Electronic supplementary information for the manuscript

"Synthesis of different types of alkoxy fullerene derivatives from chlorofullerene C60Cl6"

Ekaterina A. Khakina,^a Ol'ga A. Kraevaya,^{a,b} Maria L. Popova,^b Alexander S. Peregudov,^c Sergey I. Troyanov,^d Alexander V. Chernyak,^a Vyacheslav M. Martynenko,^a Alexander V. Kulikov,^a Dominique Schols^e and Pavel A. Troshin*^{f,a}

Table of contents:

Experimental procedures and selected spectroscopic data	4
X-ray crystallography for 3b.	13
Fig. S1. UV-VIS spectra of the C ₆₀ Cl ₆ + Bu ₄ NI+MeOH reaction mixture and	solutions of
C ₆₀ [OMe] ₅ H and Bu ₄ NI ₃ in chlorobenzene	14
Fig. S2. HPLC profile of compound 5g	14
Fig. S3. APCI MS spectrum of compound 1a	14
Fig. S4. ¹ H NMR spectrum of compound 1a	15
Fig. S5. ¹³ C NMR spectrum of compound 1a	15
Fig. S6 APCI MS spectrum of compound 1d	15
Fig. S7 ¹ H NMR spectrum of compound 1d	16
Fig. S8. High-field part of the ¹³ C NMR spectrum of compound 1d	16
Fig. S9. Low-field part of the ¹³ C NMR spectrum of compound 1d	16
Fig. S10. H-H COSY NMR spectrum of compound 1d	17
Fig. S11. H-C HSQC NMR spectrum of compound 1d	17
Fig. S12. APCI mass spectrum of compound 2f	
Fig. S13. ¹ H NMR spectrum of compound 2f	
Fig. S14. ¹³ C NMR spectrum of compound 2f	
Fig. S15. H-H COSY NMR spectrum of compound 2f	19
Fig. S16. H-C HSQC NMR spectrum of compound 2f	19
Fig. S17. APCI mass spectrum of compound 2h	19
Fig. S18 ¹ H NMR spectrum of compound 2h	20
Fig. S19 ¹³ C NMR spectrum of compound 2h	20
Fig. S20 H-H COSY NMR spectrum of compound 2h	21
Fig. S21. H-C HSQC NMR spectrum of compound 2h	21
Fig. S22. APCI mass spectrum of compound 2i	
Fig. S23. ¹ H NMR spectrum of compound 2i	
Fig. S24. ¹³ C NMR spectrum of compound 2i	
Fig. S25. H-H COSY NMR spectrum of compound 2i	23
Fig. S26. H-C HSQC NMR spectrum of compound 2i	23
Fig. S27. APCI mass spectrum of compound 2j	24
Fig. S28. ¹ H NMR spectrum of compound 2j	
Fig. S29. ¹³ C NMR spectrum of compound 2j	24
Fig. S30. H-C HSQC NMR spectrum of compound 2j	
Fig. S31. ESI MS spectrum of compound 3a	25

Fig. S32.	¹ H NMR spectrum of compound 3a	.25
Fig. S33.	¹³ C NMR spectrum of compound 3a	.26
Fig. S34	ESI MS spectrum of compound 3b	.26
Fig. S35	¹ H NMR spectrum of compound 3b	.26
Fig. S36.	¹³ C NMR spectrum of compound 3b	.27
Fig. S37.	APCI mass spectrum of compound 3d	.27
Fig. S38.	¹ H NMR spectrum of compound 3d	.27
Fig. S39.	High-field part of the ¹³ C NMR spectrum of compound 3d	.28
Fig. S40.	Low-field part of the ¹³ C NMR spectrum of compound 3d	.28
Fig. S41.	H-C HSQC NMR spectrum of compound 3d	.28
Fig. S42.	ESI mass spectrum of compound 3 g	.29
Fig. S43.	¹ H NMR spectrum of compound 3 g	.29
Fig. S44.	13 C NMR spectrum of compound 3 g	.29
Fig. S45.	H-C HSQC NMR spectrum of compound 3 g	.30
Fig. S46.	APCI mass spectrum of compound 3i	.30
Fig. S47	¹ H NMR spectrum of compound 3i	.30
Fig. S48	¹³ C NMR spectrum of compound 3i	.31
Fig. S49.	H-H COSY NMR spectrum of compound 3i	.31
Fig. S50.	H-C HSQC NMR spectrum of compound 3i	.32
Fig. S51.	APCI mass spectrum of compound 3 j	.32
Fig. S52.	¹ H NMR spectrum of compound 3 j	.32
Fig. S53.	¹³ C NMR spectrum of compound 3 j	.33
Fig. S54.	H-H COSY NMR spectrum of compound 3j (left) and H-C HSQC NMR spectrum	of
compoun	ıd 3j (right)	.33
Fig. S55	APCI MS spectrum of compound 4b	.33
Fig. S56	¹ H NMR spectrum of compound 4b	.34
Fig. S57.	¹³ C NMR spectrum of compound 4b	.34
Fig. S58.	H-C HSQC NMR spectrum of compound 4b	.35
Fig. 859.	H-C HMBC NMR spectrum of compound 4b	.35
Fig. S60.	APCI MS spectrum of compound 4c	.36
Fig. S61.	¹ H NMR spectrum of compound 4c	.36
Fig. 862.	¹² C NMR spectrum of compound 4c	.30
Fig. 503.	H-H COSY NMR spectrum of compound 4c	.31
Fig. 504.	APCI MS spectrum of compound 4	20
Fig. 505.	¹ U NMP spectrum of compound 4	20
Fig. 500.	¹³ C NMR spectrum of compound 4 i	30
Fig. 507.	H ₋ C HSOC NMR spectrum of compound <i>4</i> i	30
Fig. 500.	APCI MS spectrum of compound 5 c	40
Fig. S02.	¹ H NMR spectrum of compound 5 c	40
Fig. S70.	¹³ C NMR spectrum of compound 5 c	40
Fig. S72	H-H COSY NMR spectrum of compound 5 c	41
Fig. S72	H-C HSOC NMR spectrum of compound 5 c	41
Fig. S74	APCI MS spectrum of compound 5d	42
Fig. S75	¹ H NMR spectrum of compound 5d	.42
Fig. S76	High-field part of the ¹³ C NMR spectrum of compound 5d	.42
Fig. S77	Low-field part of the ¹³ C NMR spectrum of compound 5d	.43
Fig. S78	APCI MS spectrum of compound 5e	.43
Fig. S79.	¹ H NMR spectrum of compound 5 e	.43
Fig. S80.	¹³ C NMR spectrum of compound 5 e	.44
Fig. S81.	APCI MS spectrum of compound 5g	.44
Fig. S82	¹ H NMR spectrum of compound 5 g.	.45

Fig. S8	3 . High-field part of the ¹³ C NMR spectrum of compound 5 g	45
Fig. S8	4. Low-field part of the ¹³ C NMR spectrum of compound 5g	46
Fig. S8	5. H-H COSY NMR spectrum of compound 5g	46
Fig. S8	6. H-C HSQC NMR spectrum of compound 5g	47
Fig. S8	7. APCI MS spectrum of compound 5h	47
Fig. S8	8. ¹ H NMR spectrum of compound 5h	47
Fig. S8	9. ¹³ C NMR spectrum of compound 5h	48
Fig. S9	0. H-H COSY NMR spectrum of compound 5h	48
Fig. S9	1. H-C HSQC NMR spectrum of compound 5h	49
Fig. S9	2. APCI mass spectrum of compound 5i	49
Fig. S9	3 . ¹ H NMR spectrum of compound 5 i	49
Fig. S9	4. ¹³ C NMR spectrum of compound 5 i	50
Fig. S9	5. ¹ H NMR spectrum of compound 3j-H	50
Fig. S9	6. ¹³ C NMR spectrum of compound 3j-H	50
Fig. S9	7. Comparison of parts of ¹³ C NMR spectra of compounds C ₆₀ (OnBu) ₅ X (X=H (1), 1	Br
(2) and	Cl (3)	1
Fig. S9	8. Comparison of regions of 13 C NMR spectra of compounds C ₆₀ (OEt) ₅ Br (1) and	
C60(OE	t)4O (2)	51
Fig. S9	9. ESR spectrum of the reaction mixture C60Cl6+DMPO+MeOH+[NBu4]Br in toluene	;
proving	radical nature of the investigated reaction	52
Fig. S1	00 . ESR spectrum of the reaction mixture $C_{60}Cl_6$ +DMPO+MeOH+NEt ₃ in toluene	
proving	radical nature of the investigated reaction	52
Fig. S1	01. ESR spectrum of the reaction mixture C60Cl6+DMPO+MeOH+[NBu4]I in toluene	
proving	radical nature of the investigated reaction	52
	-	

Experimental procedures and selected spectroscopic data

Chlorofullerene C₆₀Cl₆ was prepared as described in P. A. Troshin et al., *Fullerenes, Nanotubes, Carbon Nanostruct.*, **2003**, *11*, 165 and stored in dark.

General procedure for the synthesis of alkoxyfullerenes $C_{60}(OR)_5H$ and $C_{60}(OR)_5Br$ using Bu_4NBr as a reagent

Compounds **1a,d**, **2e-f,h-j** and **3a-b,d,g,i-j** were synthesized according to the following procedure. A triple-neck round-bottom 100 mL flask was evacuated and filled with argon three times. Afterwards, 100 mg of $C_{60}Cl_6$ (0.11 mmol) and 50 mL of dry chlorobenzene were introduced into the flask in a stream of argon. The mixture was stirred magnetically until complete dissolving of $C_{60}Cl_6$ with the formation of a transparent orange solution and then an appropriate amount of the corresponding alcohol (1.1-110 mmol, 10-1000 eq.) was added in one portion. Afterwards, a solution of the Bu₄NBr (1.1 mmol, 10 eq.) in 30 ml of dry chlorobenzene was added dropwise to the stirred reaction mixture. In order to obtain compounds **1a,d** the reaction mixture was stirred 30 minutes at room temperature and then diluted by toluene and poured on top of a silica gel column. The target products **1a,d** were eluted using toluene-acetonitrile mixtures (97-99%:1-3% v/v). The obtained solutions of **1a,d** were obtained as dark-orange powders.

For preparation of compounds **3a-b**, **d**, **g**, **i-j**, the reaction mixture was stirred 1 h at 55°C after addition of Bu₄NBr solution. Then the reaction mixture was concentrated at the rotary evaporator, the residue was dissolved in toluene and poured on the top of a silica gel column. The target products **3a-b**, **d**, **g**, **i-j** were eluted using toluene-acetonitrile mixtures (97-99% : 1-3% v/v). Compounds **3g**, **i-j** were eluted using toluene-THF mixtures (70-90% : 10-30% v/v). The obtained solutions of **3a-b**, **d**, **g**, **i-j** were concentrated at the rotary evaporator, washed with hexanes and dried in air. Compounds **3a-b**, **d**, **g**, **i-j** were obtained as dark-orange powders.

Compounds **2e-f**, **h-j** were isolated as byproducts or even the main products in the reactions between $C_{60}Cl_6$ and the corresponding alcohols under the reaction conditions specified above.

General procedure for the DMSO-promoted synthesis of alkoxyfullerenes $C_{60}(OR)_5Br$

Compounds **3a-b**, **d**, **g**, **i-j** were also prepared using the DMSO-promoted synthesis according to the following procedure. A corresponding alcohol (1.61 mmol) and 3 ml of dry DMSO were added to the stirred solution of C₆₀Cl₆ (100 mg, 0.11 mmol) in 150 ml of dry chlorobenzene. Afterwards, a solution of the Bu₄NBr (207 mg, 0.6 mmol) in 50 ml of dry chlorobenzene was added dropwise. The reaction mixture was stirred 30 minutes at room temperature and then diluted by hexanes and poured on top of a silica gel column. The target products **3a-b**, **d**, **g**, **i-j** were eluted using toluene-acetonitrile mixtures (98-99% : 1-2% v/v). The obtained solutions were concentrated at the rotary evaporator, the residues were washed with hexanes and dried in air. The target compounds were obtained as dark-orange powders with 53-70% isolated yields.

1a (Yield 45%). ¹H NMR (500 MHz, CDCl₃:CS₂ 1:1, δ, ppm): 3.87 (s, 3H), 3.95 (s, 6H), 3.96 (s, 6H), 4.81 (s, 1H).

¹³C NMR (125 MHz, CDCl₃:CS₂ 1:1, δ, ppm): 55.44 (O<u>C</u>H₃), 55.61 (O<u>C</u>H₃), 55.88 (O<u>C</u>H₃), 59.53 (<u>C</u>_{sp3} fullerene cage-H), 78.13 (<u>C</u>_{sp3} fullerene cage -O), 80.38 (<u>C</u>_{sp3} fullerene cage -O), 82.34 (<u>C</u>_{sp3} fullerene cage -O), 140.47, 140.87, 142.97, 143.00, 143.11, 143.49, 143.53, 143.98, 144.43, 144.63, 145.21, 145.65, 146.08, 146.48, 146.81, 147.19, 147.26, 147.72, 147.92, 148.11, 148.18, 148.25, 148.46, 149.18, 149.34, 149.75, 152.07, 154.01.

APCI MS: m/z=875 ([M-H]⁻).

C65H16O5 (876.82): calcd. C 89.04, H 1.84; found C 89.29, H 1.84.

1d (Yield 43%). ¹H NMR (600 MHz, CDCl₃, δ , ppm): 0.97-1.06 (m, 15H), 1.47-1.61 (m, 10H), 1.75-1.85 (m, 10H), 4.12 (t, 2H, J = 6.4 Hz), 4.16-4.44 (m, 8H), 4.80 (s, 1H).

¹³C NMR (150 MHz, CDCl₃, δ, ppm): 14.00 (<u>C</u>H₃), 14.03 (<u>C</u>H₃), 14.07 (<u>C</u>H₃), 19.47 (<u>C</u>H₂CH₃), 19.51 (<u>C</u>H₂CH₃), 19.54 (<u>C</u>H₂CH₃), 32.23 (OCH₂<u>C</u>H₂), 32.28 (OCH₂<u>C</u>H₂), 32.34 (OCH₂<u>C</u>H₂), 59.49 (<u>C</u>sp₃ fullerene cage-H), 67.18 (O<u>C</u>H₂), 67.89 (O<u>C</u>H₂), 68.18 (O<u>C</u>H₂), 77.60 (<u>C</u>sp₃ fullerene cage-O), 79.81 (<u>C</u>sp₃ fullerene cage-O), 81.78 (<u>C</u>sp₃ fullerene cage-O), 140.66, 140.81, 142.86, 143.12, 143.35, 143.36, 143.39, 144.05, 144.26, 144.60, 145.25, 145.66, 146.19, 146.55, 146.78, 147.04, 147.15, 147.25, 147.67, 148.07, 148.14, 148.18, 148.57, 148.86, 149.06, 149.22, 152.47, 154.10.

APCI MS: m/z=1086 ([M-H]⁻).

C₈₀H₄₆O₅ (1087.22): calcd. C 88.38, H 4.26; found C 88.15, H 4.27.

2e (Yield 90%). ¹H NMR (500 MHz, CDCl₃, δ, ppm): 1.37-1.39 (m, 12H), 4.96-5.04 (m, 2H).

ESI MS: m/z=838 ([M]⁻).

Spectroscopic data for compound **2e** were reported previously [A. Avent, P. R. Birkett, A. Darwish, S. Houlton, R. Taylor, K. S. T. Thomson, X. W. Wei. *J. Chem. Soc. Perkin Trans.* 2, 2001, 782].

2f (Yield 73%). ¹H NMR (600 MHz, CDCl₃, δ, ppm): 1.18-1.22 (m, 12H), 1.98-2.07 (m, 8H), 4.85 (p, 2H, *J* = 5.8 Hz).

¹³C NMR (150 MHz, CDCl₃, δ, ppm): 10.03 (<u>C</u>H₃), 10.06 (<u>C</u>H₃), 28.00 (<u>C</u>H₂), 28.15 (<u>C</u>H₂), 79.35 (<u>C</u>_{sp3} fullerene cage-O), 79.62 (<u>C</u>H), 138.54, 139.40, 140.50, 141.27, 142.28, 142.31, 143.02, 143.11, 143.17, 143.29, 143.30, 143.32, 143.77, 143.88, 144.22, 144.31, 144.34, 144.48, 145.60, 145.81, 146.53, 146.82, 146.99, 147.38, 147.49, 148.91, 149.32, 150.78.

ESI MS: m/z=894 ([M]⁻).

2h (Yield 34%). ¹H NMR (500 MHz, CDCl₃, δ , ppm): 3.46 (s, 6H), 3.68 (dd, 4H, J = 5.5; 3.9 Hz), 3.88 (dd, 4H, J = 5.5; 3.9 Hz), 4.11 (t, 4H, J = 4.9 Hz), 4.78-4.86 (m, 4H).

¹³C NMR (125 MHz, CDCl₃, δ, ppm): 59.18 (<u>C</u>H₃), 67.32 (<u>C</u>H₂), 70.86 (<u>C</u>H₂), 70.92 (<u>C</u>H₂), 72.14 (<u>C</u>H₂), 79.75 (<u>C</u>_{sp3} fullerene cage-O), 138.57, 139.88, 140.73, 141.23, 142.25, 142.32, 142.90, 143.15, 143.27, 143.31, 143.35, 143.39, 143.64, 143.77, 143.80, 144.22, 144.30, 144.45, 144.48, 145.76, 145.87, 146.58, 146.69, 146.88, 146.99, 147.05, 147.40, 148.21, 149.00, 149.62.

ESI MS: m/z=958 ([M]⁻).

C₇₀H₂₂O₆ (958.92): calcd. C 87.68, H 2.31; found C 87.42, H 2.32.

2i (Yield 36%). ¹H NMR (500 MHz, CDCl₃, δ , ppm): 3.40 (s, 6H), 3.59 (dd, 4H, J = 5.6; 3.8 Hz), 3.72 (dd, 4H, J = 5.6; 3.8 Hz), 3.77-3.79 (m, 4H), 3.88-3.90 (m, 4H), 4.08-4.10 (t, 4H, J = 4.8 Hz), 4.75-4.83 (m, 4H).

¹³C NMR (125 MHz, CDCl₃, δ, ppm): 59.13 (<u>C</u>H₃), 67.30 (<u>C</u>H₂), 70.68 (<u>C</u>H₂), 70.81 (<u>C</u>H₂), 70.82 (<u>C</u>H₂), 71.00 (<u>C</u>H₂), 72.03 (<u>C</u>H₂), 79.74 (<u>C</u>_{sp3} fullerene cage-O), 138.57, 139.87, 140.73, 141.23, 142.25, 142.31, 142.89, 143.12, 143.15, 143.27, 143.30, 143.35, 143.39, 143.63, 143.76, 143.80, 144.22, 144.29, 144.44, 144.48, 145.75, 145.87, 146.58, 146.68, 146.87, 146.97, 147.05, 147.39, 148.22, 148.99, 149.62.

ESI MS: m/z=1053 ([M+Li]⁺).

C₇₄H₃₀O₈ (1047.03): calcd. C 84.89, H 2.89; found C 84.67, H 2.91.

2j (Yield 21%). ¹H NMR (500 MHz, CDCl₃, δ, ppm): 1.54 (s, 18H), 2.95-2.98 (t, 4H, *J* = 6.4 Hz), 4.81-4.90 (m, 4H).

¹³C NMR (125 MHz, CDCl₃, δ, ppm): 28.27 (COOC(<u>C</u>H₃)₃), 36.75 (<u>C</u>H₂), 63.70 (<u>C</u>H₂), 79.73 (COO<u>C</u>(CH₃)₃), 80.92 (<u>C</u>_{sp3} fullerene cage-O), 138.57, 139.84, 140.72, 141.26, 142.25, 142.31, 142.90, 143.14, 143.29, 143.31, 143.34, 143.38, 143.63, 143.82, 144.23, 144.30, 144.43, 144.49, 145.75, 145.86, 146.58, 146.66, 146.89, 146.96, 147.05, 147.39, 148.26, 148.99, 149.62, 170.54 (<u>C</u>OO). ESI MS: m/z=1033 ([M+Na]⁺).

3a (Yield 25%). ¹H NMR (500 MHz, CDCl₃, δ, ppm): 3.94 (s, 3H), 3.98 (s, 6H), 4.06 (s, 6H).

¹³C NMR (150 MHz, CDCl₃, δ, ppm): 55.50 (<u>C</u>H₃), 56.00 (<u>C</u>H₃), 58.34 (<u>C</u>H₃), 65.69 (<u>C</u>_{sp3} fullerene cage-Br), 77.57 (<u>C</u>_{sp3} fullerene cage-O), 80.05 (<u>C</u>_{sp3} fullerene cage-O), 81.51 (<u>C</u>_{sp3} fullerene cage-O), 138.02, 142.22, 142.42, 142.60, 142.94, 142.98, 143.35, 143.56, 143.86, 144.37, 144.49, 144.92, 145.02, 145.36, 146.77, 146.95, 147.18, 147.34, 147.35, 147.71, 148.23, 148.33, 148.34, 148.45, 149.02, 149.18, 151.24, 154.65.

ESI MS: m/z=875 ([M-Br]⁻).

C65H15BrO5 (955.72): calcd. C 81.69, H 1.58, Br 8.36; found C 81.47, H 1.59, Br 8.33.

3b (Yield 38%). ¹H NMR (600 MHz, CDCl₃, δ, ppm): 1.45-1.48 (m, 9H), 1.53 (t, 6H, *J* = 7.0 Hz), 4.22-4.32 (m, 8H), 4.46-4.51 (m, 2H).

¹³C NMR (150 MHz, CDCl₃, δ, ppm): 15.35 (<u>C</u>H₃), 15.84 (<u>C</u>H₃), 16.08 (<u>C</u>H₃), 63.76 (O<u>C</u>H₂), 64.24 (O<u>C</u>H₂), 66.16 (<u>C</u>_{sp3} fullerene cage-Br), 66.95 (O<u>C</u>H₂), 79.54 (<u>C</u>_{sp3} fullerene cage-O), 81.46 (<u>C</u>_{sp3} fullerene cage-O), 138.28, 142.50, 142.67, 142.81, 143.24, 143.47, 143.59, 144.13, 144.36, 144.73, 145.08, 145.26, 145.49, 146.94, 147.32, 147.46, 147.79, 147.81, 148.31, 148.44, 148.56, 148.76, 149.07, 149.21, 151.88, 154.66.

ESI MS: m/z=945 ([M-Br]⁻).

3d (Yield 30%). ¹H NMR (600 MHz, CDCl₃, δ, ppm): 0.96-1.05 (m, 15H), 1.46-1.63 (m, 10H), 1.78-1.89 (m, 10H), 4.15-4.24 (m, 8H), 4.39-4.43 (m, 2H).

¹³C NMR (150 MHz, CDCl₃, δ, ppm): 13.96 (<u>C</u>H₃), 14.06 (<u>C</u>H₃), 14.14 (<u>C</u>H₃), 19.31 (<u>C</u>H₂CH₃), 19.56 (<u>C</u>H₂CH₃), 19.58 (<u>C</u>H₂CH₃), 31.86 (OCH₂<u>C</u>H₂), 32.28 (OCH₂<u>C</u>H₂), 32.39 (OCH₂<u>C</u>H₂), 66.29 (<u>C</u>_{sp3} fullerene cage-Br), 67.88 (O<u>C</u>H₂), 68.50 (O<u>C</u>H₂), 70.98 (O<u>C</u>H₂), 79.57 (<u>C</u>_{sp3} fullerene cage-O), 81.35 (<u>C</u>_{sp3} fullerene cage-O), 138.34, 142.58, 142.65, 142.87, 143.11, 143.15, 143.47, 143.59, 144.14, 144.36, 144.79, 145.02, 145.26, 145.53, 146.93, 147.32, 147.46, 147.48, 147.79, 148.31, 148.43, 148.53, 148.56, 148.84, 149.05, 149.19, 151.95, 154.80.

APCI MS: m/z=1086 ([M-Br]⁻), 1166 ([M]⁻), 866 ([M-3(OnBu)-Br]⁻).

C₈₀H₄₅BrO₅ (1166.11): calcd. C 82.40, H 3.89, Br 6.86; found C 82.23, H 3.91, Br 6.84.

3g (Yield 33%). ¹H NMR (500 MHz, CDCl₃:CD₃OD 10:1, δ, ppm): 3.40 (s, 3H), 3.44 (s, 6H), 3.47 (s, 6H), 3.75-3.90 (m, 10H), 4.30-4.44 (m, 8H), 4.48-4.56 (m, 2H).

¹³C NMR (125 MHz, CDCl₃:CD₃OD 10:1, δ, ppm): 58.89 (O<u>C</u>H₃), 58.99 (O<u>C</u>H₃), 59.17 (O<u>C</u>H₃), 65.94 (<u>C</u>_{sp3} fullerene cage-Br), 67.38 (<u>C</u>H₂), 67.88 (<u>C</u>H₂), 69.94 (<u>C</u>H₂), 71.49 (<u>C</u>H₂), 71.84 (<u>C</u>H₂), 71.91 (<u>C</u>H₂), 77.28 (<u>C</u>_{sp3} fullerene cage-O), 79.51 (<u>C</u>_{sp3} fullerene cage-O), 81.48 (<u>C</u>_{sp3} fullerene cage-O), 137.90, 142.34, 142.38, 142.66, 143.03, 143.48, 143.63, 143.99, 144.45, 144.71, 145.07, 145.09,

145.40, 146.93, 147.29, 147.32, 147.46, 147.47, 147.81, 148.30, 148.45, 148.57, 148.58, 149.12, 149.27, 151.49, 154.63.

ESI MS: m/z=1095 ([M-Br]⁻).

C₇₅H₃₅BrO₁₀ (1175.98): calcd. C 76.60, H 3.00, Br 6.79; found C 76.51, H 3.03, Br 6.77.

3i (Yield 11%). ¹H NMR (500 MHz, CDCl₃, δ, ppm): 3.36-3.39 (m, 15H), 3.52-3.81 (m, 40H), 3.87-3.98 (m, 10H), 4.33-4.44 (m, 8H), 4.51-4.62 (m, 2H).

¹³C NMR (125 MHz, CDCl₃, δ, ppm): 59.14 (O<u>C</u>H₃), 66.05 (<u>C</u>_{sp3} fullerene cage-Br), 67.59 (<u>C</u>H₂), 67.92 (<u>C</u>H₂), 68.14 (<u>C</u>H₂), 70.11 (<u>C</u>H₂), 70.25 (<u>C</u>H₂), 70.36 (<u>C</u>H₂), 70.53 (<u>C</u>H₂), 70.66 (<u>C</u>H₂), 70.76 (<u>C</u>H₂), 70.87 (<u>C</u>H₂), 71.93 (<u>C</u>H₂), 72.02 (<u>C</u>H₂), 72.49 (<u>C</u>H₂), 79.50 (<u>C</u>_{sp3} fullerene cage-O), 81.54 (<u>C</u>_{sp3} fullerene cage-O), 137.99, 142.36, 142.42, 142.43, 142.68, 143.03, 143.49, 143.63, 144.01, 144.44, 144.71, 145.05, 145.17, 145.42, 146.94, 146.99, 147.32, 147.46, 147.49, 147.83, 148.34, 148.42, 148.46, 148.59, 149.14, 149.28, 151.56, 154.66.

APCI MS: m/z=1536 ([M-Br]⁻), 1389 ([M-Br-OR+H₂O]⁻).

3j. ¹H NMR (500 MHz, CDCl₃, δ, ppm): 1.42 (s, 9H), 1.45-1.46 (m, 36H), 2.73-2.82 (m, 10H), 4.36-4.58 (m, 10H).

¹³C NMR (125 MHz, CDCl₃, δ, ppm): 28.26 (<u>C</u>H₃), 28.30 (<u>C</u>H₃), 28.34 (<u>C</u>H₃), 36.39 (<u>C</u>H₂), 36.43 (<u>C</u>H₂), 36.72 (<u>C</u>H₂), 63.90 (<u>C</u>H₂), 64.56 (<u>C</u>H₂), 65.73 (<u>C</u>_{sp3} fullerene cage-Br), 66.49 (<u>C</u>H₂), 77.01 (<u>C</u>_{sp3} fullerene cage-O), 79.52 (<u>C</u>_{sp3} fullerene cage-O), 80.67 (<u>C</u>(CH₃)₃), 80.75 (<u>C</u>(CH₃)₃), 80.78 (<u>C</u>(CH₃)₃), 81.29 (<u>C</u>_{sp3} fullerene cage-O), 138.12, 142.55, 142.59, 142.79, 143.00, 143.59, 143.73, 144.07, 144.55, 144.79, 145.11, 145.22, 145.54, 147.01, 147.32, 147.40, 147.56, 147.57, 147.91, 148.42, 148.47, 148.54, 148.65, 149.19, 149.34, 151.68, 154.91, 170.46 (<u>C</u>OO), 170.50 (<u>C</u>OO), 170.62 (<u>C</u>OO).

APCI MS: m/z=1446 ([M-Br]⁻).

C95H65BrO15 (1526.43): calcd. C 74.75, H 4.29, Br 5.23; found C 74.73, H 4.30, Br 5.21.

General procedure for the synthesis of epoxide-type alkoxyfullerenes $C_{60}(OR)_4O$

Compounds **4b-c,i** were synthesized according to the following procedure. A triple-neck round-bottom 100 mL flask was evacuated and filled with argon three times. Afterwards, 100 mg of C₆₀Cl₆ (0.11 mmol) and 50 mL of toluene were introduced into the flask in a stream of argon. The mixture was stirred magnetically until complete dissolving of C₆₀Cl₆ with the formation of transparent orange solution. Afterwards, an excess of the corresponding alcohol (11 mmol, 100 eq.) and 0.1 ml of distilled water were added in one portion. Then a solution of the Bu₄NBr (345 mg, 1.1 mmol) in 30 ml of toluene was added dropwise. The reaction mixture was stirred 12 hours at room temperature and then diluted by toluene and poured on top of a silica gel column.

The target products **4b-c,i** were eluted using toluene-acetonitrile mixtures (97-99% : 1-3% v/v) after elution of corresponding bromides. The obtained solutions of **4b-c,i** were concentrated at the rotary evaporator, washed with hexanes and dried in air. Compounds **4b-c,i** were obtained as dark-orange powders.

4b (Yield 31%). ¹H NMR (500 MHz, CDCl₃, δ , ppm): 1.46 (t, 6H, J = 7.0 Hz), 1.52 (t, 6H, J = 7.0 Hz), 4.23-4.33 (m, 6H), 4.45-4.51 (m, 2H).

¹³C NMR (125 MHz, CDCl₃, δ, ppm): 15.83 (<u>C</u>H₃), 16.07 (<u>C</u>H₃), 63.81 (<u>C</u>H₂), 64.46 (<u>C</u>H₂), 76.19 (<u>C</u>_{sp3} fullerene cage-O), 76.98 (<u>C</u>_{sp3} fullerene cage-O), 77.24 (<u>C</u>_{sp3} fullerene cage-O), 79.46 (<u>C</u>_{sp3} fullerene cage-O), 137.25, 142.43, 142.69, 142.75, 143.45, 143.59, 143.62, 144.11, 144.39, 144.85, 145.03, 145.26, 145.42, 146.93, 147.28, 147.43, 147.49, 147.77, 148.29, 148.33, 148.43, 148.58, 148.61, 148.68, 149.10, 149.19, 151.55, 154.40.

APCI MS: m/z=916 ([M]⁻).

C₆₈H₂₀O₅ (916.88): calcd. C 89.08, H 2.20; found C 88.94, H 2.21.

4c (Yield 17%). ¹H NMR (500 MHz, CDCl₃, δ, ppm): 1.09-1.14 (m, 12H), 1.82-1.96 (m, 8H), 4.13-4.22 (m, 6H), 4.35-4.40 (m, 2H).

¹³C NMR (150 MHz, CDCl₃, δ, ppm): 10.90 (<u>C</u>H₃), 11.04 (<u>C</u>H₃), 23.46 (<u>C</u>H₂), 23.63 (<u>C</u>H₂), 69.85 (<u>C</u>H₂), 70.47 (<u>C</u>H₂), 76.17 (<u>C</u>sp3 fullerene cage-O), 79.49 (<u>C</u>sp3 fullerene cage-O), 137.34, 142.51, 142.73, 142.77, 143.46, 143.60, 143.62, 144.11, 144.39, 144.90, 145.02, 145.25, 145.45, 146.93, 147.28, 147.43, 147.50, 147.77, 148.16, 148.33, 148.43, 148.56, 148.61, 148.71, 149.10, 149.18, 151.64, 154.40.

APCI MS: m/z=972 ([M]⁻).

4i (Yield 25%). ¹H NMR (500 MHz, CDCl₃, δ , ppm): 3.37 (s, 12H), 3.55 (dd, 8H, J = 5.5; 3.8 Hz), 3.65-3.70 (m, 16H), 3.76-3.78 (m, 8H), 3.89 (dt, 8H, J = 9.9; 4.9 Hz), 4.27-4.46 (m, 8H).

¹³C NMR (125 MHz, CDCl₃, δ, ppm): 59.07 (<u>C</u>H₃), 67.79 (<u>C</u>H₂), 68.66 (<u>C</u>H₂), 70.51 (<u>C</u>H₂), 70.59 (<u>C</u>H₂), 70.68 (<u>C</u>H₂), 70.70 (<u>C</u>H₂), 70.80 (<u>C</u>H₂), 71.97 (<u>C</u>H₂), 76.65 (<u>C</u>_{sp3} fullerene cage-O), 77.24 (<u>C</u>_{sp3} fullerene cage-O), 77.51 (<u>C</u>_{sp3} fullerene cage-O), 81.86 (<u>C</u>_{sp3} fullerene cage-O), 140.44, 142.15, 143.09, 143.20, 143.61, 143.70, 144.37, 144.43, 144.77, 145.17, 145.20, 146.37, 146.47, 146.71, 146.85, 147.05, 147.10, 147.18, 147.22, 147.26, 147.42, 147.73, 148.02, 149.50, 149.66, 150.00, 150.71.

APCI MS: m/z=1411 ([M+Na]⁺).

C₈₈H₆₀O₁₇ (1389.41): calcd. C 76.07, H 4.35; found C 76.04, H 4.36.

General procedure for the synthesis of alkoxyfullerenes $C_{60}(OR)_5Cl$ using triethylamine as a base

Compounds **5a-e,g-i** were synthesized according to the following procedure. An excess of the corresponding alcohol (1.1-110 mmol, 10-1000 eq.) and triethylamine (542 mg, 5.36 mmol) were added to the stirred solution of $C_{60}Cl_6$ (100 mg, 0.11 mmol) in 70 ml of toluene. The reaction mixture was kept under stirring at room temperature for 30 minutes and then concentrated at the rotary evaporator. The residue was dissolved in toluene and poured on top of a silica gel column. The target products **5a-e** were eluted using toluene-acetonitrile mixtures (97-99% : 1-3% v/v). Compounds **5g-i** were eluted using toluene-tetrahydrofuran mixtures (70-90% : 10-30% v/v). The obtained solutions of **5a-e,g-i** were concentrated at the rotary evaporator, washed with hexanes and dried in air. Compounds **5a-e,g-i** were obtained as dark-orange powders with 38-52% yields.

5a. ¹H NMR (600 MHz, bromobenzene-D5, δ, ppm): 3.83 (s, 6H), 3.86 (s, 3H), 3.94 (s, 6H).

¹³C NMR (150 MHz, bromobenzene-D5, δ, ppm): 55.44 (<u>C</u>H₃), 55.91 (<u>C</u>H₃), 58.45 (<u>C</u>H₃), 73.90 (<u>C</u>sp3 fullerene cage-Cl), 77.64 (<u>C</u>sp3 fullerene cage-O), 80.10 (<u>C</u>sp3 fullerene cage-O), 82.07 (<u>C</u>sp3 fullerene cage-O), 138.08, 142.10, 142.39, 142.64, 143.40, 143.62, 143.77, 144.39, 144.44, 144.49, 145.05, 145.09, 145.36, 146.76, 147.15, 147.31, 147.33, 147.63, 147.73, 148.19, 148.30, 148.38, 148.43, 148.94, 149.07, 151.38, 154.43.

ESI MS: m/z=875 ([M-Cl]⁻).

Spectroscopic data for compound **5a** were reported previously [A. Avent, P. R. Birkett, A. Darwish, S. Houlton, R. Taylor, K. S. T. Thomson, X. W. Wei. *J. Chem. Soc. Perkin Trans.* 2, 2001, 782].

5b. ¹H NMR (500 MHz, CDCl₃, δ, ppm): 1.43-1.51 (m, 15H), 4.20-4.43 (m, 10H).

ESI MS: m/z=945 ([M-Cl]⁻).

Spectroscopic data for compound **5b** were reported previously [A. Avent, P. R. Birkett, A. Darwish, S. Houlton, R. Taylor, K. S. T. Thomson, X. W. Wei. *J. Chem. Soc. Perkin Trans.* 2, 2001, 782].

5c. ¹H NMR (500 MHz, CDCl₃, δ , ppm): 1.02 (t, 3H, J = 7.4 Hz), 1.09-1.13 (m, 12H), 1.81-1.94 (m, 10H), 4.13-4.20 (m, 8H), 4.27-4.31 (m, 2H).

¹³C NMR (125 MHz, CDCl₃, δ, ppm): 10.59 (<u>C</u>H₃), 10.89 (<u>C</u>H₃), 10.99 (<u>C</u>H₃), 23.30 (<u>C</u>H₂), 23.45 (<u>C</u>H₂), 23.62 (<u>C</u>H₂), 69.94 (<u>C</u>H₂O), 70.27 (<u>C</u>H₂O), 72.97 (<u>C</u>H₂O), 73.86 (<u>C</u>sp₃ fullerene cage-Cl), 79.41 (<u>C</u>sp₃ fullerene cage-O), 81.67 (<u>C</u>sp₃ fullerene cage-O), 138.21, 142.52, 142.57, 142.69, 143.11, 143.51, 143.62, 144.04, 144.36, 144.51, 144.74, 145.15, 145.31, 145.50, 146.98, 147.36, 147.51, 147.79, 148.18, 148.34, 148.45, 148.52, 148.61, 148.82, 149.05, 149.19, 151.85, 154.27.

APCI MS: m/z=1015 ([M-Cl]⁻).

C₇₅H₃₅ClO₅ (1051.53): calcd. C 85.67, H 3.35, Cl 3.37; found C 85.74, H 3.37, Cl 3.35.

5d. ¹H NMR (500 MHz, CDCl₃, δ, ppm): 0.96-1.04 (m, 15H), 1.45-1.63 (m, 10H), 1.78-1.87 (m, 10H), 4.16-4.22 (m, 8H), 4.30-4.35 (m, 2H).

¹³C NMR (125 MHz, CDCl₃, δ, ppm): 13.97 (<u>C</u>H₃), 14.08 (<u>C</u>H₃), 19.29 (<u>C</u>H₂), 19.54 (<u>C</u>H₂), 32.06 (<u>C</u>H₂), 32.27 (<u>C</u>H₂), 32.40 (<u>C</u>H₂), 67.92 (<u>C</u>H₂O), 68.43 (<u>C</u>H₂O), 71.22 (<u>C</u>H₂O), 73.86 (<u>C</u>_{sp3} fullerene cage-Cl), 79.43 (<u>C</u>_{sp3} fullerene cage-O), 81.68 (<u>C</u>_{sp3} fullerene cage-O), 138.23, 142.54, 142.59, 142.69, 143.52, 143.63, 144.04, 144.38, 144.48, 144.75, 145.15, 145.32, 145.51, 146.98, 147.37, 147.51, 147.53, 147.80, 148.21, 148.34, 148.46, 148.52, 148.62, 148.83, 149.05, 149.19, 151.89, 154.34.

APCI MS: m/z=1085 ([M-Cl]⁻).

C₈₀H₄₅ClO₅ (1121.66): calcd. C 85.66, H 4.04, Cl 3.16; found C 85.50, H 4.05, Cl 3.18.

5e. ¹H NMR (500 MHz, CDCl₃, δ, ppm): 1.44 (dd, 18H, *J* = 11.1; 5.7 Hz), 1.47 (d, 6H, *J* = 6.0 Hz), 1.51 (d, 6H, *J* = 6.1 Hz), 4.69-4.77 (m, 1H), 4.84-4.97 (m, 4H).

¹³C NMR (125 MHz, CDCl₃, δ, ppm): 24.02 (<u>C</u>H₃), 24.32 (<u>C</u>H₃), 24.43 (<u>C</u>H₃), 24.46 (<u>C</u>H₃), 70.32 (<u>C</u>H), 70.59 (<u>C</u>H), 72.76 (<u>C</u>H), 74.20 (<u>C</u>sp₃ fullerene cage-Cl), 76.52 (<u>C</u>sp₃ fullerene cage-O), 78.57 (<u>C</u>sp₃ fullerene cage-O), 81.86 (<u>C</u>sp₃ fullerene cage-O), 138.28, 142.60, 142.94, 143.43, 143.53, 143.77, 143.95, 144.29, 144.46, 144.60, 144.86, 145.06, 145.19, 145.41, 146.98, 147.40, 147.55, 147.57, 147.80, 148.31, 148.44, 148.48, 148.50, 148.60, 149.03, 149.15, 152.72, 154.90.

APCI MS: m/z=1015 ([M-Cl]⁻).

C₇₅H₃₅ClO₅ (1051.53): calcd. C 85.67, H 3.35, Cl 3.37; found C 85.58, H 3.39, Cl 3.38.

5g. ¹H NMR (500 MHz, CDCl₃, δ, ppm): 3.41 (s, 3H), 3.46 (s, 6H), 3.47 (s, 6H), 3.76-3.87 (m, 10H), 4.35-4.42 (m, 8H), 4.46-4.49 (m, 2H).

¹³C NMR (125 MHz, CDCl₃, δ, ppm): 59.04 (<u>C</u>H₃), 59.16 (<u>C</u>H₃), 59.21 (<u>C</u>H₃), 67.48 (<u>C</u>H₂O), 67.85 (<u>C</u>H₂O), 70.24 (<u>C</u>H₂O), 71.64 (<u>C</u>H₂O), 71.85 (<u>C</u>H₂O), 71.89 (<u>C</u>H₂O), 73.64 (<u>C</u>_{sp3} fullerene cage-Cl), 76.90 (<u>C</u>_{sp3} fullerene cage-O), 79.36 (<u>C</u>_{sp3} fullerene cage-O), 81.82 (<u>C</u>_{sp3} fullerene cage-O), 137.78, 142.08, 142.35, 142.68, 143.51, 143.66, 143.90, 144.40, 144.45, 144.69, 145.19, 145.39, 146.98, 147.34, 147.50, 147.52, 147.76, 147.81, 148.29, 148.33, 148.47, 148.54, 148.64, 149.11, 149.25, 151.44, 154.14.

APCI MS: m/z=1095 ([M-Cl]⁻).

C₇₅H₃₅ClO₁₀ (1131.53): calcd. C 79.61, H 3.12, Cl 3.13; found C 79.37, H 3.15, Cl 3.12.

5h. ¹H NMR (600 MHz, CDCl₃, δ, ppm): 3.35 (s, 3H), 3.39 (s, 6H), 3.40 (s, 6H), 3.51-3.52 (m, 2H), 3.57-3.59 (m, 8H), 3.69-3.70 (m, 2H), 3.72-3.74 (m, 4H), 3.76-3.78 (m, 4H), 3.85-3.89 (m, 6H), 3.92-3.94 (m, 4H), 4.35-4.41 (m, 8H), 4.45-4.48 (m, 2H).

¹³C NMR (150 MHz, CDCl₃, δ, ppm): 59.05 (<u>C</u>H₃), 59.08 (<u>C</u>H₃), 67.61 (<u>C</u>H₂O), 68.05 (<u>C</u>H₂O), 70.33 (<u>C</u>H₂O), 70.57 (<u>C</u>H₂O), 70.59 (<u>C</u>H₂O), 70.66 (<u>C</u>H₂O), 70.72 (<u>C</u>H₂O), 72.00

(<u>C</u>H₂O), 72.03 (<u>C</u>H₂O), 72.06 (<u>C</u>H₂O), 73.66 (<u>C</u>sp3 fullerene cage-Cl), 76.93 (<u>C</u>sp3 fullerene cage-O), 79.32 (<u>C</u>sp3 fullerene cage-O), 81.83 (<u>C</u>sp3 fullerene cage-O), 137.82, 142.08, 142.36, 142.69, 143.49, 143.64, 143.88, 144.35, 144.42, 144.63, 145.13, 145.19, 145.36, 146.97, 147.34, 147.51, 147.68, 147.81, 148.34, 148.35, 148.46, 148.54, 148.62, 149.11, 149.24, 151.41, 154.13.

APCI MS: m/z=1373 ([M+Na]⁺).

5i. ¹H NMR (500 MHz, CDCl₃, δ, ppm): 3.36 (s, 3H), 3.37-3.38 (m, 12H), 3.50-3.57 (m, 10H), 3.60-3.71 (m, 20H), 3.73-3.79 (m, 10H), 3.83-3.93 (m, 10H), 4.33-4.47 (m, 10H).

¹³C NMR (125 MHz, CDCl₃, δ, ppm): 59.06 (<u>C</u>H₃), 67.58 (<u>C</u>H₂O), 68.02 (<u>C</u>H₂O), 68.66 (<u>C</u>H₂O), 70.32 (<u>C</u>H₂O), 70.55 (<u>C</u>H₂O), 70.58 (<u>C</u>H₂O), 70.59 (<u>C</u>H₂O), 70.63 (<u>C</u>H₂O), 70.69 (<u>C</u>H₂O), 70.71 (<u>C</u>H₂O), 70.77 (<u>C</u>H₂O), 70.80 (<u>C</u>H₂O), 71.93 (<u>C</u>H₂O), 71.96 (<u>C</u>H₂O), 73.69 (<u>C</u>_{sp3} fullerene cage-Cl), 76.93 (<u>C</u>_{sp3} fullerene cage-O), 79.32 (<u>C</u>_{sp3} fullerene cage-O), 81.87 (<u>C</u>_{sp3} fullerene cage-O), 137.81, 142.08, 142.35, 142.69, 143.49, 143.63, 143.88, 144.37, 144.42, 144.63, 145.14, 145.20, 145.36, 146.97, 147.05, 147.34, 147.52, 147.69, 147.81, 148.34, 148.47, 148.55, 148.62, 149.11, 149.25, 151.42, 154.10.

APCI MS: m/z=1536 ([M-Cl]⁻).

C95H75ClO20 (1572.05): calcd. C 72.58, H 4.81, Cl 2.26; found C 72.49, H 4.85, Cl 2.24.

Synthesis of 3j-H and 3j-K

Compound **3j** (80 mg, 0.05 mmol) was dissolved in 15 mL of CH₂Cl₂ and quenched with trifluoroacetic acid (1 mL) at room temperature. The solvent and excess of CF₃COOH were removed *in vacuo*; the residue was washed with ethyl acetate and then dried in air. Acid **3j-H** was obtained as an orange powder with 98% yield.

Afterwards, **3j-H** (62 mg, 0.05 mmol) was suspended in distilled water (10 mL) and then aqueous solution of K₂CO₃ (17 mg, 0.125 mmol, in 3 mL of water) was added. The obtained solution was filtered *via* syringe PES filter and freeze-dried. Compound **3j-K** was obtained as an orange light powder with virtually quantitative yield.

3j-H. ¹H NMR (500 MHz, acetone-D6, δ, ppm): 2.73-2.83 (m, 10H), 4.35-4.60 (m, 10H).

¹³C NMR (125 MHz, acetone-D6, δ, ppm): 34.42 (<u>C</u>H₂), 34.71 (<u>C</u>H₂), 34.80 (<u>C</u>H₂), 64.18 (<u>C</u>H₂), 64.25 (<u>C</u>H₂), 64.32 (<u>C</u>H₂), 64.46 (<u>C</u>H₂), 66.55 (<u>C</u>sp₃ fullerene cage-Br), 76.88 (<u>C</u>sp₃ fullerene cage-O), 79.40 (<u>C</u>sp₃ fullerene cage-O), 79.45 (<u>C</u>sp₃ fullerene cage-O), 81.43 (<u>C</u>sp₃ fullerene cage-O), 137.01, 138.34, 142.50, 142.60, 142.73, 142.74, 142.79, 142.84, 142.92, 143.21, 143.49, 143.51, 143.66, 143.71, 144.12, 144.16, 144.46, 144.51, 144.69, 145.04, 145.18, 145.22, 145.31, 145.36, 145.60, 146.92, 146.96, 147.35, 147.47, 147.49, 147.72, 147.84, 148.32, 148.35, 148.43, 148.46, 148.55, 148.76,

149.02, 149.10, 149.17, 149.23, 149.82, 151.70, 152.00, 154.65, 155.16, 171.68 (<u>COO</u>), 171.99 (<u>COO</u>), 172.12 (<u>COO</u>), 172.19 (<u>COO</u>), 172.63 (<u>COO</u>).

X-ray crystallography for 3b-

Synchrotron X-ray data for single crystal of **3b** ($0.03 \times 0.03 \times 0.01 \text{ mm}^3$) were collected at 100 K on BL14.2 at the BESSY storage ring (Berlin, Germany) using a MAR225 detector, $\lambda = 0.8551$ Å. The structures was solved and anisotropically refined using SHELX package. Absorption correction was not applied. Crystal data for **3b**: C₇₀H₂₅BrO₅, M = 1025.81, orthorhombic, *Pnma*, a = 19.765(1), b = 17.350(1), c = 24.003(2) Å, V = 8231.2(9) Å³, Z = 8, $D_{calc} = 1.656$ g cm⁻³. Anisotropic refinement with 9880 reflections and 866 parameters yielded a conventional $R_1 = 0.104$ for 4087 reflections with $I > 2\sigma$ (I) and $wR_2 = 0.269$ for all reflections. All methylene and methyl hydrogen atoms were placed into geometrically calculated positions and refined in the riding mode. Both C₆₀(OC₂H₅)Br molecules are located on a mirror plane so that two halves are independent. Due to approximate fivefold symmetry, both molecules are disordered around pseudo C_5 axes with OC₂H₅ groups disordered over two positions each. Br atoms are disordered over 2-4 positions. For more details see CCDC 1496548.

Fig. S1. UV-VIS spectra of the C₆₀Cl₆+ Bu₄NI+MeOH reaction mixture and solutions of C_{60} [OMe]₅H and Bu₄NI₃ in chlorobenzene

Fig. S2. HPLC profile of compound **5g** (Orbit C18 column, 150 x 4.6 mm, acetonitrile/toluene 70/30 v/v, flow rate 1 mL min⁻¹)

Fig. S4. ¹H NMR spectrum of compound 1a (* denotes signals of the hydrolysis products)

Fig. S10. H-H COSY NMR spectrum of compound 1d

Fig. S11. H-C HSQC NMR spectrum of compound 1d

Fig. S14. ¹³C NMR spectrum of compound 2f

Fig. S15. H-H COSY NMR spectrum of compound 2f

Fig. S16. H-C HSQC NMR spectrum of compound 2f

Fig. S19 ¹³C NMR spectrum of compound 2h

Fig. S20 H-H COSY NMR spectrum of compound 2h

Fig. S21. H-C HSQC NMR spectrum of compound 2h

Fig. S29. ¹³C NMR spectrum of compound 2j

Fig. S30. H-C HSQC NMR spectrum of compound 2j

Fig. S40. Low-field part of the ¹³C NMR spectrum of compound 3d

Fig. S41. H-C HSQC NMR spectrum of compound 3d

Fig. S42. ESI mass spectrum of compound 3g

Fig. S50. H-C HSQC NMR spectrum of compound 3i

Fig. S52. ¹H NMR spectrum of compound 3j

Fig. S54. H-H COSY NMR spectrum of compound **3j** (left) and H-C HSQC NMR spectrum of compound **3j** (right)

Fig. S57. ¹³C NMR spectrum of compound 4b (* denotes signals of unknown impurity)

Fig. S58. H-C HSQC NMR spectrum of compound 4b

Fig. S59. H-C HMBC NMR spectrum of compound 4b

Fig. S63. H-H COSY NMR spectrum of compound 4c

Fig. S64. H-C HSQC NMR spectrum of compound 4c

Fig. S65. APCI MS spectrum of compound 4i ([M+Na]+)

Fig. S66. ¹H NMR spectrum of compound 4i

Fig. S67. ¹³C NMR spectrum of compound 4i

Fig. S68. H-C HSQC NMR spectrum of compound 4i

Fig. S72. H-H COSY NMR spectrum of compound 5c

Fig. S73. H-C HSQC NMR spectrum of compound 5c

Fig. S83. High-field part of the $^{\rm 13}{\rm C}$ NMR spectrum of compound 5g

Fig. S84. Low-field part of the $^{\rm 13}{\rm C}$ NMR spectrum of compound 5g

Fig. S85. H-H COSY NMR spectrum of compound 5g

Fig. S86. H-C HSQC NMR spectrum of compound 5g

Fig. S89. ¹³C NMR spectrum of compound 5h

Fig. S90. H-H COSY NMR spectrum of compound 5h

Fig. S91. H-C HSQC NMR spectrum of compound 5h

Fig. S93. ¹H NMR spectrum of compound 5i

Fig. S97. Comparison of the selected areas in the ¹³C NMR spectra of compounds C₆₀(O*n*Bu)₅X (X=H (**1**), Br (**2**) and Cl (**3**))

Fig. S98. Comparison of the selected areas in the ^{13}C NMR spectra of compounds $C_{60}(OEt)_5Br$ (1) and $C_{60}(OEt)_4O$ (2)

Fig. S99. ESR spectrum of the reaction mixture C₆₀Cl₆+DMPO+MeOH+[NBu₄]Br in toluene proving radical nature of the investigated reaction

C_{so}Cl_s 1 mM in toluene + DMPO + methanol + triethylamine

Fig. S100. ESR spectrum of the reaction mixture C₆₀Cl₆+DMPO+MeOH+NEt₃ in toluene proving radical nature of the investigated reaction

Fig. S101. ESR spectrum of the reaction mixture C₆₀Cl₆+DMPO+MeOH+[NBu₄]I in toluene proving radical nature of the investigated reaction