colorless amorphous solids, respectively.

Desired allylic alcohol **28**: $R_f = 0.33$ (hexane : EtOAc = 2 : 1); $[\alpha]^{16}_D + 33.8$ (*c* 0.78, CHCl₃); IR (CHCl₃) 3009, 2957, 2930, 2857, 1722, 1643, 1516, 1463, 1382, 1257, 1138, 1031, 836 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.44–7.42 (m, 6H), 7.31–7.26 (m, 6H), 7.24–7.20 (m, 4H), 6.89–6.87 (m, 2H), 6.82 (d, *J* = 8.1 Hz, 1H), 6.23–6.15 (m, 2H), 5.82 (d, *J* = 15.4 Hz, 1H), 5.54 (ddd, *J* = 15.0, 10.5, 4.3 Hz, 1H), 5.27–5.21 (m, 2H), 5.06 (m, 1H), 4.99 (dd, *J* = 9.8, 2.3 Hz, 1H), 4.76 (d, *J* = 7.0 Hz, 1H), 4.61 (d, *J* = 11.7 Hz, 1H), 4.59 (d, *J* = 11.7 Hz, 1H), 4.53 (d, *J* = 11.7 Hz, 1H), 4.48 (d, *J* = 11.7 Hz, 1H), 4.09 (m, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.60 (m, 1H), 3.51 (br s, 1H), 3.41–3.36 (m, 3H), 3.21–3.14 (m, 1H), 3.18 (s, 3H), 2.98 (td, *J* = 8.8, 6.1 Hz, 1H), 2.45 (m, 1H), 2.35 (m, 1H), 2.24–2.12 (m, 2H), 2.16 (s, 3H), 2.07–1.96 (m, 2H), 2.00 (s, 3H), 1.95–1.77

(m, 4H), 1.71–1.37 (m, 10H), 1.45 (s, 3H), 1.35–1.21 (m, 4H), 1.09 (m, 1H), 0.95–0.85(m, 15H) 0.91 (s, 9H), 0.89 (s, 9H), 0.81 (d, J = 6.2 Hz, 3H), 0.70 (d, J = 6.8 Hz, 3H), 0.13 (s, 3H), 0.07 (s, 3H), 0.05 (s, 3H), 0.04 (s, 3H). A signal due to one proton (OH) was not observed; ¹³C NMR (150 MHz, CDCl₃) δ 170.8, 166.2, 149.0, 148.5, 144.4, 144.3 (3C), 140.5, 135.3, 134.3, 130.8, 130.0, 129.6, 129.4, 128.6 (6C), 127.7 (6C), 126.9 (3C), 120.4, 120.3, 111.2, 111.0, 95.3, 87.6, 86.5, 82.0, 79.2, 78.6, 78.5, 77.0, 72.9, 72.8, 72.2, 69.5, 61.4, 55.9, 55.8, 55.6, 42.7, 42.7, 42.6, 38.5, 38.1, 37.4, 37.2, 36.7, 36.3, 33.0, 31.0, 30.5, 29.9, 29.7, 29.4, 28.0, 26.2 (3C), 26.0 (3C), 21.0, 20.1, 18.5, 18.3, 17.0, 16.9, 14.5, 14.1, 13.0, 12.0, 9.8, 9.4, -3.7, -4.0 (2C), -4.2; HRMS (ESI) *m/z* 1527.9102, calcd for C₈₈H₁₃₆NaO₁₄SSi₂ [M+Na]⁺ 1527.9087.

Undesired allylic alcohol **29**: $R_f = 0.43$ (hexane : EtOAc = 2 : 1); $[\alpha]_{D}^{17} + 8.8$ (c 0.76, CHCl₃); IR (CHCl₃) 3009, 2957, 2930, 2857, 1723, 1642, 1516, 1463, 1383, 1254, 1219, 1138, 1089, 836 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.44–7.42 (m, 6H), 7.30–7.26 (m, 6H), 7.24–7.20 (m, 4H) 6.89–6.87 (m, 2H), 6.82 (d, J = 8.0 Hz, 1H), 6.24-6.19 (m, 1H), 6.19-6.11 (m, 1H) 5.78 (d, J = 15.4 Hz, 1H), 5.61 (ddd, J = 14.9, 8.4, 6.0 Hz, 1H), 5.49 (dd, J = 15.5, 5.1 Hz, 1H), 5.25–5.20 (m, 2H), 4.99 (dd, J = 9.8, 2.2 Hz, 1H), 4.77 (d, J = 7.0 Hz, 1H), 4.67 (d, J = 7.0 Hz, 1H), 4.63–4.56 (m, 3H), 4.47 (d, J = 7.0 Hz, 1H), 4.63–4.56 (m, 3H), 4.47 (d, J = 7.0 Hz, 1H), 4.63–4.56 (m, 3H), 4.47 (d, J = 7.0 Hz, 1H), 4.63–4.56 (m, 3H), 4.47 (d, J = 7.0 Hz, 1H), 4.63–4.56 (m, 3H), 4.47 (d, J = 7.0 Hz, 1H), 4.63–4.56 (m, 3H), 4.47 (d, J = 7.0 Hz, 1H), 4.63–4.56 (m, 3H), 4.47 (d, J = 7.0 Hz, 1H), 4.63–4.56 (m, 3H), 4.47 (d, J = 7.0 Hz, 1H), 4.63–4.56 (m, 3H), 4.47 (d, J = 7.0 Hz, 1H), 4.63–4.56 (m, 3H), 4.47 (d, J = 7.0 Hz, 1H), 4.63–4.56 (m, 3H), 4.47 (d, J = 7.0 Hz, 1H), 4.63–4.56 (m, 3H), 4.47 (d, J = 7.0 Hz, 1H), 4.63–4.56 (m, 3H), 4.47 (d, J = 7.0 Hz, 1H), 4.63–4.56 (m, 3H), 4.47 (d, J = 7.0 Hz, 1H), 4.63–4.56 (m, 3H), 4.47 (d, J = 7.0 Hz, 1H), 4.67 (m, 3H), 4.47 (m, 3H), 4.47 (m, 3H), 4.47 (m, 3H) = 11.7 Hz, 1H), 4.10 (m, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.67–3.63 (m, 1H), 3.54–3.53 (m, 1H), 3.46-3.36 (m, 3H), 3.21-3.19 (m, 1H), 3.14 (s, 3H), 2.99 (dt, J = 5.9, 8.9 Hz, 1H), 2.46-2.44 (m, 1H), 2.35 (m, 2H), 2.23 (m, 1H), 2.20–2.12 (m, 1H), 2.18 (s, 3H), 2.08–1.97 (m, 2H), 2.01 (s, 3H), 1.94–1.73 (m, 5H), 1.69–1.46 (m, 8H), 1.46 (s, 3H), 1.40 (m, 1H) 1.33–1.22 (m, 3H), 1.13 (m, 1H), 1.0–0.78 (m, 12H), 0.92 (s, 9H), 0.90 (s, 9H), 0.85 (d, J = 7.0 Hz, 3H), 0.81 (d, J = 6.6 Hz, 3H), 0.70 (d, J = 6.8 Hz, 3H), 0.12 (s, 3H), 0.09 (s, 3H), 0.06 (s, 3H), 0.05 (s, 3H). A signal due to one proton (OH) was not observed; ¹³C NMR (150 MHz, CDCl₃) δ 170.8, 166.7, 149.0, 148.5, 144.8, 144.4 (3C), 140.1, 135.9, 134.5, 130.7, 130.3, 128.6 (6C), 128.2, 127.7 (6C), 126.9 (3C), 125.8, 120.4, 120.0, 111.2, 111.0, 95.3, 87.9, 86.5, 79.0, 78.9, 78.5, 77.3, 73.4, 73.1, 69.8, 69.5, 61.3, 55.9 (2C), 55.8 (2C), 55.6, 44.5, 42.4, 40.0, 37.4, 37.0, 36.7, 34.8, 31.0, 31.0, 30.5, 29.5, 29.4, 26.2 (3C), 26.2, 26.0 (3C), 21.0, 19.8, 18.5, 18.3, 17.2, 16.9, 14.6, 14.4, 12.9, 12.1, 10.1, 9.5, -3.7, -4.0, -4.1,

-4.2, -4.2, -4.3; HRMS (ESI) *m*/*z* 1527.9073, calcd for C₈₈H₁₃₆NaO₁₄SSi₂ [M+Na]⁺ 1527.9087.

Determination of the absolute configuration of C19 in 28

For the determination of the absolute configuration of C19 in **28**, allylic alcohol **28** was converted into (*S*)- and (*R*)-MTPA esters **28a** and **28b**.⁵ The $\Delta\delta$ values for these MTPA esters are described below:

 $\Delta\delta$ values ($\delta_S - \delta_R$) for these MTPA esters in ppm (600 MHz).

To a stirred solution of undesired allylic alcohol **29** (15.2 mg, 10.1 µmol) in CH₂Cl₂ (0.60 mL) and pyridine (0.060 mL) was added Dess–Martin periodinane (6.2 mg, 15 µmol) at room temperature. After stirring for 30 min at room temperature, the mixture was diluted with a 1 : 1 : 1 mixture of saturated aqueous Na₂S₂O₃, saturated aqueous NaHCO₃, and H₂O (3.0 mL) at 0 °C. The resultant reaction mixture was extracted with Et₂O (3 × 8.0 mL). The combined extracts were washed with brine (5.0 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by column chromatography on silica gel (0.80 g, hexane–EtOAc 6 : 1 \rightarrow 2 : 1) to give enone **S18** (13.7 mg, 90%) as a colorless amorphous solid: $R_f = 0.50$ (hexane : EtOAc = 2 : 1); $[\alpha]^{17}_{D}$ +4.8 (*c* 0.29, CHCl₃); IR (CHCl₃) 2957, 2931, 1723, 1516, 1463, 1254, 1212, 1030, 836 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) & 7.46–7.43 (m, 6H), 7.31–7.26 (m, 6H), 7.25–7.22 (m, 4H), 6.89 (m, 2H), 6.82 (d, J = 8.4 Hz, 1H), 6.63 (ddd, J = 15.7, 9.2, 6.2 Hz, 1H), 6.20 (dd, J = 15.0, 11.1, Hz, 1H), 6.13–6.08 (m, 1H), 5.97 (d, J = 16.1 Hz, 1H), 5.71 (d, J = 15.2 Hz, 1H), 5.37 (m, 1H), 5.19 (m, 1H), 5.00 (dd, J = 16.1 Hz, 1H), 5.71 (d, J = 15.2 Hz, 1H), 5.87 (m, 1H), 5.19 (m, 1H), 5.00 (dd, J = 16.1 Hz, 1H), 5.87 (m, 1H), 5.19 (m, 1H), 5.00 (dd, J = 16.1 Hz, 1H), 5.87 (m, 1H), 5.19 (m, 1H), 5.00 (dd, J = 16.1 Hz, 1H), 5.87 (m, 1H), 5.87 (m, 1H), 5.88 (m, 1H), 9.8, 2.2 Hz, 1H), 4.78 (d, J = 7.0 Hz, 1H), 4.68 (d, J = 7.0 Hz, 1H), 4.62 (d, J = 11.6 Hz, 1H), 4.57 (s, 2H), 4.49 (d, J = 11.6 Hz, 1H), 3.89 (s, 3H), 3.86 (s, 3H), 3.75 (br s, 1H), 3.54 (m, 1H), 3.45– 3.41 (m, 2H), 3.37 (dd, J = 9.6, 5.1 Hz, 1H), 3.21 (m, 1H), 3.16 (s, 3H), 3.00 (td, J = 8.9, 6.0 Hz, 1H), 2.60 (m, 1H), 2.42–2.35 (m, 4H), 2.17 (s, 3H), 2.06–2.00 (m, 3H), 2.01 (s, 3H), 1.97–1.83 (m, 5H), 1.75–1.55 (m, 4H), 1.52–1.48 (m, 2H), 1.48 (s, 3H), 1.34–1.25 (m, 3H), 1.10–0.95 (m, 3H), 0.97-0.91 (m, 12H), 0.92 (s, 9H), 0.90 (s, 9H), 0.86 (d, J = 6.9 Hz, 3H), 0.73-0.70 (m, 6H), 0.09 (s, 3H), 0.08 (s, 3H), 0.06 (s, 3H), 0.05 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) & 200.6, 170.7, 166.8, 149.0, 148.6, 145.8, 144.4 (3C), 142.9, 140.5, 134.9, 133.8, 130.6, 130.4, 128.6 (6C), 127.7 (6C), 126.9 (3C), 120.4, 119.0, 111.3, 111.0, 95.3, 88.2, 86.5, 79.1, 78.9, 78.5, 73.0, 72.5, 69.6, 61.3, 55.9, 55.8, 55.5, 46.1, 42.0, 41.0, 38.3, 37.4, 36.8, 35.2, 32.3, 31.6, 31.3, 31.0, 30.6, 30.5, 29.7, 29.5, 29.2, 28.1, 26.2 (3C), 25.9 (3C), 22.7, 21.0, 19.6, 18.5, 18.3, 16.9, 16.9, 14.6, 14.1, 14.0, 13.1, 12.2, 10.0, 9.5, -3.7, -4.1, -4.2, -4.3; HRMS (ESI) m/z 1525.8953, calcd for C₈₈H₁₃₄NaO₁₄SSi₂ [M+Na]⁺ 1525.8931.

To a stirred solution of (*S*)-CBS catalyst (1.0 M solution in toluene, 0.050 mL, 50 μ mol) in THF (0.2 mL) was added BH₃·SMe₂ (2.0 M solution in THF, 0.022 mL, 0.044 mmol) at 0 °C. After being stirred for 30 min, the mixture was cooled –78 °C. A solution of enone **S18** (12.6 mg, 8.50 μ mol) in THF (0.40 mL) was added, and the mixture was stirred for 1 h. The resultant mixture was allowed to warm to –50 °C, and stirring was continued for 30 min. The reaction was quenched by

addition of MeOH (0.25 mL), and the resultant mixture was allowed to warm to 0 °C. After being stirred for 10 min, the mixture was diluted with brine (3.0 mL) at 0 °C and extracted with Et_2O (3 × 8.0 mL). The combined extracts were washed with brine (8.0 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by column chromatography on silica gel (0.80 g, hexane–EtOAc 3 : 1) to give desired allylic alcohol **28** (7.1 mg, 55%) and undesired allylic alcohol **29** (2.1 mg, 17%) as colorless amorphous solids, respectively.

A mixture of allylic alcohol 28 (21.0 mg, 0.0139 mmol), MeI (0.14 M THF solution, 1.0 mL, 0.14 mmol), and NaH (60% in mineral oil, 7.2 mg, 0.18 mmol) was stirred at 35 °C for 3.5 h. The reaction mixture was diluted with saturated aqueous NaHCO₃ (10 mL) at 0 °C, and extracted with Et₂O (3 \times 8.0 mL). The combined extracts were washed with brine (8.0 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by column chromatography on silica gel (0.80 g, hexane–EtOAc 4 : 1) to give methyl ether 10 (18.7 mg, 90%) as a colorless amorphous solid: $R_f = 0.47$ (hexane : EtOAc = 2 : 1); $[\alpha]^{18}_{D} + 37.4$ (c 0.88, CHCl₃); IR (CHCl₃) 3010, 2957, 2931, 2857, 1723, 1662, 1641, 1516, 1463, 1383, 1254, 1219, 1212, 1157, 1030, 836 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) & 7.44-7.43 (m, 6H), 7.30-7.28 (m, 6H), 7.24-7.21 (m, 4H), 6.90-6.87 (m, 2H), 6.82 (d, J = 8.1 Hz, 1H), 6.23-6.14 (m, 2H), 5.82 (d, J = 15.3 Hz, 1H), 5.54 (ddd, J = 15.0, 10.7, 4.2 Hz, 1H), 5.27 (m, 1H), 5.11–5.03 (m, 2H), 4.99 (dd, J = 9.8, 2.3 Hz, 1H), 4.76 (d, J = 7.0Hz, 1H), 4.67 (d, J = 7.0 Hz, 1H), 4.61 (d, J = 11.6 Hz, 1H), 4.59 (d, J = 11.6 Hz, 1H), 4.53 (d, J = 11.6 Hz, 1H), 4.5 11.6 Hz, 1H), 4.49 (d, J = 11.6 Hz, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.59 (br s, 1H), 3.52–3.46 (m, 2H), 3.43–3.36 (m, 3H), 3.21–3.15 (m, 1H), 3.18 (s, 3H), 3.16 (s, 3H), 2.98 (m, 1H), 2.48 (m, 1H), 2.33 (m, 1H), 2.25 (m, 1H), 2.16 (s, 3H), 2.08–1.97 (m, 3H), 2.00 (s, 3H), 1.95–1.77 (m, 4H), 1.71– 1.37 (m, 10H), 1.45 (s, 3H), 1.35–1.19 (m, 4H), 1.09 (m, 1H), 0.95–0.86 (m, 15H), 0.92 (s, 9H), 0.89 (s, 9H), 0.79 (d, *J* = 6.2 Hz, 3H), 0.70 (d, *J* = 6.8 Hz, 3H), 0.14 (s, 3H), 0.08 (s, 3H), 0.05 (s, 3H), 0.04 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 170.7, 166.3, 149.0, 148.5, 144.4, 144.4 (3C), 140.8, 134.1, 133.0, 130.8, 130.0, 129.5, 128.6 (6C), 127.7 (6C), 126.9 (3C), 120.4, 120.3, 111.2, 111.0, 95.2, 87.6, 86.5, 81.4, 79.2, 78.8, 78.5, 77.3, 72.9, 72.8, 69.5, 61.3, 55.9, 55.8, 55.6, 55.6, 42.8, 40.8, 40.8, 38.5, 37.4, 37.1, 36.7, 36.3, 32.5, 31.0, 30.5, 30.4, 29.5, 29.4, 28.1, 28.0, 26.2 (3C), 26.0 (3C), 25.9, 21.0, 20.1, 18.5, 18.3, 17.0, 16.9, 14.5, 14.1, 12.8, 12.0, 9.7, 9.4 (2C), -3.6, -4.0 (2C), -4.3; HRMS (ESI) *m/z* 1541.9237, calcd for C₈₉H₁₃₈NaO₁₄SSi₂ [M+Na]⁺ 1541.9244.

Total synthesis of aplyronine A (1)

To a stirred solution of methyl ether **10** (7.0 mg, 4.6 µmol) in Et₂O (0.60 mL) was added HCO₂H (0.40 mL) at room temperature. The mixture was stirred at room temperature for 1 h, poured into saturated aqueous NaHCO₃ (10 mL) at 0 °C, and extracted with Et₂O (3 × 8.0 mL). The combined extracts were washed with brine (8.0 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by column chromatography on silica gel (0.80 g, hexane–EtOAc 2 : 1 \rightarrow 1 : 1) to afford alcohol **S19** (5.6 mg, 95%) as a colorless amorphous solid: *R*_f = 0.26 (hexane : EtOAc = 2 : 1); ¹H NMR (600 MHz, CDCl₃) δ 7.22 (dd, *J* = 15.4, 10.2 Hz, 1H), 6.89–6.83 (m, 2H), 6.82 (d, *J* = 8.1 Hz, 1H), 6.21–6.17 (m, 2H), 5.82 (d, *J* = 15.3 Hz, 1H), 5.54 (ddd, *J* = 14.8, 10.4, 4.1 Hz, 1H), 5.25 (ddd, *J* = 11.0, 5.6, 1.8 Hz, 1H), 5.09–5.01 (m, 2H), 4.99 (dd, *J* = 9.7, 2.6 Hz, 1H), 4.76 (d, *J* = 7.0 Hz, 1H), 4.66 (d, *J* = 7.0 Hz, 1H), 4.60 (d, *J* = 11.7 Hz, 1H), 4.59 (d, *J* = 11.7 Hz, 1H), 4.53 (d, *J* = 11.7 Hz, 1H), 3.42 (t, *J* = 4.6 Hz, 1H), 3.38 (dd, *J* = 10.7, 4.4 Hz, 1H), 3.19 (s, 3H), 3.16 (s, 3H), 2.48 (m, 1H), 2.38–2.29 (m, 2H), 2.24 (m, 1H), 2.16 (s, 3H), 2.04 (s, 3H), 2.04–1.96 (m, 2H), 1.90 (m, 1H), 1.81 (m, 1H), 1.74 (m, 1H), 1.69–1.04 (m, 15H), 1.02–0.84 (m, 20H),

1.45 (s, 3H), 0.91 (s, 9H), 0.89 (s, 9H), 0.79 (d, *J* = 6.2 Hz, 3H), 0.13 (s, 3H), 0.06 (s, 3H), 0.05 (s, 3H), 0.04 (s, 3H); HRMS (ESI) *m*/*z* 1541.9237, calcd for C₇₀H₁₂₄NaO₁₄SSi₂ [M+Na]⁺ 1299.8149.

To a stirred solution of alcohol S19 (5.6 mg, 4.4 µmol) in CH₂Cl₂ (0.25 mL) and pyridine (0.025 mL) was added Dess-Martin periodinane (2.6 mg, 3.3 µmol) at room temperature. After stirring for 30 min at room temperature, the mixture was diluted with a 1 : 1 : 1 mixture of saturated aqueous Na₂S₂O₃, saturated aqueous NaHCO₃, and H₂O (3.0 mL) at 0 °C. The resultant reaction mixture was extracted with Et₂O (3×8.0 mL). The combined extracts were washed with brine (8.0 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by column chromatography on silica gel (0.80 g, hexane-EtOAc 2 : 1) to give aldehyde S20 (4.2 mg, 75%) as a colorless amorphous solid: $R_f = 0.46$ (hexane : EtOAc = 2 : 1); ¹H NMR (600 MHz, CDCl₃) δ 9.77 (m, 1H), 7.22 (dd, J = 15.3, 10.1 Hz, 1H), 6.89–6.87 (m, 2H), 6.82 (d, J = 8.1 Hz, 1H), 6.21– 6.17 (m, 2H), 5.82 (d, J = 15.3 Hz, 1H), 5.54 (ddd, J = 14.8, 10.4, 4.1 Hz, 1H), 5.26 (ddd, J = 11.0, 5.5, 1.8 Hz, 1H), 5.09–5.01 (m, 2H), 5.01 (dd, J = 9.3, 2.8 Hz, 1H), 4.76 (d, J = 7.0 Hz, 1H), 4.66 (d, J = 7.0 Hz, 1H), 4.60 (d, J = 11.7 Hz, 1H), 4.59 (d, J = 11.7 Hz, 1H), 4.53 (d, J = 11.7 Hz, 1H), 4.49 (d, J = 11.7 Hz, 1H), 3.89 (s, 3H), 3.87 (s, 3H), 3.60 (br s, 1H), 3.49 (td, J = 9.4, 4.7 Hz, 1H), 3.45 (m, 1H), 3.40 (t, J = 4.7 Hz, 1H), 3.38 (dd, J = 10.8, 4.4 Hz, 1H), 3.19 (s, 3H), 3.18 (m, 1H),3.16 (s, 3H), 2.50–2.44 (m, 3H), 2.37–2.20 (m, 4H), 2.16 (s, 3H), 2.04 (s, 3H), 2.03–1.97 (m, 1H), 1.83–1.76 (m, 2H), 1.70–1.18 (m, 14H), 1.45 (s, 3H), 1.09 (m, 1H), 1.03–0.86 (m, 12H), 0.97 (d, J = 6.9 Hz, 3H), 0.90 (s, 9H), 0.88 (s, 9H), 0.87 (d, J = 6.9 Hz, 3H), 0.78 (d, J = 6.1 Hz, 3H), 0.13 (s, 3H), 0.05 (s, 3H), 0.04 (s, 3H), 0.04 (s, 3H); HRMS (ESI) m/z 1297.8012, calcd for $C_{70}H_{122}NaO_{14}SSi_2[M+Na]^+$ 1297.7992.

To a stirred solution of aldehyde S20 (8.0 mg, 6.3 µmol) in benzene (9.0 mL) were added N-methylformamide (0.110 mL, 1.87 mmol), PPTS (10.2 mg, 40.6 µmol), and hydroquinone (4.6 mg, 42 µmol) at room temperature. The reaction mixture was heated to reflux for 12 h under a stream of N₂ with continuous removal of water by means of molecular sieves 3Å. The mixture was cooled to room temperature, poured into saturated aqueous NaHCO₃ (10 mL) at 0 °C, and extracted with Et₂O (3 \times 10 mL). The combined extracts were washed with brine (10 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by column chromatography on silica gel (0.80 g, hexane–EtOAc 4 : $1 \rightarrow 3$: $1 \rightarrow 2$: 1) to afford enamide S21 (5.3 mg, 64%) as a colorless amorphous solid: $R_f = 0.32$ (hexane : EtOAc = 2 : 1); ¹H NMR (600 MHz, CDCl₃) δ 8.27 [8.06] (s, 1H), 7.22 (dd, J = 15.2, 9.8 Hz, 1H), 6.90–6.86 (m, 2H), 6.82 (d, J = 8.0 Hz, 1H), 6.48 [7.17] (d, J =14.1 Hz, 1H), 6.24–6.17 (m, 2H), 5.82 (d, J = 15.2 Hz, 1H), 5.53 (ddd, J = 14.8, 10.4, 4.1 Hz, 1H), 5.23 (m, 1H), 5.15–4.98 (m, 4H), 4.76 [4.75] (d, J = 7.0 Hz, 1H), 4.64 (d, J = 7.0 Hz, 1H), 4.61 (d, J = 11.7 Hz, 1H), 4.60 (d, J = 11.7 Hz, 1H), 4.53 (d, J = 11.7 Hz, 1H), 4.49 (d, J = 11.7 Hz, 1H), 3.88 (s, 3H), 3.87 (s, 3H), 3.60 (m, 1H), 3.52–3.43 (m, 3H), 3.41–3.36 (m, 2H), 3.19 (s, 3H), 3.16 (s, 3H), 2.99 [3.02] (s, 3H), 2.55 (m, 1H), 2.46 (m, 1H), 2.36–2.16 (m, 3H), 2.16 (s, 3H), 2.07 [2.06] (s, 3H), 2.01 (m, 1H), 1.85–1.17 (m, 16H), 1.44 (s, 3H), 1.12–0.84 (m, 16H), 1.03 [1.02] (d, J = 6.9 Hz, 3H), 0.89 (s, 9H), 0.88 (s, 9H), 0.78 (d, J = 6.1 Hz, 3H), 0.12 (s, 3H), 0.05 (s, 3H), 0.04 (s, 3H), 0.03 (s, 3H) (the minor counterparts of doubled signals in the ratio of 2 : 1 are in brackets); HRMS (ESI) m/z 1338.8242, calcd for C₇₂H₁₂₅NNaO₁₄SSi₂ [M+Na]⁺ 1338.8258.

To a stirred solution of enamide S21 (1.7 mg, 1.3 µmol) in CH₂Cl₂ (0.50 mL), t-BuOH (0.025 mL, 0.26 mmol), and 1 M phosphate buffer (pH 6.0, 0.025 mL) was added DDQ (1.2 mg, 5.3 µmol) at 0 °C. The mixture was warmed to room temperature and stirred for 30 min. The mixture was cooled to 0 °C, and DDQ (1.1 mg, 4.2 µmol) was added. After the mixture was stirred at room temperature for 30 min, 1 M phosphate buffer (pH 6.0, 1.0 mL) was added. The mixture was stirred at room temperature for 1 h, and extracted with Et₂O (3 \times 6.0 mL). The combined extracts were washed with 1.0 M phosphate buffer (pH 6, 4.0 mL), saturated aqueous NaHCO₃ (4.0 mL), H₂O (4.0 mL) and brine (4.0 mL) successively; dried (Na₂SO₄); filtered; and concentrated. The crude product was purified by column chromatography on silica gel (0.80 g, hexane–EtOAc 2 : 1) to afford alcohol S22 (1.3 mg, 89%) as a colorless amorphous solid: $R_f = 0.59$ (toluene : EtOAc = 2 : 1); ¹H NMR $(600 \text{ MHz}, \text{CDCl}_3) \delta 8.29 [8.07] (s, 1H), 7.21 (m, 1H), 6.51 [7.18] (d, J = 14.1 \text{ Hz}, 1H), 6.24-6.15$ (m, 2H), 5.82 (d, J = 15.3 Hz, 1H), 5.54 (ddd, J = 14.8, 10.4, 4.1 Hz, 1H), 5.27 (m, 1H), 5.09–4.98 (m, 3H), 4.82 [4.81] (dd, J = 9.8, 3.1 Hz, 1H), 4.59 (d, J = 11.6 Hz, 1H), 4.53 (d, J = 11.6 Hz, 1H), 3.62-3.38 (m, 1H), 3.60 (br s, 1H), 3.51-3.47 (m, 2H), 3.45-3.41 (m, 2H), 3.38 (dd, J = 10.7, 4.4Hz, 1H), 3.19 (s, 3H), 3.16 (s, 3H), 3.02 [3.05] (s, 3H), 2.65–2.52 (m, 3H), 2.45 (m, 2H), 2.36–2.25 (m, 3H), 2.16 (s, 3H), 2.16 [2.15] (s, 3H), 2.00 (m, 1H), 1.80 (m, 1H), 1.70–1.20 (m, 12H), 1.44 (s, 3H), 1.11–0.84 (m, 7H), 1.06 [1.05] (d, J = 6.8 Hz, 3H), 0.95 (d, J = 7.1 Hz, 3H), 0.92 (d, J = 6.9Hz, 3H), 0.92 (d, J = 6.9 Hz, 3H), 0.89 (s, 9H), 0.88 (s, 9H), 0.78 (d, J = 6.2 Hz, 3H), 0.11 (s, 3H), 0.05 (s, 3H), 0.04 (s, 3H), 0.03 (s, 3H) (the minor counterparts of doubled signals in the ratio of 2 : 1 are in brackets); HRMS (ESI) m/z 1158.7489, calcd for C₆₂H₁₁₃NNaO₁₁SSi₂ [M+Na]⁺ 1158.7470.

To a mixture of alcohol **S22** (4.2 mg, 3.7 μmol), L-*N*,*N*-dimethylalanine (4.6 mg, 39 μmol), D-*N*,*N*-dimethylalanine (3.1 mg, 26 μmol), DMAP (23.2 mg, 190 μmol), and CSA (15.4 mg, 66.3

µmol) in benzene (1.5 mL) was added DCC (0.10 M CH₂Cl₂ solution, 0.66 mL, 66 µmol) at room temperature. The mixture was stirred at room temperature for 15 h, and saturated aqueous NaHCO₃ (4.0 mL) was added at 0 °C. The mixture was stirred at room temperature for 20 min and extracted with EtOAc $(3 \times 8.0 \text{ mL})$. The combined extracts were washed with brine (8.0 mL), dried (Na_2SO_4) . filtered, and concentrated. The crude product was purified by column chromatography on silica gel (0.50 g, hexane-EtOAc 3:1) to afford a diastereomeric mixture of dimethylalanine esters S23 (S: R = 3.5 : 1) (3.8 mg, 84%) as a colorless amorphous solid: $R_f = 0.34$ (hexane : EtOAc = 1 : 1); ¹H NMR (600 MHz, acetone- d_6) δ 8.36 [8.10]^a (s, 1H), 7.24 (dd, J = 15.2, 10.8 Hz, 1H), 6.84 [7.15]^a (d, J = 14.1 Hz, 1H), 6.40 (dd, J = 15.2, 10.9 Hz, 1H), 6.31 (m, 1H), 5.93 (d, J = 15.2 Hz, 1H) 5.56 (ddd, J = 15.0, 10.5, 4.1 Hz, 1H), 5.30 (m, 1H), 5.15 (m, 1H), 5.10-4.98 (m, 3H), 4.80 (dd, J = 10.2),2.5 Hz, 1H), 4.67 (d, J = 11.6 Hz, 1H), 4.63 (d, J = 11.6 Hz, 1H), 3.72–3.57 (m, 2H), 3.54 (m, 1H), 3.48 (td, J = 9.4, 4.9 Hz, 1H), 3.43 (dd, J = 10.7, 4.5 Hz, 1H), 3.21-3.16 (m, 1H), 3.11 (s, 3H), 3.11(s, 3H), 2.95 $[3.08]^{a}$ (s, 3H), 2.64 (m, 1H), 2.48 (br d, J = 12.2 Hz, 1H), 2.38–2.25 (m, 3H), 2.32 [2.30]^b (s, 6H), 2.17 (s, 3H), 2.15–1.90 (m, 2H), 1.86 (m, 1H), 1.76–1.04 (m, 15H), 1.46 (s, 3H), $1.25 [1.21]^{b}$ (d, J = 7.2 Hz, 3H), 1.03-0.95 (m, 18H), $0.91 [0.92]^{b}$ (s, 9H), 0.91 (s, 9H), 0.80 (d, J =6.5 Hz, 3H), 0.15 (s, 3H), 0.10 (s, 3H), 0.09 (s, 3H), 0.09 (s, 3H) (signals of three protons (CH₃COO) were overlapped with the solvent signals; the minor counterparts of doubled signals in the ratios of 2 : 1 (superscript a) and 2.4 : 1 (superscript b) are in brackets); HRMS (ESI) m/z1235.8348, calcd for $C_{67}H_{123}N_2O_{12}SSi_2[M+H]^+$ 1235.8336.

To a stirred solution of dimethylalanine esters **S23** (S : R = 3.5 : 1) (1.2 mg, 0.97 µmol) in THF (0.28 mL) and H₂O (0.070 mL) were added 2,6-lutidine (50.0 µL, 430 µmol) and AgNO₃ (75.0 mg, 442 µmol) at room temperature. The mixture was stirred at 35 °C for 17 h in the dark. The resultant

mixture was filtered through a pad of Celite, and the residue was washed with EtOAc (20 mL). The filtrate and the washings were combined; washed with H₂O (4.0 mL) and brine (4.0 mL) successively; dried (Na₂SO₄); filtered; and concentrated. The crude product was purified by column chromatography on silica gel (0.50 g, benzene–acetone 4 : $1 \rightarrow 3$: $1 \rightarrow 1$: 1) to afford alcohol S24 (S: R = 3.5: 1) (1.2 mg, quant) as a colorless amorphous solid: $R_f = 0.32$ (benzene : acetone = 3 : 1); ¹H NMR (600 MHz, acetone- d_6) δ 8.36 [8.10]^a (s, 1H), 7.23 (dd, J = 15.3 Hz, 10.1 Hz, 1H), 6.84 $[7.15]^{a}$ (d, J = 14.1 Hz, 1H), 6.39–6.33 (m, 2H), 5.87 (d, J = 15.3 Hz, 1H), 5.56 (ddd, J = 14.9. 10.2, 4.2 Hz, 1H), 5.30 (m, 1H), 5.17 (dd, J = 9.6, 5.3 Hz, 1H), 5.11–4.98 (m, 3H), 4.80 (m, 2H), 3.82 (dd, 3H), 4.80 (m, 2H), 3.80 (m, 2H), J = 5.2, 2.6 Hz, 1H), 3.68-3.62 (m, 2H), 3.54 (m, 1H), 3.48 (m, 1H), 3.42 (dd, J = 10.2, 5.2 Hz, 1H), 3.21-3.15 (m, 1H), 3.11 (s, 3H), 3.10 (s, 3H), 2.95 [3.08]^a (s, 3H), 2.64 (m, 1H), 2.49 (br d, J = 14.5Hz, 1H), 2.36–2.24 (m, 3H), 2.32 [2.30]^b (s, 6H), 2.15–1.81 (m, 3H), 1.78–1.05 (m, 14H), 1.43 (s, 3H), $1.25 [1.24]^{b}$ (d, J = 7.2 Hz, 3H), 1.01-0.83 (m, 18H), $0.91 [0.92]^{a}$ (s, 9H), 0.90 (s, 9H), 0.79 (d, J = 6.5 Hz, 3H), 0.15 (s, 3H), 0.09 (s, 3H), 0.08 (s, 6H) (signals of three protons (CH₃COO) were overlapped with the solvent signals; the minor counterparts of doubled signals in the ratios of 2 : 1 (superscript a) and 2.4 : 1 (superscript b) are in brackets); HRMS (ESI) m/z 1175.8306, calcd for $C_{65}H_{119}N_2O_{12}Si_2[M+H]^+ 1175.8302.$

To a mixture of alcohol **S24** (S : R = 3.5 : 1) (1.1 mg, 0.94 µmol), L-*N*,*N*,*O*-trimethylserine (2.4 mg, 16 µmol), D-*N*,*N*,*O*-trimethylserine (1.0 mg, 6.8 µmol), DMAP (7.5 mg, 61 µmol), and CSA (4.7 mg, 20 µmol) in benzene (2.0 mL) was added DCC (0.050 M CH₂Cl₂ solution, 0.40 mL, 20 µmol) at room temperature. The mixture was stirred at 35 °C for 4 h, and saturated aqueous NaHCO₃ (2.0 mL) was added at 0 °C. The mixture was stirred at room temperature for 20 min, and extracted with

EtOAc (3×8.0 mL). The combined extracts were washed with brine (8.0 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by column chromatography on silica gel (0.50 g, hexane-EtOAc-MeOH 10 : 10 : 1, twice) to give a diastereomeric mixture of trimethylserine esters S25 (S : R = 1 : 1.1 as to the trimethylserine part, S : R = 3.5 : 1 as to the dimethylalanine part) (1.0 mg, 82%) as a colorless amorphous solid: $R_f = 0.58$ (benzene : acetone = 2 : 1); ¹H NMR (600 MHz, acetone- d_6) δ 8.36 [8.10]^a (s, 1H), 7.21 (m, 1H), 6.84 [7.15]^a (d, J = 14.1 Hz, 1H), 6.41 [6.42]^c (m, 1H), 6.24 (m, 1H), 5.92 [5.93]^c (d, J = 15.4 Hz, 1H), 5.55 (ddd, J = 15.0, 9.1, 5.2 Hz, 1H), 5.30 (m, 1H), 5.16 (m, 1H), 5.11–4.95 (m, 3H), 4.84 (br s, 1H), 4.80 $[4.80]^{\circ}$ (d, J =10.2 Hz, 1H), 3.69 [3.68]^c (m, 1H), 3.61 (m, 1H), 3.60 [3.58]^c (m, 1H), 3.53 (m, 1H), 3.50–3.42 (m, 2H), 3.38 (dd, J = 7.8, 5.5 Hz, 1H), 3.33 [3.35]^c (s, 3H), 3.18 (m, 1H), 3.11 (s, 6H), 2.95 [3.07]^a (s, 3H), 3.18 (m, 1H), 3.11 (s, 6H), 2.95 [3.07]^a (s, 3H), 3.18 (m, 1H), 3.11 (s, 6H), 3.19 [3.07]^a (s, 3H), 3.18 (m, 1H), 3.11 (s, 6H), 3.19 [3.07]^a (s, 3H), 3.18 (m, 1H), 3.11 (s, 6H), 3.19 [3.07]^a (s, 3H), 3.18 (m, 1H), 3.11 (s, 6H), 3.19 [3.07]^a (s, 3H), 3.18 (m, 1H), 3.11 (s, 6H), 3.19 [3.07]^a (s, 3H), 3.18 (m, 1H), 3.11 (s, 6H), 3.19 [3.07]^a (s, 3H), 3.18 (m, 1H), 3.11 (s, 6H), 3.19 [3.07]^a (s, 3H), 3.18 (m, 1H), 3.11 (s, 6H), 3.19 [3.07]^a (s, 3H), 3.18 (m, 1H), 3.11 (s, 6H), 3.19 [3.07]^a (s, 3H), 3.18 (m, 1H), 3.11 (s, 6H), 3.19 [3.07]^a (s, 3H), 3.18 (m, 1H), 3.11 (s, 6H), 3.19 [3.07]^a (s, 3H), 3.18 (m, 1H), 3.11 (s, 6H), 3.19 [3.07]^a (s, 3H), 3.18 [3.07]^b (s, 3H), 3.18 [3H), 2.66 (m, 1H), 2.55–2.43 (m, 3H), 2.36 [2.36]^c (s, 6H), 2.32 [2.32]^b (s, 6H), 2.17–1.87 (m, 3H), 1.83 (m, 1H), 1.72–1.45 (m, 9H), 1.47 (s, 3H), 1.42–1.07 (m, 6H), 1.24 $[1.19]^{b}$ (d, J = 7.2 Hz, 3H), 1.00-0.94 (m, 18H), 0.91 $[0.92]^{b}$ (s, 9H), 0.90 (s, 9H), 0.78 $[0.78]^{c}$ (d, J = 6.4 Hz, 3H), 0.14 (s, 3H), 0.08 (s, 3H), 0.08 (s, 6H) (signals of three protons (CH₃COO) were overlapped with the solvent signals; the minor counterparts of doubled signals in the ratios of 2:1 (superscript a), 2.4:1(superscript b) are in brackets), and 1 : 1.1 (superscript c) are in brackets); HRMS (ESI) m/z1304.9079, calcd for $C_{71}H_{130}N_3O_{14}Si_2[M+H]^+$ 1304.9092.

A solution of trimethylserine esters **S25** (S : R = 1 : 1.1 as to the trimethylserine part, S : R = 3.5 : 1 as to the dimethylalanine part) (0.70 mg, 0.54 µmol) in a 5 : 3 : 7 mixture of HF·py, py, and THF (500 µL) was stirred at room temperature for 14 h. The mixture was diluted with EtOAc (2.0 mL) at room temperature and poured into saturated aqueous NaHCO₃ (10 mL) at 0 °C. The resultant

mixture was extracted with EtOAc (5 \times 8.0 mL). The combined extracts were washed with brine (6.0 mL), dried (Na₂SO₄), filtered, and concentrated. The crude product was purified by column chromatography on silica gel (0.50 g, hexane–EtOAc–MeOH 3 : 3 : 1 \rightarrow 2 : 2 : 1) and HPLC [ODS HG-5 (\$\$\phi\$ 20 \$\times\$ 250 mm); flow rate 5.0 mL/min; detection UV 215 nm; solvent MeOH-0.02 M NH₄Ac (77 : 23)] to afford aplyronine A (1) (S : R = 1 : 1.1 as to the trimethylserine part, S : R =3.5 : 1 as to the dimethylalanine part) (0.4 mg, 69%) as a colorless amorphous solid: $R_f = 0.49$ $(CHCl_3 : MeOH = 9 : 1)$; ¹H NMR (600 MHz, CD₃OD) δ 8.33 [8.11]^a (s, 1H), 7.20 (dd, J = 15.2, 11.0 Hz, 1H), 6.77 $[7.14]^{a}$ (d, J = 14.1 Hz, 1H), 6.38 (ddd, J = 15.5, 11.1, 4.6 Hz, 1H), 6.22 (ddd, J= 15.1, 9.9, 4.6 Hz, 1H), 5.97 (d, J = 15.2 Hz, 1H), 5.63 (ddd, J = 14.9, 10.7, 4.0 Hz, 1H), 5.53 (br d, J = 10.9 Hz, 1H), 5.09 [5.16]^b (dd, J = 14.1, 9.5 Hz, 1H), 5.10 (m, 1H), 4.99 (m, 1H), 4.94–4.88 (m, 1H), 4.68 (m, 1H), 3.69 (m, 2H), 3.54 (m, 2H), 3.38 [3.33]^c (s, 3H), 3.37–3.20 (m, 3H), 3.18 (s, 3H), 3.16 (s, 3H), 3.01 $[3.10]^{a}$ (s, 3H), 3.07 (dd, J = 9.4, 2.3 Hz, 1H), 2.64 (m, 1H), 2.51–2.40 (m, 2H), $2.38 [2.39]^{\circ}$ (s, 6H), $2.35 [2.33]^{b}$ (s, 6H), 2.26 (m, 1H), $2.06 [2.06]^{b} [2.05]^{a}$ (s, 3H), 2.09-1.89 (m, 4H), 1.75–1.46 (m, 9H), 1.51 $[1.52]^{\circ}$ (s, 3H), 1.35–1.24 (m, 2H), 1.30 $[1.29]^{\circ}$ (d, J = 7.1 Hz, 3H), 1.18–1.06 (m, 3H), 1.04–0.94 (m, 15H), 0.89 $[0.90]^{b}$ (d, J = 6.9 Hz, 3H), 0.76 $[0.77]^{c}$ (d, J = 5.8 Hz, 3H) (signals of three protons (CH₃COO) were overlapped with the solvent signals; Signals due to two proton (OH at C7 and C31) were not observed; the minor counterparts of doubled signals in the ratios of 2 : 1 (superscript a), 2.4 : 1 (superscript b) are in brackets), and 1 : 1.1 (superscript c) are in brackets); HRMS (ESI) m/z 1076.7357, calcd for C₅₉H₁₀₂N₃O₁₄ [M+H]⁺ 1076.7362.

Fig S1. HPLC analysis of synthetic aplyronine A (1). Column: Develosil ODS HG-5 (ϕ 4.6 × 250 mm), Flow rate: 1.0 mL/min, Detection: UV 215 nm, Solvent: MeOH–0.02 M NH₄Ac (77 : 23).

References

- 1. K. Kobayashi, Y. Fujii, I. Hayakawa and H. Kigoshi, Org. Lett. 2011, 13, 900.
- 2. J. A. Marshall and E. A. V. Devender, J. Org. Chem., 2001, 66, 8037.
- (a) T. Mukaiyama, R. W. Stevens and N. Iwasawa, *Chem. Lett.*, 1982, **11**, 353; (b) I. Paterson and R. D. Tillyer, *Tetrahedron Lett.*, 1992, **33**, 4223.
- I. Paterson, R. D. Norcross, R. A. Ward, P. Romea and M. A. Lister, *J. Am. Chem. Soc.*, 1994, 116, 11287.
- 5. I. Ohtani, T. Kusumi, Y. Kashman and H. Kakisawa, J. Am. Chem. Soc., 1991, 113, 4092.
- 6. D. A. Evans, K. T. Chapman and E. M. Carreira, J. Am. Chem. Soc., 1988, 110, 3560.
- 7. S. D. Rychnovsky, B. Rogers and G. Yang, J. Org. Chem., 1993, 58, 3511.
- M. Ojika, H. Kigoshi, Y. Yoshida, T. Ishigaki, M. Nisiwaki, I. Tsukada, M. Arakawa, H. Ekimoto and K. Yamada, *Tetrahedron*, 2007, 63, 3138.
- 9. K. Takai, K. Nitta and K. Utimoto, J. Am. Chem. Soc., 1986, 108, 7408.

S51

S53

S114

S115

