Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

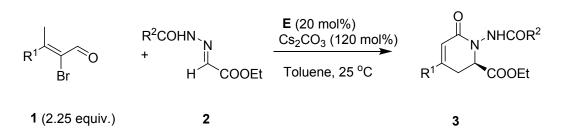
Supporting Information

NHC-Catalyzed [4+2] Annulation of 2-Bromo-2-Enal with Acylhydrazones: Enantioselective Synthesis of δ -Lactams

Baomin Sun,^{‡a} Lijiu Gao,^{‡a} Shide Shen,^b Chenxia Yu,^a Tuanjie Li,^a Yuanwei Xie^a and

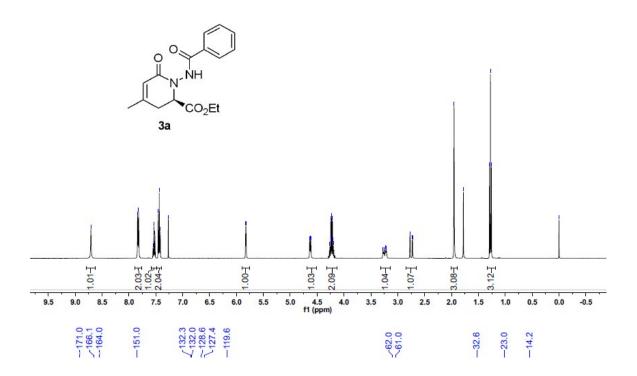
Changsheng Yao*a

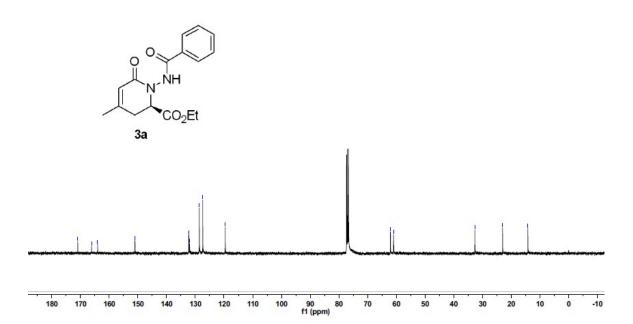
1. General methods	2
2. Abstract	2
3. Experimental section	3
4. NMR Spectra	3
5. HPLC Spectra	18
6. Determination of the absolute configuration by comparison	32

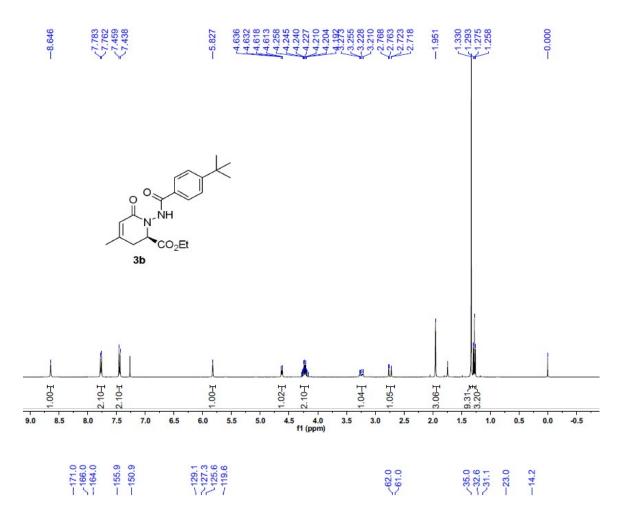

1. General methods

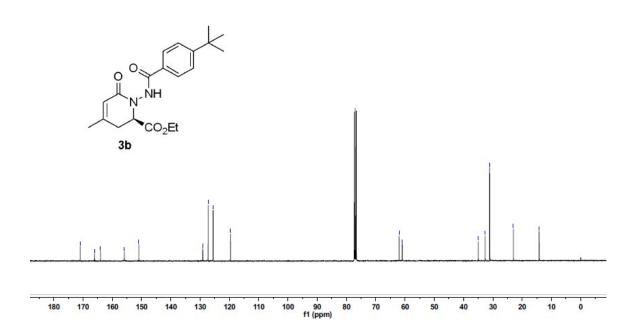
Common reagents and materials were purchased from commercial sources and purified by recrystallization or distillation. Melting points were determined in open capillaries and were uncorrected. IR spectra were taken on a FT-IR-Tensor 27 spectrometer in KBr pellets and reported in cm⁻¹. ¹H NMR spectra were measured on a Bruker DPX 400 MHz spectrometer in DMSO- $d_6(100 \text{ MHz}, {}^{13}\text{C} \text{ NMR})$ or CDCl₃ with chemical shift (δ) given in ppm relative to TMS as internal standard. High-resolution mass spectra (HRMS) were obtained on a micrOTOF-Q II HRMS/MS instrument (Bruker) with the technique of electrospray ionization. Optical rotation values were measured with instruments operating at $\lambda = 589$ nm, corresponding to the sodium D line at the temperatures indicated.

2. Abstract

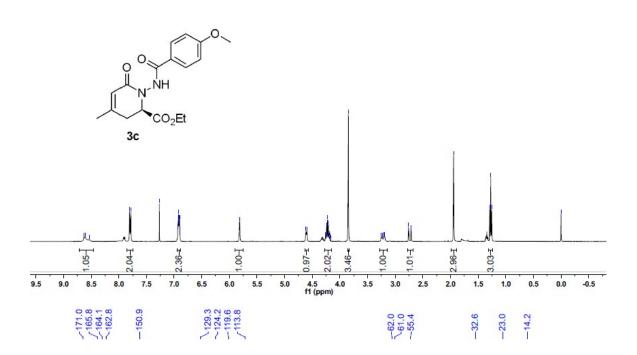

An asymmetric assembly of δ -lactam was realized via the NHC-catalyzed formal [4+2] annulation of acylhydrazones and 2-bromo-2-enals bearing γ -H. The advantages of this protocol include high enantioselectivity, good yields, mild reaction condition and potential biological significance of the final products.

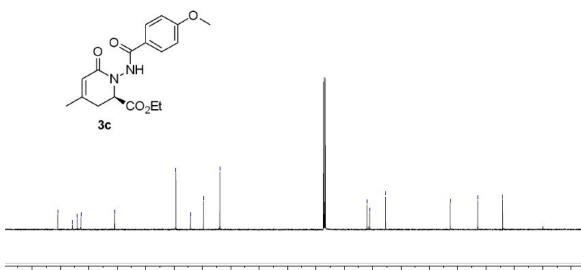

3. Experimental section

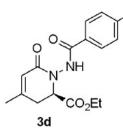


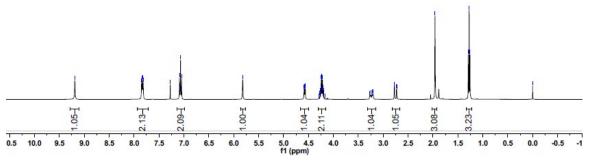

An oven-dried 10-mL Schlenk tube equipped with a magnetic stir bar was charged with triazolium salt **E** (16.7 mg, 0.04 mmol), Cs_2CO_3 (78.2 mg, 0.24 mmol), α -bromo- α , β -unsaturated aldehyde **1** (0.45 mmol) and hydrazone **2** (0.2 mmol). The tube was closed with a septum. And the freshly distilled toluene (3 mL) was added into the mixture with a syringe. Then the mixture was stirred at 25 °C until completion (monitored by TLC). After removal of the solvent under reduced pressure, the resulting crude product was purified by column chromatography (silicagel, mixtures of petroleum ether/ethyl acetate, 2:1, v/v) to afford the desired product **3**.

4. NMR Spectra

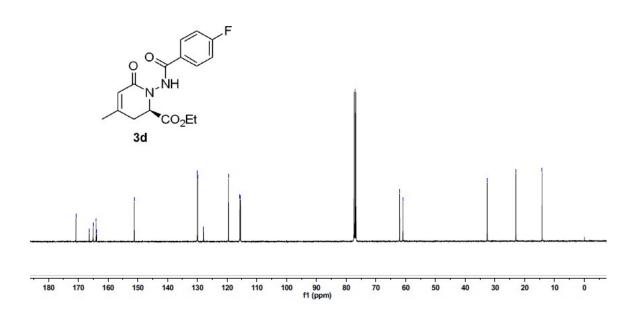


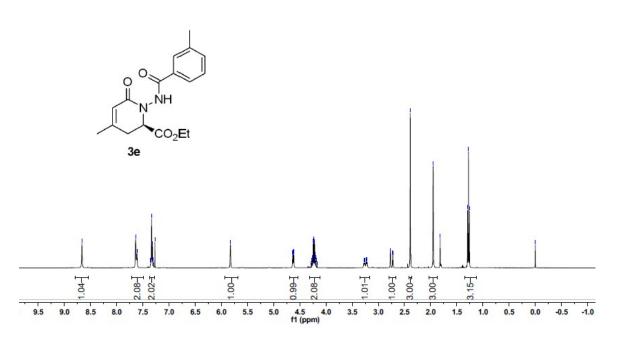


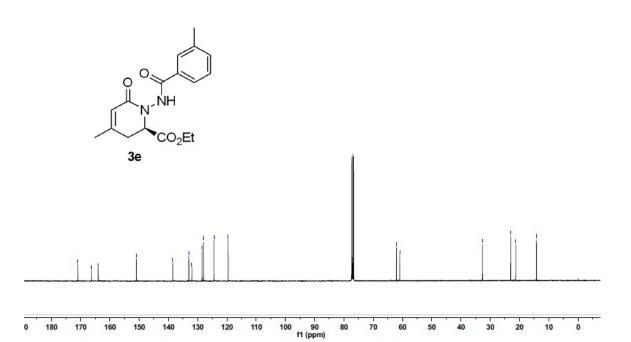

$\begin{array}{c} & 8.632\\ & 8.609\\ & 8.609\\ & 8.609\\ & 8.609\\ & 8.809\\ & 6.932\\ & 6.932\\ & 6.899\\ & 6.899\\ & 6.899\\ & 6.899\\ & 6.899\\ & 6.893\\ & 6.833\\ & 6.8$

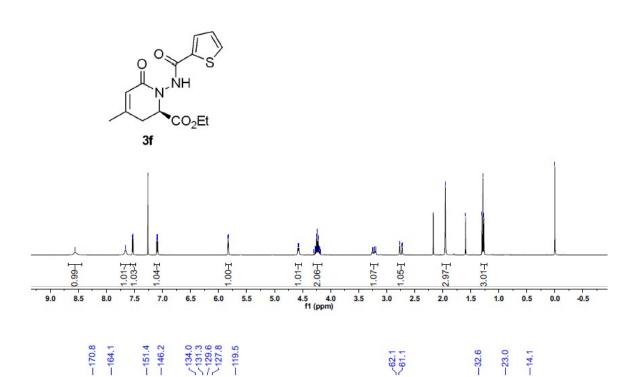


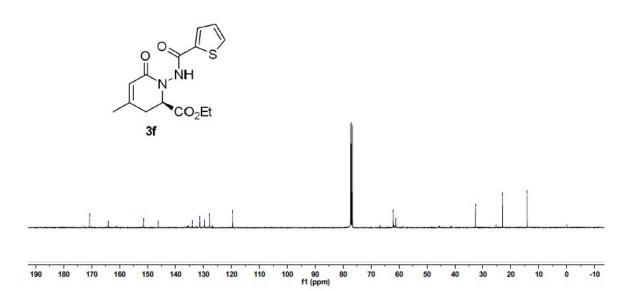
90 80 f1 (ppm) -10


-9.188 -9.188 -9.188 -9.188 -9.188 -9.188 -9.188 -9.188 -9.188 -9.188 -9.188 -9.188 -9.188 -9.188 -9.188 -9.188 -1.287 -0.000

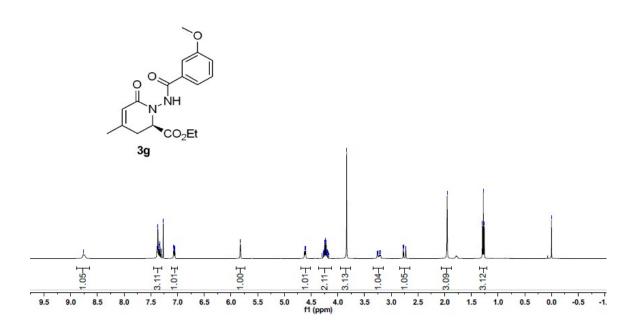




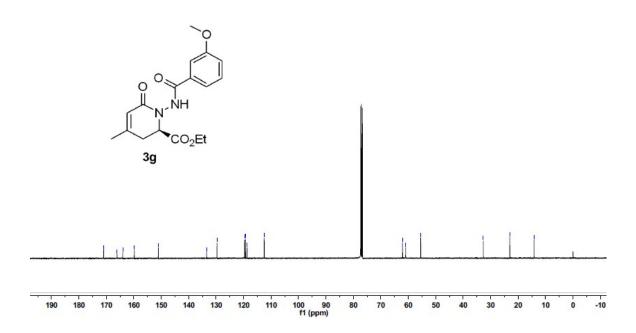


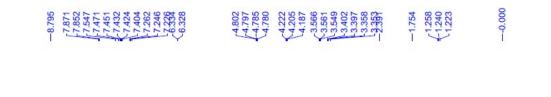


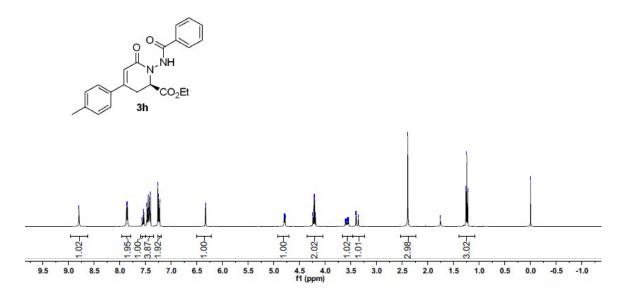
-171.0 -166.3 -164.0 -150.9 -150.9 -133.0 -133.0 -1138.5 -1124.4 -119.6

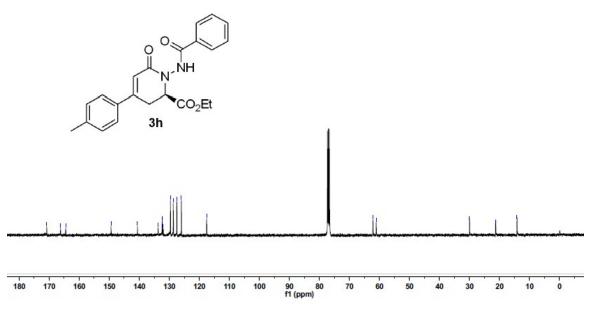


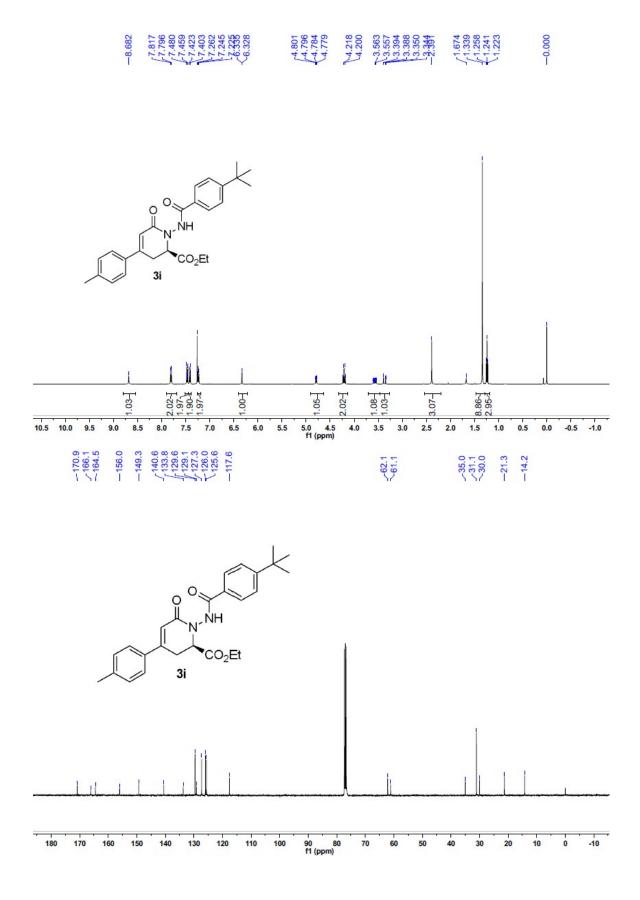


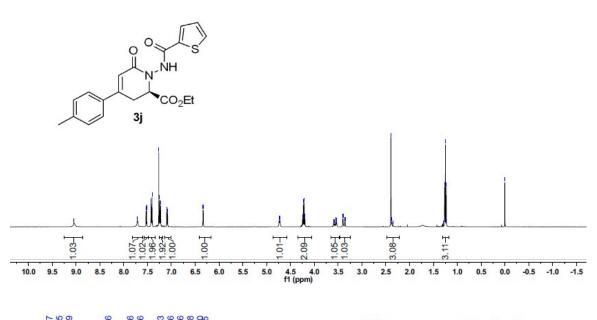


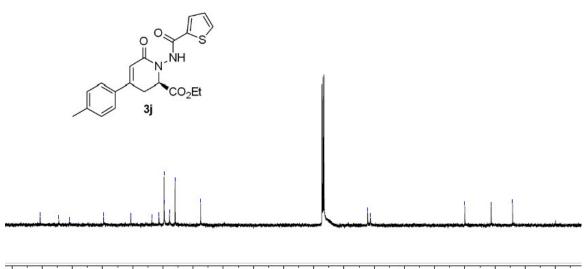


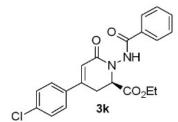

-8.762 -8.762 -8.7385 -7.385 -7.3325 -7.7073 -7.7074 -7.7073 -7.7073 -7.7074 -7.7073 -7.7074 -7.7074 -7.7073 -7.7074 -

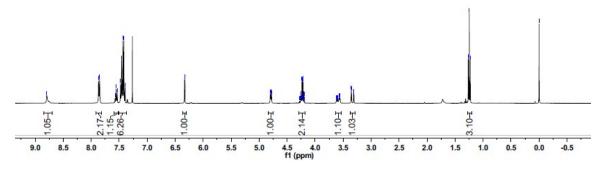


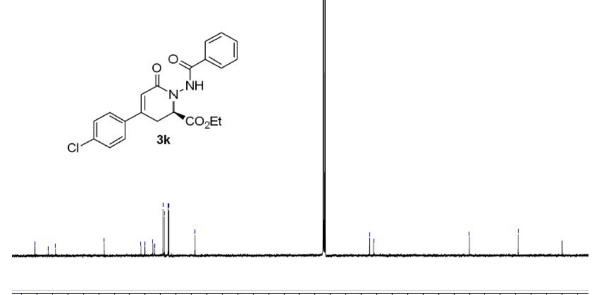




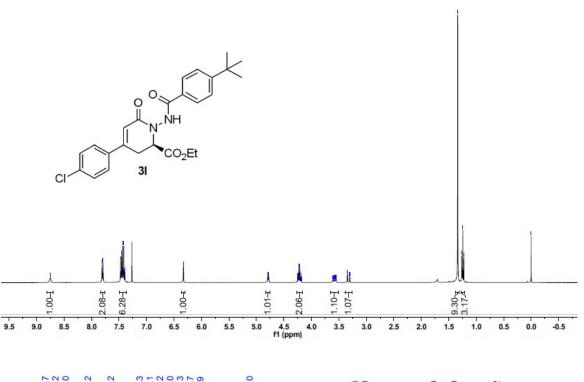


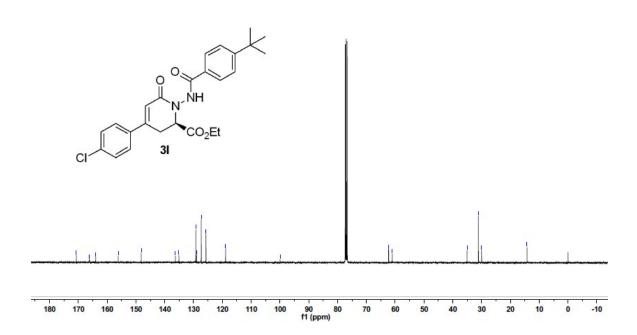

-9.041 -9.041 -7.552 -7.552 -7.552 -7.552 -7.552 -7.552 -7.552 -7.552 -7.552 -7.552 -7.552 -7.552 -7.256 -7.72

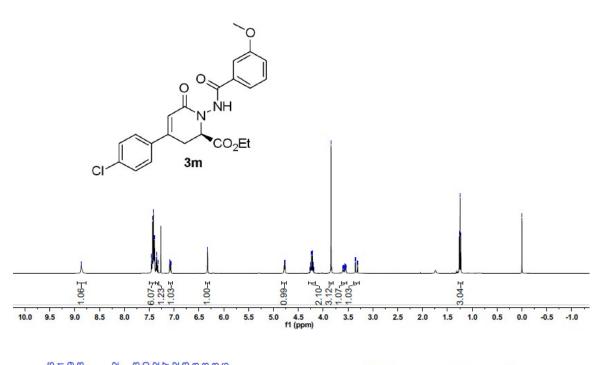




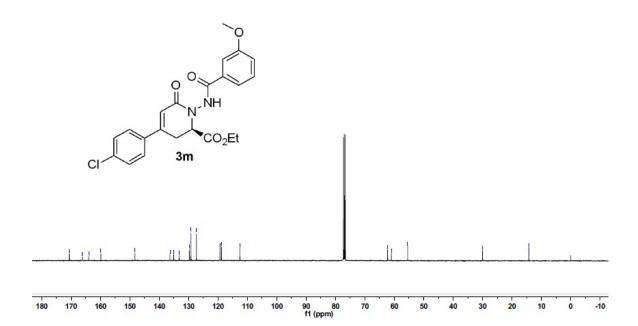
90 80 f1 (ppm) 180 170 160 150 110 100 70 60 50 40 30 20 10 0 140 130 120

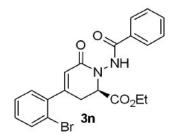


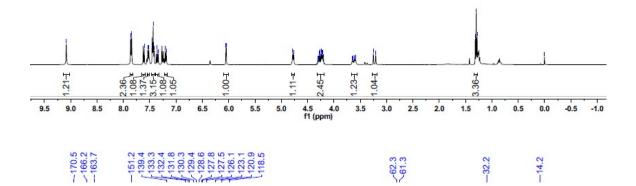


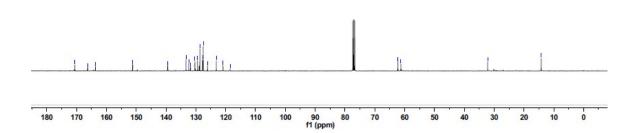


90 80 f1 (ppm)

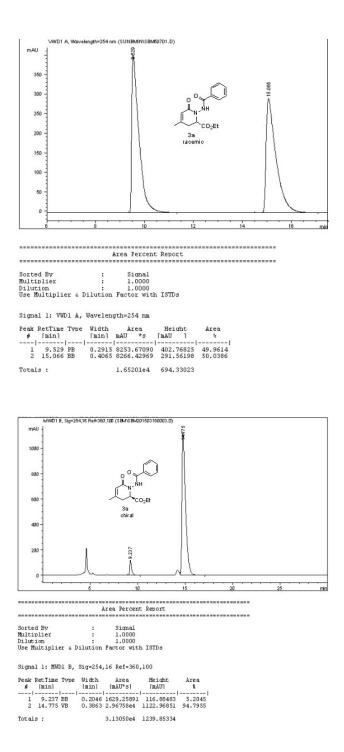


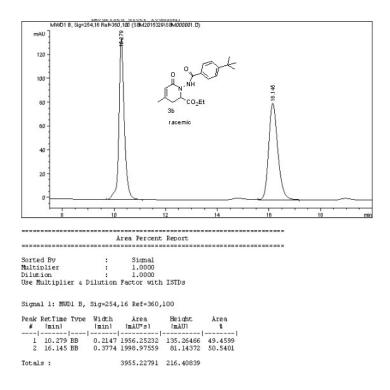


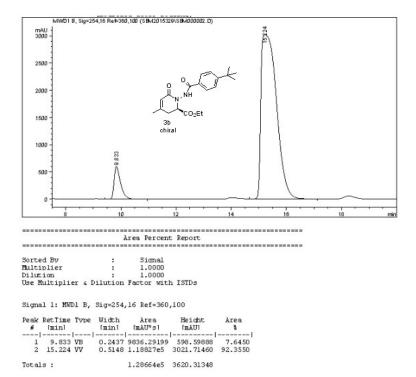


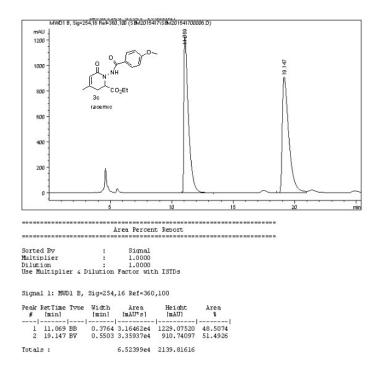


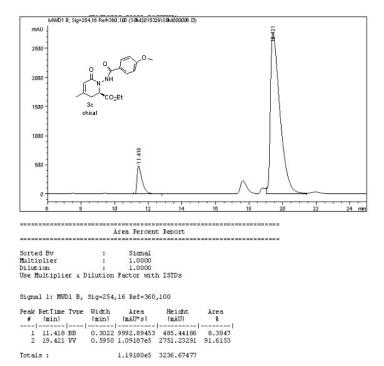
-9.085 -9.085 -9.085 -7.555 -7.557 -7.555 -7.557 -7.557 -7.555 -7.557 -7.555 -7.557 -7.555 -7.555 -7.555 -7.555 -7.555 -7.555 -7.755 -7.555 -7.755 -7.555

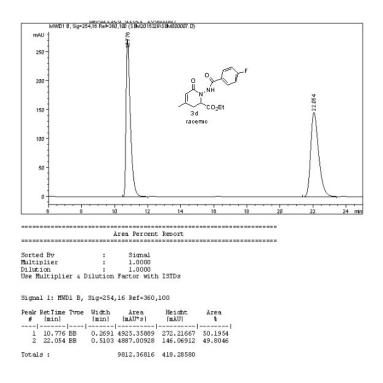


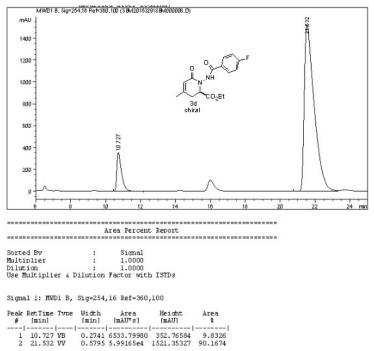


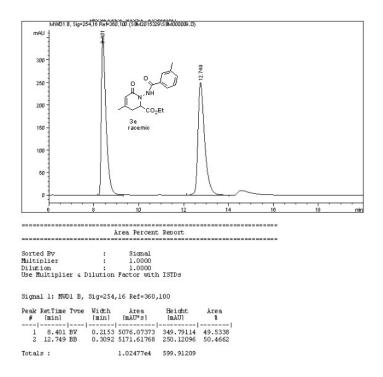


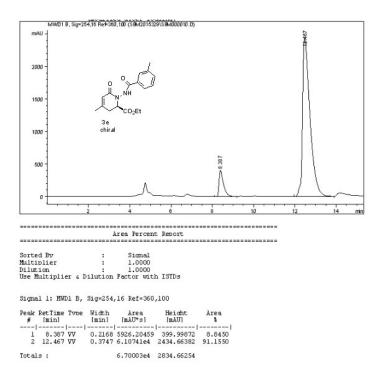


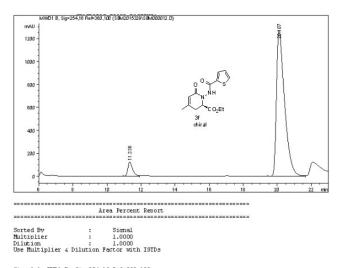

5. HPLC Spectra

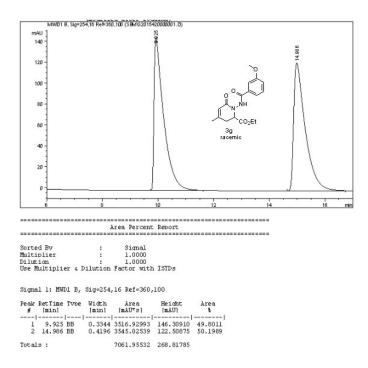


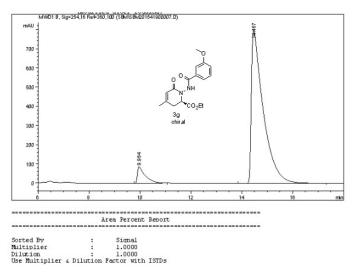




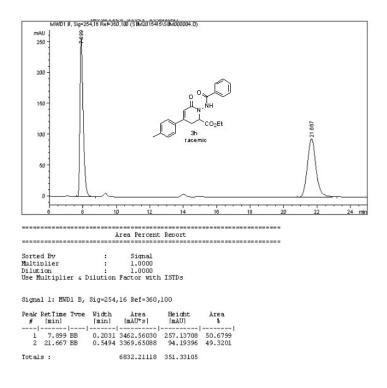


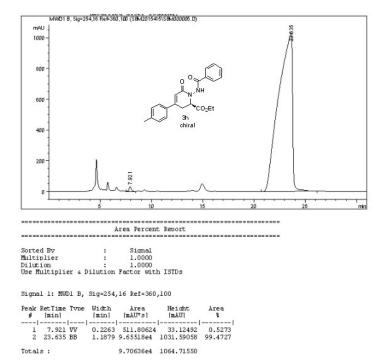

Totals :	6.64503e4	1874.11911

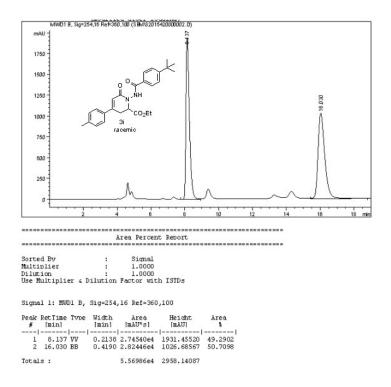


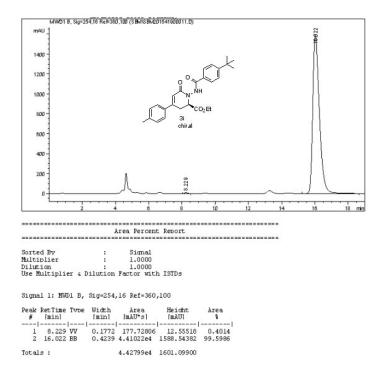


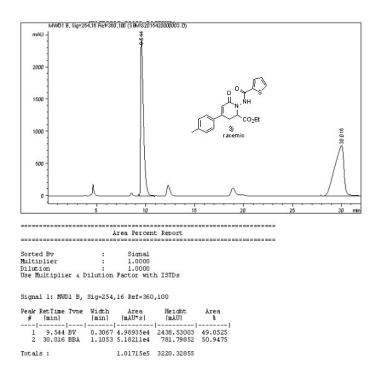
Peak #	RetTime [min]		Width [min]	Area [mAU*s]	Height [mAU]	Årea
1	11.224	BB	0.2891	1.15909e4	595.49945	50.2445
2	20.324	BB	0.4697	1.14781e4	370.18542	49.7555
Total	s :			2.30690e4	965.68488	

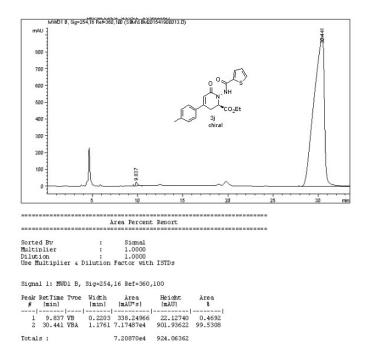

#	RetTime [min]		Width [min]	Area [mAU*s]	Heidht [mAU]	Area
1	11.338			2387.16040	123.59637	5.3969
2	20.107	VV	0.4911	4.18446e4	1267.66016	94.6031
Total	s :			4.42317e4	1391.25653	

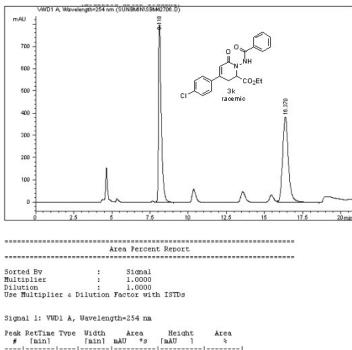


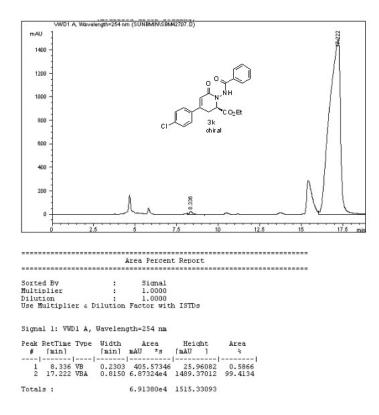


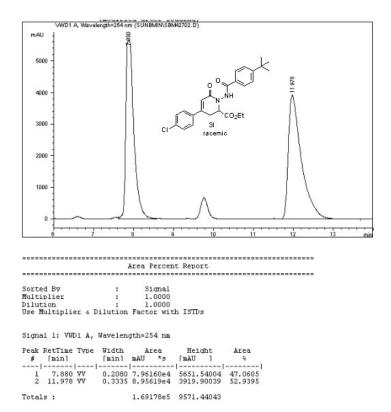

Signal 1: MWD1 B, Sig=254,16 Ref=360,100

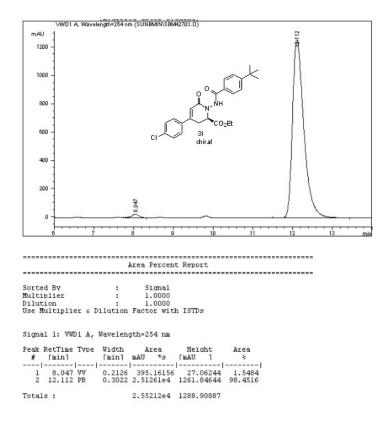

#	RetTime [min]		Width [min]	Årea (mAU*s)	Height [mAU]	Area %
1	9.964	BB	0.2838	1810.79346	86.66051	6.5343
2	14.467	BB	0.4525	2.59013e4	798.31549	93.4657
Total	ls :			2.77121e4	884.97601	



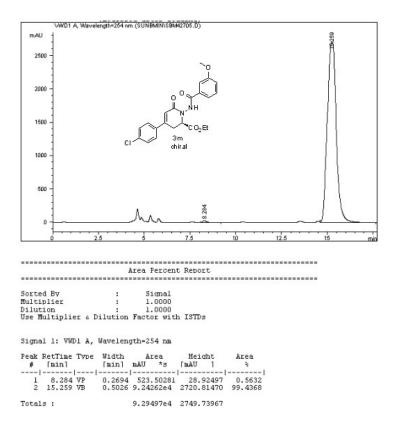


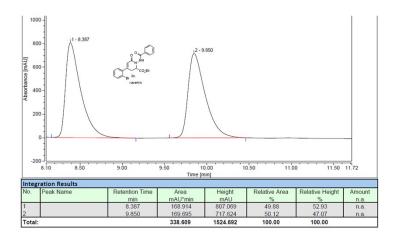


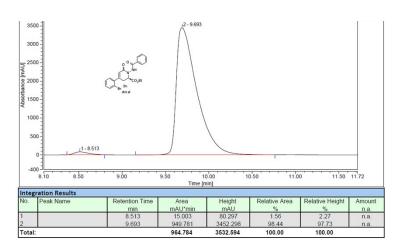


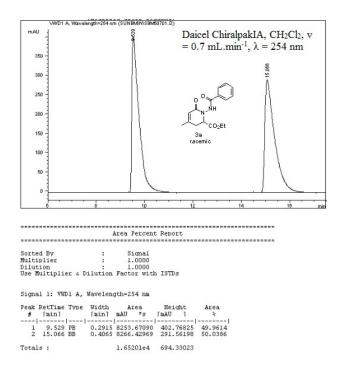


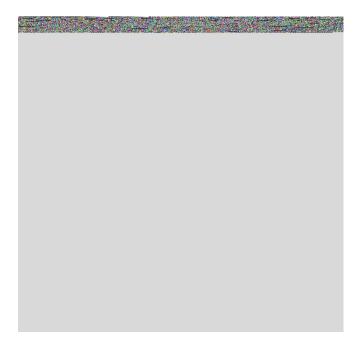
Peak	RetTime	Type	Width	A	rea	Heid	int	Area
#	[min]		[min]				1	*
1	8.118	VV.	0.1899	1.021	136e4	798.	77344	50.1519
2	16.370	VB	0.4046	1.015	517e4	383.0	89285	49.8481
Tota	ls :			2.036	553e4	1182.0	56629	

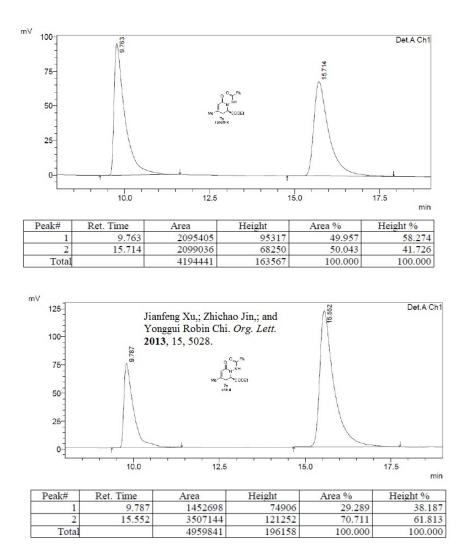







Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	*
1	7.978	VB	0.1944	1.17706e4	894.05591	49.0292
2	15.000	VBA	0.3870	1.22368e4	474.09323	50.9708





6. Determination of the absolute configuration by comparison

