Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting Information

For

Convenient thioacid precursor, *a*-methylphenacyl thioester

Toru Hatanaka, Ryosuke Yuki, Ryota Saito, Kaname Sasaki*

Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi 274-8510 Japan

Compounds	Expt.	Spectra
Scheme 1	-	-
S-Phenacyl thioacetate (2a)	SI-4	-
S-α-Methylphenacyl thioacetate (2b)	SI-4	SI-29
S-α,α-Dimethylphenacyl thioacetate (2c)	SI-5	SI-31
Phenacylthiol (3a)	SI-5	-
α-Methylphenacylthiol (3b)	SI-5	SI-33
α,α-Dimethylphenacylthiol (3c)	SI-5	SI-35
S-Phenacyl N-tert-butoxycarbonyl-L-thiotryptophanate (4a)	SI-6	SI-37
S-α-Methylphenacyl N-tert-butoxycarbonyl-L-thiotryptophanate (4b)	SI-6	SI-39
S- $(\alpha, \alpha$ -Dimethylphenacyl) N-tert-butoxycarbonyl-L-thiotryptophanate	SI-7	SI-41
(4c)		
Table 1	-	-
S-Benzyl N-tert-butoxycarbonyl-L-thiotryptophanate (5a-c)	SI-8	SI-43
Table 2 7a-i	-	-
S-α-Methylphenacyl thiobenzoate (7a)	SI-9	SI-45
S-α-Methylphenacyl thiodecanoate (7b)	SI-9	SI-47
S - α -Methylphenacyl N -tert-butoxycarbonyl-L-thiophenylalainate (7c)	SI-9	SI-49
S-α-Methylphenacyl N-tert-butoxycarbonylthioglycinate (7d)	SI-10	SI-51
S-α-Methylphenacyl <i>N-tert</i> -butoxycarbonyl- <i>O</i> -benzyl-L-thioserinate (7e)	SI-10	SI-53
S-α-Methylphenacyl <i>N-tert</i> -butoxycarbonyl- <i>O</i> -benzyl-L-thiothreonate (7f)	SI-11	SI-55
<i>S</i> -α-Methylphenacyl <i>N</i> -fluorenylmethyloxycarbonyl-L-thiotryptophan ate (7g)	SI-11	SI-57
S^{α} -α-Methylphenacyl S^{γ} -9-fluorenylmethyl <i>N-tert</i> -butoxycarbonyl-L- dithioglutamate (7h)	SI-12	SI-59
S^{α} - α -Methylphenacyl S^{γ} -2,4,6-trimethoxybenzyl N -(9-fluorenylmethyl oxycarbonyl)-L-dithioglutamate (7i)	SI-12	SI-61
Scheme SI-1	-	-
S^{α} - α -Methylphenacyl O^{γ} -allyl <i>N-tert</i> -butoxycarbonyl-L- α -thioglutama	SI-13	SI-63
te (S2)		
S^{α} - α -Methylphenacyl <i>N-tert</i> -butoxycarbonyl-L- α -thioglutamate (S3)	SI-14	SI-65
S^{α} - α -Methylphenacyl O^{γ} -tert-butyl N -(9-fluorenylmethyloxycarbonyl)	SI-14	SI-67
-L-α-thioglutamate (S5)		

S ^α -α-Methylphenacyl	SI-15	SI-69
N -fluorenylmethyloxycarbonyl-L- α -thioglutamate (S6)		
Table 2 8a-i	-	-
S-Benzyl thiobenzoate (8a)	SI-16	SI-71
S-Benzyl thiodecanoate (8b)	SI-16	SI-73
S-Benzyl N-tert-butoxycarbonyl-L-thiophenylalaninate (8c)	SI-17	SI-75
S-Benzyl N-tert-butoxycarbonylthioglycinate (8d)	SI-17	SI-77
S-Benzyl N-tert-butoxycarbonyl-O-benzyl-L-thioserinate (8e)	SI-17	SI-79
S-Benzyl N-tert-butoxycarbonyl-O-benzyl-L-thiothreonate (8f)	SI-18	SI-81
S-Benzyl N-fluorenylmethyloxycarbonyl-L-thiotryptophanate (8g)	SI-18	SI-83
S ^α -Benzyl S ^γ -9-fluorenylmethyl N- <i>tert</i> -butoxycarbonyl-L-dithioglutam	SI-19	SI-85
ate (8h)		
S ^α -Benzyl S ^γ -2,4,6-trimethoxybenzyl N-(9-fluorenylmethyloxycarbony	SI-19	SI-87
l)-L-dithioglutamate (8i)		
S^{α} -Cyanoethyl S^{γ} -(2,4,6-trimethoxybenzyl) N -(9-fluorenylmethyloxyc	SI-20	SI-89
arbonyl)-L-dithioglutamate (8j)		
Scheme 2	-	-
S-α-Methylphenacyl N-tert-butoxycarbonyl-L-tryptophanylthioglycina	SI-20	SI-91
te (9)		
S - α -Methylphenacyl N^{α} -benzyloxycarbonyl- N^{ε} -tert-butoxycarbonyl-L-	SI-21	SI-93
lysyl-L-tryptophanylthioglycinate (10)		
S -Benzyl N^{α} -benzyloxycarbonyl- N^{ε} -tert-butoxycarbonyl-L-lysyl-L-trypt	SI-22	SI-95
ophenylthioglycinate (11)		
Scheme 3	-	-
O^{α} -Allyl O^{γ} -(9-fluorenylmethyl) <i>N-tert</i> -butoxycarbonyl-L-glutamate	SI-23	SI-97
(13)		
O^{α} -Allyl <i>N-tert</i> -butoxycarbonyl-L-glutamic acid (14)	SI-23	SI-99
O^{α} -Allyl S ^{γ} - α -methylphenacyl <i>N-tert</i> -butoxycarbonyl-L- γ -thioglutama	SI-24	SI-101
te (15)		
S^{γ} - α -Methylphenacyl <i>N-tert</i> -butoxycarbonyl-L- γ -thioglutamic acid (16)	SI-24	SI-103
Ethyl <i>N-tert</i> -butoxycarbonyl-L- S^{γ} - α -metylphenacyl- γ -thioglutamyl	SI-25	SI-105
glycinate (17)		
Ethyl <i>N-tert</i> -butoxycarbonyl-L-tryptophanyl- S^{γ} - α -methylphenacyl-L- γ -	SI-26	SI-107
thioglutamylglycinate (18)		
Ethyl <i>N-tert</i> -butoxycarbonyl-L-tryptophanyl- <i>S^γ</i> -benzyl-L-γ-thioglutam	SI-27	SI-109
ylglycinate (19)		

General Methods

Analytical thin layer chromatography (TLC) was performed using Merck KGaA TLC 60F-254 plates (0.25 mm), and visualization was accomplished with a 2.5% solution of *p*-anisaldehyde in AcOH/H₂SO₄/H₂O, and a 1% solution of ninhydrin in EtOH, followed by heating or UV irradiation (254 nm). Silica gel column chromatography was performed on FUJI SILYSIA CHEMICAL Ltd. Silica Gel PSQ60B 46-50 μ m (spherical, neutral). Specific rotations were measured on an automatic polarimeter with a path length of 50 mm in the solvent specified. Concentrations are given in g/100 mL. Optical rotations were measured on a JASCO P-2200 photoelectric polarimeter. ¹H and ¹³C NMR spectra were recorded on a JEOL Ltd. JNM-ECP400 series (400 MHz). ¹H NMR data are reported as follows: chemical shift in parts par million (ppm) downfield or upfield from tetramethylsilane (δ 0.00) or CDCl₃ (δ 7.26), multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), and integration. Chemical shifts in ¹³C NMR are reported in ppm downfield or upfield from CDCl₃ (δ 77.36). High-resolution mass spectra (HRMS) were recorded on a JEOL Ltd. AccuTOFCS JIMS-T100CS with an electrospray ionization (ESI) source coupled.

General procedure for preparation of S-phenacyl thioacetates.

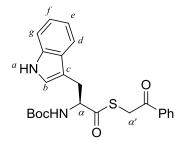
To a phenacyl bromide in DMF (1.0 M) was added *S*-potassium thioacetate (1.05 equiv.) at 0 °C. The reaction mixture was stirred for 30 min, and the reaction was quenched with water. The mixture was extracted with CH_2Cl_2 , and the combined organic layer was washed with brine, dried over Na_2SO_4 , and concentrated *in vacuo* to give an *S*-phenacyl thioacetate.

S-Phenacyl thioacetate (2a). Phenacyl bromide (1a, 1.1 g, 5.7 mmol) was used as a bromide. Yellow solid. Data were in agreement with a known literature.^[1]

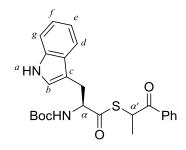
S-α-Methylphenacyl thioacetate (2b). 2-Bromopropiophenone (1b, 14 g, 66 mmol) was used as a bromide. Brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, $J_{o,m} = 7.6$ Hz, 2H, Ar-H_o), 7.51 (t, $J_{m,p} = 7.6$ Hz, 1H, Ar-H_p), 7.40 (dd, $J_{o,m} = 7.6$ Hz, $J_{m,p} = 7.6$ Hz, 2H, Ar-H_m), 5.23 (q, $J_{\alpha,\beta} = 7.2$ Hz, 1H, CH), 2.30 (s, 3H, CH₃), 1.49 (d, $J_{\alpha,\beta} = 7.2$ Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 197.3, 194.0, 134.9, 133.6 128.7, 128.6, 42.4, 30.3, 17.8; ESIHRMS: m/z calcd. for C₁₁H₁₂O₂SNa (M + Na)⁺ 231.0456, found 231.0462.

S-α,α-Dimethylphenacyl thioacetate (2c). 2-Bromo-2-methylpropiophenone^[2] (1c, 15 g, 66 mmol) was used as a bromide. Brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, $J_{o,m} = 7.6$ Hz, 2H, Ar-H_o), 7.44 (t, $J_{m,p} = 7.2$ Hz, 1H, Ar-H_p), 7.36 (dd, $J_{o,m} = 7.6$ Hz, $J_{m,p} = 7.2$ Hz, 2H, Ar-H_m), 2.11 (s, 3H, CH₃), 1.70 (s, J = 7.2 Hz, 6H, CH₃ x 2); ¹³C NMR (100 MHz, CDCl₃) δ 200.8, 194.2, 136.3, 131.7, 129.4, 128.8, 128.2, 127.8, 55.5, 30.2, 26.9; ESIHRMS: m/z calcd. for C₁₂H₁₄O₂SNa (M + Na)⁺ 245.0613, found 245.0626.

Phenacylthiol (**3a**). **2a** (0.23 g, 1.2 mmol) in MeOH (2.4 mL) were degassed, and NaOMe (12 mg, 0.23 mmol) was added at room temperature. The reaction mixture was degassed again and stirred for 30 min, and the reaction was quenched with HCl aq. (3.0 M, 10 mL). The mixture was extracted with CH_2Cl_2 (7 mL x 3), and the combined organic layer was washed with brine (10 mL), dried over Na₂SO₄, and concentrated *in vacuo* to give the title compound as a yellow oil. Data were in agreement with a known literature.^[1]

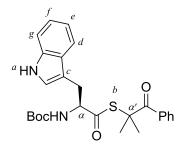


α-Methylphenacylthiol (**3b**). To a degassed solution of **2b** (14 mL, 66 mmol) in MeCN (66 mL) was added H₂NNH₂•H₂O (3.4 mL, 66 mmol) at 0 °C. The reaction mixture was degassed again and stirred for 15 min. Then, the reaction was quenched with HCl aq. (1.0 M, 300 mL). The mixture was extracted with CH₂Cl₂ (100 mL x 3), and the combined organic layer was washed with brine (300 mL), dried over Na₂SO₄, and concentrated *in vacuo* to give the title compound as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, $J_{o,m} = 7.2$ Hz, 2H, Ar-H_o), 7.53 (t, $J_{m,p} = 7.2$ Hz, 1H, Ar-H_p), 7.43 (dd, $J_{o,m} = 7.2$ Hz, 2H, Ar-H_m), 4.36 (qd, $J_{\alpha,\beta} = 6.6$ Hz, $J_{\alpha,SH} = 9.5$ Hz, 1H, CH), 2.00 (d, $J_{\alpha,SH} = 9.5$ Hz, 1H, SH), 1.58 (d, $J_{\alpha,\beta} = 6.6$ Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 197.7, 134.8, 133.4, 128.8, 128.7, 36.7, 21.0; FABHRMS: m/z calcd. for C₉H₁₁OS (M + H)⁺ 167.0531, found 167.0522.



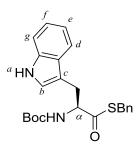
 α,α -Dimethylphenacylthiol (3c). To a degassed solution of 2c (15 g, 66 mmol) in MeCN (66 mL) was added H₂NNH₂·H₂O (3.4 mL, 66 mmol) at 0 °C. The reaction mixture was degassed again and stirred for 15 min. Then, the reaction was quenched with HCl aq. (1.0 M, 300 mL). The mixture was extracted with CH₂Cl₂ (100 mL x 3), and the combined organic layer was washed with brine (300

mL), dried over Na₂SO₄, and concentrated *in vacuo* to give the title compound as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, $J_{o,m}$ = 7.6 Hz, 2H, Ar-H_o), 7.42 (t, $J_{m,p}$ = 7.6 Hz, 1H, Ar-H_p), 7.35 (dd, $J_{o,m}$ = 7.6 Hz, $J_{m,p}$ = 7.6 Hz, 2H, Ar-H_m), 2.30 (s, 1H, SH), 1.62 (s, 6H, CH₃ x 2); ¹³C NMR (100 MHz, CDCl₃) δ 201.8, 136.5, 131.7, 129.3, 128.1, 49.0, 30.2. Data were in agreement with a known literature.^[3]

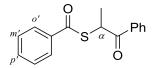


S-Phenacyl *N-tert*-butoxycarbonyl-L-thiotryptophanate (4a). To Boc-L-Trp-OH (199 mg, 0.66 mmol) and phenacylthiol (120 mg, 0.79 mmol) in CH₂Cl₂ (1.3 mL) were added EDCI (151 mg, 0.79 mmol) and DMAP (8 mg, 0.06 mmol) at room temperature. The reaction mixture was stirred for 1 h, and the reaction was quenched with water (10 mL). The mixture was extracted with CH₂Cl₂ (7 mL x 3), and the combined organic layer was washed with brine (10 mL), dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (10 g, hexane/EtOAc = 9/1 to 4/1) to afford the corresponding thioester as a yellow foam (244 mg, 85%). $[\alpha]^{20}_{D} = -75.2$ (*c* = 0.75, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.72 (br s, 1H, NH_a), 7.93 (d, *J*_{α,m} = 7.6 Hz, 2H, Ar-H_o), 7.65-7.52 (m, 2H, Ar-H, In-H), 7.45 (dd, *J*_{α,m} = 7.6 Hz, *J*_{m,p} = 7.6 Hz, 2H, Ar-H_m), 7.33 (d, *J*_{d,e} = 8.0 Hz, H_d), 7.19 (dd, *J*_{e,f} = 8.0 Hz, 1H, H_e), 7.01 (s, 1H, H_b), 5.29 (br d, *J*_{α,NH} = 8.0 Hz, 1H, NH), 4.77 (td, *J*_{α,NH} = 8.0 Hz, *J*_{α,β} = 4.8 Hz, 1H, H_α), 4.35 & 4.12 (ABq, *J* = 16.0 Hz, 1H each, CH_{2α}), 3.32 (d, *J*_{α,β} = 4.8 Hz, 2H, CH_{2β}), 1.44 (s, 9 H, 'Bu); ¹³C NMR (100MHz, CDCl₃) δ 201.1, 193.7, 155.6, 136.4, 135.7, 133.9, 127.7, 123.7, 122.2, 119.6, 118.6, 111.7, 109.1, 80.6, 61.1, 36.9, 28.5, 28.0; ESIHRMS: *m*/z calcd. for C₂₄H₂₆N₂O4SNa (M + Na)⁺ 461.1511, found 461.1512.

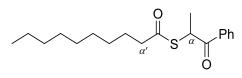
S-α-Methylphenacyl *N-tert*-butoxycarbonyl-L-thiotryptophanate (4b). To Boc-L-Trp-OH (599 mg, 2.0 mmol) and α-methylphenacylthiol (399 mg, 2.4 mmol) in CH₂Cl₂ (4.0 mL) were added EDCI (364 mg, 1.9 mmol) and DMAP (24 mg, 0.2 mmol) at room temperature. The reaction mixture


was stirred for 1 h, and the reaction was quenched with water (20 mL). The mixture was extracted with CH₂Cl₂ (10 mL x 3), and the combined organic layer was washed with brine (20 mL), dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (15 g, hexane/EtOAc = 9/1 to 4/1) to afford the title compound as a yellow foam (840 mg, 94%). ¹H NMR (400 MHz, CDCl₃) δ 8.91 (br s, 0.5H each, NH_a), 7.96 (d, $J_{o,m} = 7.2$ Hz, 2H, Ar-H_o), 7.60 (t, $J_{m,p} = 7.2$ Hz, 1H, Ar-H_p), 7.55 (d, $J_{d,e} = 6.8$ Hz, 1H, H_d), 7.43 (dd, $J_{o,m} = 7.2$ Hz, $J_{m,p} = 7.2$ Hz, 2H, Ar-H_m), 7.34 (dd, $J_{d,e} = 6.8$ Hz, $J_{e,f} = 7.2$ Hz, 1H, H_e), 7.16 (d, $J_{f,g} = 7.2$ Hz, 1H, H_g), 7.14 (dd, $J_{e,f} = 7.2$ Hz, $J_{f,g} = 7.2$ Hz, 1H, H_f), 6.93 (s, 0.5H each, H_b), 5.45-5.25 (br d, $J_{\alpha,NH} = 10.8$ Hz, 1H, NH), 5.21 (q, $J_{\alpha',\beta'} = 4.9$ Hz, 1H, H_a), 4.70 (ddd, $J_{\alpha,\beta} = 4.8$ Hz each, $J_{\alpha,NH} = 10.8$ Hz, 1H, NH), 5.21 (q, $J_{\alpha',\beta'} = 4.9$ Hz, 1H, H_a), 4.70 (ddd, $J_{\alpha,\beta} = 4.8$ Hz each, $J_{\alpha,NH} = 10.8$ Hz, 1H, NH), 5.21 (q, $J_{\alpha,\beta} = 4.8$ Hz, $J_{\beta,\beta} = 12.8$ Hz, 2H, CH₂ $_{\beta}$), 1.50 (d, $J_{\alpha',\beta'} = 4.9$ Hz, 3H, CH₃ $_{\beta'}$), 1.46& 1.39 (s, 4.5H each, 'Bu); ¹³C NMR (100MHz, CDCl₃) δ 200.1, 200.8, 198.3, 198.1, 155.6, 155.5, 136.5, 135.1, 133.9, 127.6, 122.3, 119.7, 118.7, 111.8, 109.1, 80.7, 77.8, 77.6, 77.5, 77.2, 61.3, 61.2, 61.1, 42.8, 42.7, 28.4, 17.8, 17.5; ESIHRMS: m/z calcd. for C₂₅H₂₈N₂O₄SNa (M + Na)+ 475.1668, found 475.1692.

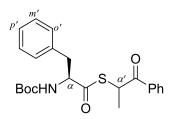
S-(*α*,*α*-Dimethylphenacyl) *N-tert*-butoxycarbonyl-L-thiotryptophanate (4c). To Boc-L-Trp-OH (500 mg, 1.6 mmol) and *α*,*α*-dimethylphenacylthiol (356 mg, 1.9 mmol) in CH₂Cl₂ (3.2 mL) were added EDCI (364 mg, 1.9 mmol) and DMAP (24 mg, 0.2 mmol) at room temperature. The reaction mixture was stirred for 1 h, and the reaction was quenched with water (20 mL). The mixture was extracted with CH₂Cl₂ (10 mL x 3), and the combined organic layer was washed with brine (20 mL), dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (15 g, hexane/EtOAc = 9/1 to 4/1) to afford the corresponding thioester as a greenish foam (745 mg, 97%). [*α*]²⁰_D = -52.1 (*c* = 1.23, CHCl₃); ¹H NMR (400 MHz CDCl₃) δ 8.46 (br s, 1H, NH_α), 8.02 (d, *J_{o,m}* = 8.0 Hz, 2H, Ar-H_o), 7.54-7.44 (m, 2H, Ar-H, In-H), 7.34 (dd, *J_{o,m}* = 8.0 Hz, *J_{m,p}* = 7.6 Hz, 2H, Ar-H_m), 7.32 (d, *J_{f,g}* = 8.0 Hz, 1H, H_g), 7.18 (dd, *J_{f,g}* = 8.0 Hz, *J_{e,f}* = 7.6 Hz, 1H, NH), 4.53 (td, *J_{α,β}* = 7.2 Hz, *J_{α,NH}* = 8.4 Hz, 1H, H_α), 2.99 (d, *J_{α,β}* = 7.2 Hz, 2H, CH_{2β}), 1.70 (s, 6H, CH_{3β'} x 2), 1.43 (s, 9H, 'Bu); ¹³C NMR (100MHz, CDCl₃) δ 201.2, 200.5, 155.2, 136.2, 136.2, 129.1, 127.7, 122.2, 119, 7, 118.6, 111.5, 109.1, 80.4, 60.7, 55.1, 28.4, 28.2, 27.4, 27.0; ESIHRMS: *m*/z calcd. for C₂₆H₃₀N₂O₄SNa (M + Na)⁺ 489.1824, found 489.1804.


General procedure for deprotection followed by benzylation in Table 1.

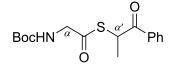
Thiotriptophanates (0.12 mmol) in 90% AcOH aq. (0.1 M) was degassed, and 50 equiv. of freshly washed Zn was added to the solution. The mixture was degassed again and stirred, followed by concentration under high vacuum. The residue was suspended in CHCl₃/MeOH (5/1), and then filtrated through silicagel pad. The filtrate was concentrated *in vacuo*. To the residue in DMF (0.1 M) were added 3.0 equiv. of Cs₂CO₃ and BnBr, and the reaction mixture was stirred for 30 min. The reaction was quenched with water (10 mL). The mixture was extracted with CH₂Cl₂ (7 mL x 3), and the combined organic layer was washed with brine (10 mL), dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography to afford the corresponding benzyl thioester.



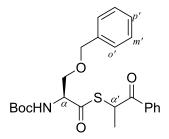
S-Benzyl *N-tert*-butoxycarbonyl-L-thiotryptophanate (**5**). Colorless solid; mp: 127.5-130.0 °C; [α]²⁰_D = -53.6 (c = 0.53, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.19 (br s, 1H, NH_a), 7.57 (br, 1H, In-H), 7.34 (d, $J_{d,e} = 8.0$ Hz, 1H, H_a), 7.31-7.17 (m, 6H, In-H, Ar-H x5), 7.12 (dd, $J_{d,e} = 8.0$ Hz, $J_{e,f} =$ 7.2 Hz, 1H, H_e), 6.82 (s, 1H, H_b), 5.06 (br d, $J_{\alpha,NH} = 8.0$ Hz, NH), 4.73 (ddd, $J_{\alpha,NH} = 8.0$ Hz, $J_{\alpha,\beta} =$ 5.6 Hz each, 1H, H_a), 4.10 & 4.04 (ABq, J = 12.4 Hz, 1H each, CH₂Ph), 3.36 & 3.33 & 3.28 & 3.25 (ddd, $J_{\alpha,\beta} = 5.6$ Hz each, $J_{\beta,\beta} = 17.6$ Hz, 2H, CH_{2β}), 1.42 (s, 9H, 'Bu); ¹³C NMR (100 MHz, CDCl₃) δ 201.4, 155.3, 137.3, 136.2, 128.6, 127.1, 122.3, 119.8, 118.9, 111.3, 109.6, 80.4, 65.4, 60.6, 33.5, 28.4, 28.2; ESIHRMS: m/z calcd. for C₂₃H₂₆N₂O₃SNa (M + Na)⁺ 433.1562, found 433.1567.


General procedure for preparation of S- α -Methylphenacyl thioester 7a-i (Table 2) To a carboxylic acid and 1.2 equiv. of α -methylphenacylthiol in CH₂Cl₂ (0.5 M) were added 1.2 equiv. of EDCI and 0.1 equiv. of DMAP at room temperature. The reaction mixture was stirred for 1 h, and the reaction was quenched with water (20 mL). The mixture was extracted with CH₂Cl₂ (10 mL x 3), and the combined organic layer was washed with brine (20 mL), dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography to afford the corresponding Mpa thioester.

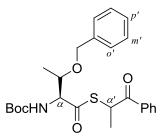
S-α-Methylphenacyl thiobenzoate (7a). Benzoic acid (6a, 168 mg, 1.4 mmol) was used as a carboxylic acid. Purification was performed by silica gel column chromatography (10 g, hexane to hexane/EtOAc = 9/1) to afford the title compound as a yellow syrup (335 mg, 90%). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, $J_{o,m}$ = 7.6 Hz, 2H, Ar-H_o), 7.89 (d, $J_{o',m'}$ = 7.7 Hz, 2H, Ar-H_o·), 7.48 (t, $J_{m,p}$ = 7.7 Hz, 1H, Ar-H_p), 7.46 (t, $J_{m',p'}$ = 7.2 Hz, 1H, Ar-H_p·), 7.38 (dd, $J_{o,m}$ = 7.6 Hz, $J_{m,p}$ = 7.7 Hz, 2H, Ar-H_o), 7.33 (dd, $J_{o',m'}$ = 7.7 Hz, $J_{m',p'}$ = 7.2 Hz, 2H, Ar-H_p·), 5.46 (q, $J_{\alpha,\beta}$ = 7.0 Hz, 1H, H_α), 1.16 (d, $J_{\alpha,\beta}$ = 7.0 Hz, 3H, CH₃β); ¹³C NMR (100 MHz, CDCl₃) δ 197.4, 190.0, 136.2, 135.0, 134.0, 133.6, 128.9, 128.8, 128.7, 127.5, 42.5, 17.9; ESIHRMS: m/z calcd. for C₁₆H₁₄O₂SNa (M + Na)⁺ 293.0613, found 293.0616.

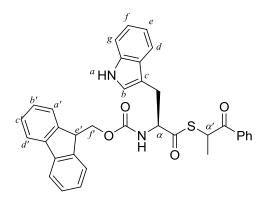


S-α-Methylphenacyl thiodecanoate (7b). Capric acid (6b, 219 mg, 1.3 mmol) was used as a carboxylic acid. Purfication was performed by silica gel column chromatography (10 g, hexane to hexane/EtOAc = 19/1) to afford the title compound as a yellow syrup (377 mg, 92%). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, $J_{o,m} = 7.6$ Hz, 2H, Ar-H_o), 7.49 (t, $J_{m,p} = 7.2$ Hz, 1H, Ar-H_p), 7.38 (dd, $J_{o,m} = 7.6$ Hz, 2H, Ar-H_m), 5.23 (q, $J_{\alpha,\beta} = 7.0$ Hz, 1H, H_α), 2.49 (t, $J_{\alpha',\beta'} = 7.6$ Hz, 2H, COCH₂), 1.59 (t, $J_{\alpha',\beta'} = 6.8$ Hz, 2H, CH₂), 1.49 (d, $J_{\alpha,\beta} = 7.0$ Hz, 3H, CH₃), 1.29-1.10 (m, 12H, CH₂ x6), 0.82 (t, J = 6.8 Hz, 3H, CH₃ $_{\beta}$); ¹³C NMR (100 MHz, CDCl₃) δ 197.6, 197.2, 135.0, 133.4, 128.7, 128.6, 43.7, 41.9, 31.9, 29.4, 29.3, 29.2, 28.9, 25.6, 22.7, 17.7, 14.2; ESIHRMS: *m*/*z* calcd. for C₁₉H₂₈O₂SNa (M + Na)⁺ 343.1708, found 343.1705.

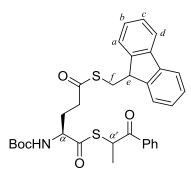


S-α-Methylphenacyl *N-tert*-butoxycarbonyl-L-thiophenylalainate (7c). Boc-L-Phe-OH (6c, 99 mg, 0.37 mmol) was used as a carboxylic acid. Purification was performed by silica gel column chromatography (10 g, hexane/EtOAc = 9/1) to afford the title compound as a yellow syrup (147 mg, 95%). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, $J_{o,m} = 7.6$ Hz, 2H, Ar-H_o), 7.52 (t, $J_{m,p} = 7.6$ Hz, 1H, Ar-H_p), 7.42 (dd, $J_{o,m} = 7.6$ Hz, $J_{m,p} = 7.6$ Hz, 2H, Ar-H_m), 7.23-7.13 (m, 3H, Ar-H), 7.08 (dd, $J_{o',m'} = 9.6$ Hz, $J_{m',p'} = 9.6$ Hz, 2H, Ar-H_m), 5.21 (q, $J_{\alpha',\beta'} = 6.8$ Hz, 1H, H_{α'}), 5.04 & 4.99 (br d, $J_{\alpha,NH} = 8.0$ Hz, 0.5H each, NH), 4.63 (td, $J_{\alpha,\beta} = 6.8$ Hz, $J_{\alpha,NH} = 8.0$ Hz, 1H, H_α), 3.15-2.95 (m, 2H, CH₂β), 1.49

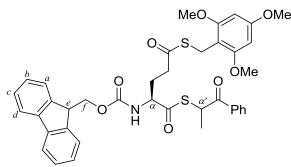

(d, $J_{\alpha',\beta'} = 6.8$ Hz, 3H, CH_{3 $\beta'}), 1.35 & 1.30$ (s, 4.5H each, ^{*t*}Bu); ¹³C NMR (100 MHz, CDCl₃) δ 200.3, 199.7, 197.5, 197.3, 196.0, 196.9, 155.1, 155.0, 135.6, 135.0, 133.7, 129.4, 129.4, 129.0, 128.9, 128.8, 128.7, 127.2, 80.5, 80.4, 61.3, 61.2, 48.0, 42.4, 42.3, 38.2, 38.0, 28.3, 28.3, 28.0, 17.8, 17.6, 16.9, 16.5; ESIHRMS: m/z calcd. for C₂₃H₂₇NO₄SNa (M + Na)⁺ 436.1559, found 436.1551.</sub>


S-α-Methylphenacyl *N-tert*-butoxycarbonylthioglycinate (7d). Boc-Gly-OH (6d, 604 mg, 3.5 mmol) was used as a carboxylic acid. Purification was performed by silica gel column chromatography (20 g, hexane/EtOAc = 9/1) to afford the title compound as a white foam (1.1 g, 95%). ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, $J_{o,m}$ = 7.2 Hz, 2H, Ar-H_o), 7.41 (t, $J_{m,p}$ = 7.2 Hz, 1H, Ar-H_p), 7.29 (dd, $J_{o,m}$ = 7.2 Hz, $J_{m,p}$ = 7.2 Hz, 2H, Ar-H_m), 5.73 & 5.64 (br d, $J_{\alpha,NH}$ = 10.8 Hz, 0.5H each, NH), 5.11 (q, $J_{\alpha',\beta'}$ = 6.4 Hz, 1H, H_{β'}), 3.87 (ddd, $J_{\alpha,\beta}$ = 17.2 Hz, $J_{\alpha,NH}$ = 10.8 Hz each, 2H, CH_{2α}), 1.37 (d, $J_{\alpha',\beta'}$ = 6.4 Hz, 3H, H_{α'}), 1.28 & 1.20 (s, 4.5H each, ¹Bu); ¹³C NMR (100 MHz, CDCl₃) δ 197.8, 197.6, 155.8, 134.7, 133.7, 133.5, 128.8, 128.7. 128.5, 80.2, 50.2, 42.2, 42.0, 28.3, 17.7; ESIHRMS: *m*/z calcd. for C₁₆H₂₁NO₄SNa (M + Na)⁺ 346.1089, found 346.1083.

S-α-Methylphenacyl *N-tert*-butoxycarbonyl-*O*-benzyl-L-thioserinate (7e). Boc-L-Ser-OH (6e, 303 mg, 1.0 mmol) was used as a carboxylic acid. Purification was performed by silica gel column chromatography (15 g, hexane/EtOAc = 9/1) to afford the title compound as a yellow syrup (448 mg, 98%). ¹H NMR (400 MHz, CDCl₃) δ 7.94 & 7.92 (d, $J_{\alpha,m} = 6.8$ Hz, 1H each, Ar-H_o), 7.50 & 7.48 (t, $J_{m,p} = 7.2$ Hz, 0.5H each, Ar-H_p), 7.39 & 7.37 (dd, $J_{\alpha,m} = 6.8$ Hz, $J_{m,p} = 7.2$ Hz, 1H each, Ar-H_m), 7.30-7.12 (m, 5H, Ar-H), 5,59 & 5.56 (br d, $J_{\alpha,NH} = 8.0$ Hz, 0.5H each, NH), 5.23 (q, $J_{\alpha',\beta'} = 7.2$ Hz, 1H, H_{α'}), 4.51 & 4.49 (ddd, $J_{\alpha,NH} = 8.0$ Hz, $J_{\alpha,\beta} = 8.0$ Hz, 0.5H each, H_a), 4.44 & 4.38 (ABq, J = 12.4 Hz, 1H each, CH₂Ph), 3.93 & 3.60 (dd, $J_{\alpha,\beta} = 8.0$ Hz, $J_{\beta,\beta} = 11.2$ Hz, 1H each, CH₂ $_{\beta}$), 1.52 (d, $J_{\alpha',\beta'} = 7.2$ Hz, 3H, CH₃ $_{\beta'}$), 1.44 & 1.38 (s, 4.5H each, 'Bu); ¹³C NMR (100 MHz, CDCl₃) δ 199.7, 199.1, 197.4, 197.3, 155.3, 155.2, 135.0, 134.9, 133.7, 133.6, 133.52, 128.7, 128.6, 128.5, 128.0, 127.9, 127.7, 127.5, 80.6, 80.5, 73.5, 73.4, 73.3, 60.7, 60.5, 60.4, 42.6, 42.4, 28.4, 18.0, 18.0, 17.6, 17.6; ESIHRMS: m/z calcd. for C₂₄H₂₉NO₅SNa (M + Na)⁺ 466.1664, found 466.1664.



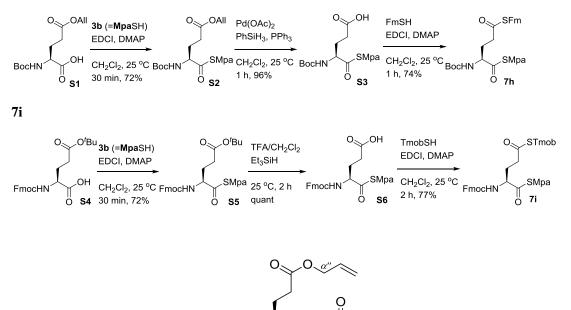
S-α-Methylphenacyl *N-tert*-butoxycarbonyl-*O*-benzyl-L-thiothreonate (**7f**). Boc-L-Thr-OH (**6f**, 312 mg, 1.5 mmol) was used as a carboxylic acid. Purification was performed by silica gel column chromatography (15 g, hexane/EtOAc = 9/1) to afford the title compound as a yellow syrup (523 mg, 99%). ¹H NMR (400 MHz, CDCl₃) δ 7.98 & 7.94 (d, $J_{o,m} = 7.6$ Hz, 1H each, Ar-H_o), 7.54 & 7.49 (t, $J_{m,p} = 7.2$ Hz, 0.5H each, Ar-H_p), 7.42 & 7.37 (dd, $J_{o,m} = 7.6$ Hz, $J_{m,p} = 7.2$ Hz, 1H each, Ar-H_m), 7.35-7.05 (m, 5H, Ar-H), 5.42 & 5.41 (br, 0.5H each, NH), 5.24 (q, $J_{\alpha',\beta'} = 6.4$ Hz, 1H, H_{α'}), 4.55-4.23 (m, 4H, CH₂Ph, H_α, H_β), 1.54 (d, $J_{\alpha',\beta'} = 6.4$ Hz, 3H, CH_{3β'}), 1.47 & 1.40 (s, 4.5H each, 'Bu), 1.23 (m, 3H, CH_{3γ}); ¹³C NMR (100 MHz, CDCl₃) δ 200.8, 200.3, 197.7, 197.5, 155.9, 155.8, 137.8, 137.7, 135.1, 134.9, 133.7, 133.6, 80.6, 80.6, 74.9, 74.4, 71.6, 65.2, 65.1, 42.5, 42.4, 28.4, 28.3, 18.0, 17.5, 16.9, 16.7; ESIHRMS: m/z calcd. for C₂₄H₂₉NO₅SNa (M + Na)⁺ 480.1821, found 480.1850.



S-α-Methylphenacyl *N*-fluorenylmethyloxycarbonyl-L-thiotryptophanate (7g). Fmoc-L-Trp-OH (**6g**, 500 mg, 1.2 mmol) was used as a carboxylic acid. Purification was performed by silica gel column chromatography (15 g, hexane/EtOAc = 9/1 to 4/1) to afford the corresponding thioester as a white foam (662 mg, 98%). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (br, 1H, NH_{*a*}), 8.00-7.92 (m, 2H, Ar-H), 7.79-7.72 (m, 2H, Fm-H), 7.63-7.10 (m, 13H, Ar-H x 3, Fm-H x 6, In-H x 4), 6.88 & 6.83 (s, 0.5H each, H_{*b*}), 5.32 (br d, $J_{\alpha,NH} = 7.6$ Hz, 1H, NH), 5.21 (q, $J_{\alpha',\beta'} = 7.2$ Hz, 1H, H_{*α'*}), 4.82 (ddd, $J_{\alpha,NH} = 7.6$ Hz, $J_{\alpha,\beta} = 5.6$ Hz each, 1H, H_{*α*}), 4.35 (dd, $J_{e'f'} = 7.2$ Hz each, 2H, CH_{2*f*}), 4.17 & 4.11 (t, $J_{e'f'} = 7.2$ Hz, 1H, H_{*e'*}), 3.30 (ddd, $J_{\alpha,\beta} = 5.6$ Hz each, $J_{\beta,\beta} = 15.6$ Hz, 2H, CH_{2*β*}), 1.51 & 1.48 (d, $J_{\alpha',\beta'} = 7.2$ Hz, 1.5H each, CH_{3*β'*}); ¹³C NMR (100 MHz, CDCl₃) δ 200.6, 155.9, 143.8, 143.7, 141.4, 136.2, 135.1, 135.0, 133.7, 128.9, 128.8, 127.9, 127.2, 125.5, 123.4, 122.5, 118.6, 118.5, 111.

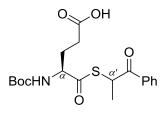
109.2, 109.0, 67.4, 67.4, 61.2, 47.2, 43.0, 42.7, 28.2, 27.8, 17.7, 17.4; ESIHRMS: m/z calcd. for C₃₅H₃₀N₂O₄SNa (M + Na)⁺ 597.1824, found 597.1852.

 S^{α} - α -Methylphenacyl S^{γ} -9-fluorenylmethyl *N*-tert-butoxycarbonyl-L-dithioglutamate (7h). To a Boc-L-Glu(OH)-SMpa (S3, 0.74 g, 1.86 mmol) and 9-fluorenylmethylthiol (0.47 g, 2.23 mmol)^[4] in CH₂Cl₂(4.0 mL) were added EDCI (0.43g, 2.23 mmol) and DMAP (23 mg, 0.19 mmol) at room temperature. The reaction mixture was stirred for 1 h, and the reaction was quenched with water (100 mL). The mixture was extracted with CH₂Cl₂ (30 mL x 3), and the combined organic layer was washed with brine (100 mL), dried over Na₂SO₄, and concentrated in vacuo. Purfication of the residue by flash chromatography (silica gel 20g, hexane/EtOAc = 19/1 to 9/1) gave a yellow foam (0.81 g, 74%). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, $J_{o,m}$ = 7.2 Hz, 2H, Ar-H_o), 7.73 (d, $J_{c,d}$ = 7.6 Hz, 2H, H_d), 7.60 (d, $J_{a,b} = 8.0$ Hz, 2H, H_a), 7.54 (t, $J_{m,p} = 7.2$ Hz, 1H, Ar-H_p), 7.43 (dd, $J_{b,c} = 7.6$ Hz, $J_{c,d} = 7.6$ Hz, 2H, H_c), 7.38 (dd, $J_{a,b} = 8.0$ Hz, $J_{b,c} = 7.6$ Hz, 2H, H_b), 7.30 (dd, $J_{o,m} = 7.2$ Hz, $J_{m,p} = 7.2$ 7.2 Hz, 2H, Ar-H_m), 5.19 (q, $J_{\alpha',\beta'} = 7.2$ Hz, 1H, $H_{\alpha'}$), 5.10-5.00 (br m, 1H, NH), 4.35-4.21 (m, 1H, H_{α}), 4.15 (t, $J_{e,f} = 5.6$ Hz, 2H, H_f), 3.52 (d, $J_{e,f} = 5.6$ Hz, 2H, H_e), 2.58-2.48 (m, 2H, $CH_{2\gamma}$), 2.17-2.05 & 1.91-1.78 (m, 1H each, CH_{2β}), 1.53 (d, $J_{\alpha',\beta'} = 7.2$ Hz, 3H, CH_{3β'}), 1.41 (s, 9H, 'Bu); ¹³C NMR (100 MHz, CDCl₃) & 199.9, 198.1, 155.1, 145.3, 141.2, 135.0, 133.7, 128.8, 128.6, 127.9, 127.2, 124.7, 120.0, 80.8, 59.8, 46.7, 42.7, 39.8, 32.4, 28.4, 27.7, 17.6; ESIHRMS: m/z calcd. for $C_{33}H_{35}NO_5S2Na (M + Na)^+ 612.1854$, found 612.1836.

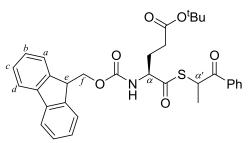


 S^{α} - α -Methylphenacyl S^{γ} -2,4,6-trimethoxybenzyl N-(9-fluorenylmethyloxycarbonyl)-L-dithioglu tamate (7i).

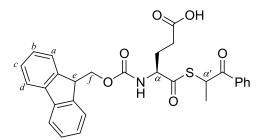
To a Fmoc-L-Glu(OH)-SMpa (**S6**, 90 mg, 0.17 mmol) and 2,4,6-trimethoxybenzylthiol (45 mg, 0.21 mmol) in CH_2Cl_2 (1.7 mL) were added EDCI (40 mg, 0.21 mmol) and DMAP (2.1 mg, 0.02 mmol)


at room temperature. The reaction mixture was stirred for 1 h, and the reaction was quenched with water (10 mL). The mixture was extracted with CH₂Cl₂ (7 mL x 3), and the combined organic layer was washed with brine (10 mL), dried over Na₂SO₄, and concentrated *in vacuo*. Purfication of the residue by flash chromatography (silica gel 10 g, hexane/EtOAc = 9/1 to 2/1) gave a colorless foam (93 mg, 77%). ¹H NMR (400 MHz, CDCl₃) δ 7.94 & 7.92 (d, *J_{o,m}* = 7.6 Hz, 1H each, Ar-H_o), 7.74 (d, *J_{c,d}* = 7.6 Hz, 2H, H_d), 7.61 & 7.57 (d, *J_{a,b}* = 7.2 Hz, 1H each, H_a), 7.53 (t, *J_{m,p}* = 7.2 Hz, 1H, Ar-H_p), 7.44 (dd, *J_{o,m}* = 7.6 Hz, *J_{m,p}* = 7.2 Hz, 2H, Ar-H_m), 7.38 (dd, *J_{b,c}* = 7.6 Hz, *J_{c,d}* = 7.2 Hz, 2H, H_c), 7.30 (dd, *J_{a,b}* = 7.6 Hz, *J_{b,c}* = 7.2 Hz, 2H, H_b), 6.08 (s, 2H, Ar-H), 5.71 & 5.76 (br d, *J_{a,NH}* = 8.4 Hz, 0.5H each, NH), 5.21 (q, *J_{a',\beta'}* = 6.8 Hz, 1H, H_{a'}), 4.50-4.32 (m, 3H, H_a, CH_{2f}), 4.25 & 4.21 (ABq, *J* = 12.4 Hz, 2H, CH₂Ph), 4.15 (t, *J_{e,f}* = 6.8 Hz, 1H, H_{e'}), 3.77 (s, 9H, OCH₃ x 3), 2.68 & 2.52 (m, 2H, CH₂₂), 2.28-2.18 & 2.08-1.95 (m, 1H each, CH_{2β}), 1.54 (d, *J_{a',β'}* = 6.4 Hz, 3H, CH_{3β'}); ¹³C NMR (100 MHz, CDCl₃) δ 199.6, 199.5, 199.1, 197.5, 197.2, 161.0, 159.2, 156.0, 155.8, 143.9, 143.8, 143.7, 143.7, 141.4, 141.3, 135.0, 134.8, 133.7, 128.8, 128.6, 127.8, 127.2, 125.2, 125.2, 120.1, 120.1, 104.5, 90.6, 67.4, 67.3, 60.5, 60.5, 55.9, 55.4, 47.2, 47.2, 42.9, 42.7, 39.4, 27.8, 27.7, 22.5, 17.8, 17.6; ESIHRMS: *m*/z calcd. for C₃₉H₃₉NO₈S₂Na (M + Na)+ 736.2015, found 762.2008.

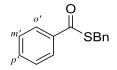
- Scheme SI-1. Preparations of Mpa thioesters 7h and 7i.
- 7h


S^{*α*}-**α**-Methylphenacyl *O*^{*γ*}-allyl *N-tert*-butoxycarbonyl-L-**α**-thioglutamate (S2). To a Boc-L-Glu(OAll)-OH^[6] (2.0 g, 6.9 mmol) and methylphenacylthiol (1.4 g, 8.3 mmol) in CH₂Cl₂(13 mL) were added EDCI (1.6 g, 8.3 mmol) and DMAP (85 mg, 0.69 mmol) at room temperature. The reaction mixture was stirred for 1 h, and the reaction was quenched with water (100 mL). The

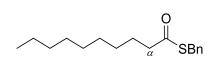
mixture was extracted with CH₂Cl₂ (50 mL x 3), and the combined organic layer was washed with brine (100 mL), dried over Na₂SO₄, and concentrated *in vacuo*. Purfication of the residue by flash chromatography (silica gel 20 g, hexane/EtOAc = 19/1 to 9/1) gave a yellow syrup (2.2 g, 72%). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, $J_{o,m}$ = 7.2 Hz, 2H, Ar-H_o), 7.56 & 7.55 (t, $J_{m,p}$ = 7.2 Hz, 0.5H each, Ar-H_p), 7.44 (dd, $J_{o,m}$ =7.2 Hz, $J_{m,p}$ =7.2 Hz, 2H, Ar-H_m), 5.87 (m, 1H, H_{β}.), 5.37-5.12 (m, 4H, CH_{2 γ}.', H_{α'}, NH), 4.53-4.66 (m, 2H, CH_{2 α}.), 4.45-4.30 (m, 1H, H_{α}), 2.46-2.35 (m, 2H, CH_{2 γ}), 2.23-2.11 & 1.96-1.85 (m, 1H each, CH_{2 β}), 1.53 (d, $J_{\alpha',\beta'}$ = 6.8 Hz, 3H, CH_{3 β}.), 1.43 & 1.37(s, 4.5H each, *'*Bu); ¹³C NMR (100 MHz, CDCl₃) δ 200.1, 197.6, 172.4, 155.2, 134.9, 133.7, 132.0, 128.8, 128.6, 118.6, 80.7, 65.6, 60.0, 42.7, 42.6, 30.2, 28.4, 27.5, 27.3, 17.8, 17.6; ESIHRMS: *m*/*z* calcd. for C₂₂H₂₉NO₆SNa (M + Na)⁺ 458.1613, found 458.1628.


S^{α} - α -Methylphenacyl *N-tert*-butoxycarbonyl-L- α -thioglutamate (S3).

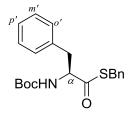
Triphenylphosphine (286 mg, 1.1 mmol) and palladium (II) acetate (49 mg, 0.21 mmol) in CH₂Cl₂ (9.0 mL) were added to Boc-L-Glu(OAll)-SMpa (**S2**, 1.9 g, 4.36 mmol). The mixture was degassed, and then phenylsilane (0.27 mL, 2.2 mmol) was added. After stirring for 1 h, the resulting solution was concentrated *in vacuo*. Purification of the residue by flash chromatography (silica gel 20 g, CHCl₃/MeOH = 39/1 to 19/1) gave a yellow form (1.65 g, 96%). ¹H NMR (400 MHz, CDCl₃) δ 8.38 (br, 1H, CO₂H), 7.93 (d, *J*_{o,m} = 7.2 Hz, 2H, Ar-H_o), 7.55 (t, *J*_{m,p} = 7.2 Hz, 1H, Ar-H_p), 7.44 (dd, *J*_{o,m} = 7.2 Hz, 2H, Ar-H_o), 7.55 (t, *J*_{m,p} = 7.2 Hz, 1H, Ar-H_p), 7.44 (dd, *J*_{o,m} = 7.2 Hz, *J*_{m,p} = 7.2 Hz, 2H, Ar-H_m), 5.33-5.22 (br m, 1H, NH), 5.21 (q, *J*_{\alpha',\beta'} = 6.8 Hz, 1H, H_{\alpha'}), 4.45-4.09 (m, 1H, H_{\alpha}), 2.53-2.33 (m, 2H, CH_{2\gar{p}}), 2.24-2.05 & 1.98-1.81 (m, 1H each, CH_{2\beta}), 1.52 (d, *J*_{\alpha',\beta'} = 6.8 Hz, 3H, CH_{3\beta'}), 1.42 & 1.40 (s, 4.5H each, 'Bu); ¹³C NMR (100 MHz, CDCl₃) δ 200..8, 197.5, 197.2, 155.3, 134.9, 133.7, 128.8, 128.7, 80.9, 59.9, 42.8, 30.1, 28.4, 27.3, 17.8, 17.6; ESIHRMS: *m*/*z* calcd. for C₁₉H₂₅NO₆SNa (M + Na)⁺ 418.1300, found 418.1312.


S^α-α-Methylphenacyl *O*^γ-tert-butyl *N*-(9-fluorenylmethyloxycarbonyl)-L-α-thioglutamate (S5). To a Fmoc-L-Glu(O'Bu)-OH · H₂O (1.0 g, 2.3 mmol) and α-methylphenacylthiol (0.47 g, 2.8 mmol) in CH₂Cl₂ (4.7 mL) were added EDCI (0.54 g, 2.8 mmol) and DMAP (29 mg, 0.23 mmol) at room temperature. The reaction mixture was stirred for 1 h, and the reaction was quenched with water

(100 mL). The mixture was extracted with CH₂Cl₂ (50 mL x 3), and the combined organic layer was washed with brine (100 mL), dried over Na₂SO₄, and concentrated *in vacuo*. Purfication of the residue by flash chromatography (silica gel 20g, hexane/EtOAc = 9/1 to 4/1) gave a yellow foam (1.3 g, 96%). ¹H NMR (400 MHz, CDCl₃) δ 7.95 & 7.92 (d, $J_{o,m} = 8.0$ Hz, 1H each, Ar-H_o), 7.74 & 7.73 (d, $J_{c,d} = 8.0$ Hz, 1H each, H_d), 7.61 & 7.55 (d, $J_{a,b} = 7.6$ Hz, 1H each, H_a), 7.53 & 7.51 (t, $J_{m,p} = 7.6$ Hz, 0.5H each, Ar-H_p), 7.43 (dd, $J_{o,m} = 8.0$ Hz, $J_{m,p} = 7.6$ Hz, 2H, Ar-H_m), 7.37 (dd, $J_{b,c} = 7.6$ Hz, $J_{c,d} = 8.0$ Hz, 2H, H_c), 7.29 (dd, $J_{a,b} = 7.6$ Hz, $J_{b,c} = 7.6$ Hz, 2H, Ar-H_m), 7.37 (dd, $J_{b,c} = 7.6$ Hz, $J_{c,d} = 8.0$ Hz, 2H, H_c), 7.29 (dd, $J_{a,b} = 7.6$ Hz, $J_{b,c} = 7.6$ Hz, 2H, H_b), 5.95 & 5.86 (br d, $J_{a,NH} = 8.0$ Hz, 0.5H each, NH), 5.21 (q, $J_{\alpha',\beta'} = 6.0$ Hz, 1H, H_a), 4.53-4.42 (m, 2H, CH_{2f}), 4.32 (ddd, $J_{a,NH} = 8.0$ Hz, $J_{\alpha,\beta} = 7.6$ Hz each, 1H, H_a), 4.21 & 4.13 (t, $J_{e,f} = 6.8$ Hz, 0.5H each, H_e), 2.38-2.23 (m, 2H, CH_{2f}), 2.15 & 1.93 (dt, $J_{\alpha,\beta} = 7.6$ Hz, $J_{\beta,\gamma} = 6.8$ Hz, 1H each, CH₂), 1.55 & 1.54 (d, $J_{\alpha',\beta'} = 6.0$ Hz, $J_{\beta,\gamma} = 6.8$ Hz, 1H each, CH₂), 1.55 & 1.54 (d, $J_{\alpha',\beta'} = 6.0$ Hz, 13.7, 143.9, 143.9, 143.7, 141.4, 141.3, 135.0, 134.9, 133.7, 128.8, 128.8, 128.7, 127.9, 127.8, 127.2, 127.2, 125.2, 125.1, 120.1, 120.1, 81.2, 67.3, 67.3, 60.7, 60.7, 47.2, 47.2, 42.8, 42.6, 31.5, 28.2, 27.4, 27.2, 17.8, 17.6; ESIHRMS: m/z calcd. for C₃₃H₃₅NO₆SNa (M + Na)+ 596.2083, found 596.2106.



S^α-α-Methylphenacyl *N*-fluorenylmethyloxycarbonyl-L-α-thioglutamate (S6). To a solution of Fmoc-L-Glu(O'Bu)-SMpa (S5, 115 mg, 0.20 mmol) in 40% TFA/CH₂Cl₂ (1.0 mL) was added Et₃SiH (38 μ L, 0,24 mmol), and the reaction mixture was stirred for 1 h. The solution was concentrated *in vacuo*, and the residual TFA was removed by azeotropic distillation with toluene *in vacuo* which gave a colourless form (quantitive yield). ¹H NMR (400 MHz, CDCl₃) δ 8.44 (br, 1H, CO₂H), 7.93 & 7.91 (d, $J_{o,m} = 8.4$ Hz, 1H each, Ar-H_o), 7.72 (d, $J_{c,d} = 7.2$ Hz, 2H, H_d), 7.61-7.50 (m. 3H, Ar-H, Fm-H x 2), 7.45-7.23 (m, 6H, ArH x 2, FmH x 4), 5.80 & 5.73 (br d, $J_{\alpha,NH} = 6.8$ Hz, 0.5H each, NH), 5.21 (q, $J_{\alpha',\beta'} = 6.8$ Hz, 1H, H_{α'}), 4.53-4.30 (m, 3H, CH_{2f}, H_α), 4.18 & 4.14 (t, $J_{e,f} = 6.8$ Hz, 0.5H each, H_e), 2.46-2.28 (m, 2H, CH_{2γ}), 2.26-2.13 & 1.95-1.82 (m, 1H each, CH_{2β}), 1.52 (d, $J_{\alpha',\beta'} = 6.8$ Hz, 3H, CH_{3β'}); ¹³C NMR (100 MHz, CDCl₃) δ 199.8, 199.3, 197.8, 197.4, 177.9, 177.8 156.2, 156.1, 143.8, 143.8, 143.7, 143.7, 141.4, 134.9, 134.8, 133.8, 128.9, 128.7, 127.9, 127.2, 125.2, 125.1, 120.1, 67.4, 67.3, 60.4, 60.3, 47.2, 43.2, 43.0, 30.1, 27.4, 27.2, 17.7, 17.6; ESIHRMS: *m*/*z* calcd. for C₂₉H₂₇NO₆SNa (M + Na)⁺ 540.1457, found 540.1449.

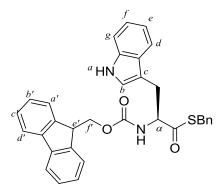

General procedure for deprotection followed by derivatization to S-benzyl thioesters 8a-i (Table 2). S- α -Methylphenacyl thioesters in 90% AcOH aq. (0.1 M) was degassed, and 50 equiv. of freshly washed Zn was added to the solution. The mixture was degassed again and stirred at room temperature, followed by concentration under high vacuum. The residue was suspended in CHCl₃/MeOH (5/1), and then filtrated through silica gel pad. The filtrate was concentrated *in vacuo*. To the residue in DMF (0.1 M) were added 3.0 equiv. of Cs₂CO₃ and BnBr, and the reaction mixture was stirred for 30 min. The reaction was quenched with water (10 mL). The mixture was extracted with CH₂Cl₂ (7 mL x 3), and the combined organic layer was washed with brine (10 mL), dried over Na₂SO₄, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography to afford the corresponding benzyl thioester.

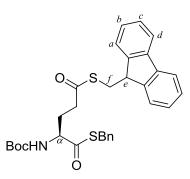
S-Benzyl thiobenzoate (8a). BzSMpa (7a, 60 mg, 0.22 mmol) was used as a *S*-α-methylphenacyl thioester. Purification was performed by silica gel column chromatography (10 g, hexane to hexane/EtOAc = 19/1) to afford the title compound as a colorless syrup (41 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, $J_{o,m}$ = 7.6 Hz, 2H, SBn(Ar-H)), 7.57 (t, $J_{m,p}$ = 7.3 Hz, 1H, SBn(Ar-H)), 7.50-7.20 (m, 7H, the other Ar-H), 4.38-4.28 (m, 2H, CH₂Ph); ¹³C NMR (100 MHz, CDCl₃) δ 191.4, 137.6, 136.9, 133.5, 129.1, 128.74, 128.72, 127.4, 127.4, 33.1; Anal. Calcd for (C₁₄H₁₂OS): C, 73.65; H, 5.30; O, 7.01; S, 14.04. Found: C, 73.37; H, 5.39.

S-Benzyl thiodecanoate (8b). ^{*n*}C₉H₁₉COSMpa (7b, 50 mg, 0.16 mmol) was used as a *S*-α-methylphenacyl thioester. Purfication was performed by silica gel column chromatography (10 g, hexane to hexane/toluene = 4/1) to give the title compound as a colorless syrup (40 mg, 91%). ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.17 (m, 5H, Ar-H), 4.24-4.16 (m, 2H, CH₂Ph), 2.56 (t, $J_{\alpha,\beta}$ = 7.6 Hz, 2H, CH₂β), 1.67 (m, 2H, CH₂), 1.38-1.16 (m, 12H, CH₂), 0.88 (t, *J* = 7.0 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 199.0, 137.9, 128.9, 128.7, 127.2, 43.9, 33.2, 31.9, 29.5, 29.3, 29.0, 25.7, 22.8, 14.2; ESIHRMS: *m/z* calcd. for C₁₇H₂₆O₂SNa (M + Na)⁺ 301.1602, found 301.1621.

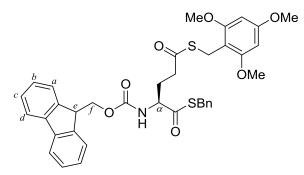


S-Benzyl *N*-*tert*-butoxycarbonyl-L-thiophenylalaninate (8c). Boc-L-Phe-SMpa (7c, 55 mg, 0.13 mmol) was used as a *S*-α-methylphenacyl thioester. Purification was performed by silica gel column chromatography (10 g, hexane/EtOAc = 19/1) to afford the title compound as a colorless solid (41 mg, 83%). $[\alpha]^{20}_{D}$ = -11.0 (*c* = 0.36, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.21 (m, 8H, Ar-H), 7.14-7.04 (m, 2H, Ar-H), 4.89 (br d, *J*_{α,NH} = 4.0 Hz, 1H, NH), 4.65 (ddd, *J*_{α,β} = 6.4 Hz each, *J*_{α,NH} = 4.0 Hz, 1H, H_α), 4.17 & 4.04 (ABq, *J* = 13.6 Hz, 1H each, CH₂Ph), 3.11 (dd, *J*_{α,β} = 6.4 Hz, *J*_{β,β} = 19.2 Hz, 2H, CH_{2β}), 1.43 & 1.39 (s, 4.5H each, *'*Bu); ¹³C NMR (100 MHz, CDCl₃) δ 200.5, 155.0, 137.2, 135.5, 129.5, 129.0, 128.9, 128.7, 127.4, 127.1, 80.5, 38.4, 33.4, 28.5, 28.4; ESIHRMS: *m*/z calcd. for C₂₁H₂₅NO₃SNa (M + Na)⁺ 394.1453, found 394.1479.

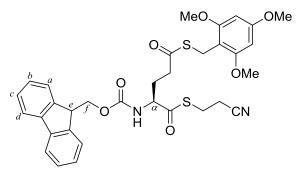

S-Benzyl *N*-tert-butoxycarbonylthioglycinate (8d). Boc-Gly-SMpa (7d, 183 mg, 0.57 mmol) was used as a *S*-α-methylphenacyl thioester. Purification was performed by silica gel column chromatography (15 g, hexane/EtOAc = 19/1) to afford the title compound as a yellow foam (132 mg, 83 %). mp: 72.4-76.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.21 (m, 5H, Ar-H), 5.10 (br d, $J_{\alpha,NH}$ = 6.2 Hz, NH), 4.15 & 4.12 (ABq, J = 12.4 Hz, 2H, CH₂Ph), 4.05 (d, $J_{\alpha,NH}$ = 6.2 Hz, 2H, CH₂α), 1.45 (s, 9H, ^{*i*}Bu); ¹³C NMR (100 MHz, CDCl₃), δ 197.8, 137.1, 129.0, 128.7, 127.5, 127.0, 80.5, 50.3, 33.0, 28.4; ESIHRMS: m/z calcd. for C₁₄H₁₉NO₃SNa (M + Na)⁺ 304.0984, found 304.0996.


S-Benzyl *N*-*tert*-butoxycarbonyl-*O*-benzyl-L-thioserinate (8e). Boc-L-Ser(OBn)-SMpa (7e, 61 mg, 0.14 mmol) was used as a *S*-α-methylphenacyl thioester. Purification was performed by silica gel column chromatography (10 g, hexane/EtOAc = 19/1) to afford the title compound as a colorless oil (43 mg, 78%). $[\alpha]^{20}_{D} = -1.7$ (*c* = 0.53, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.17 (m, 10H, Ar-H), 5.49 (br, d, $J_{\alpha,NH} = 8.8$ Hz, 1H, NH), 4.49 (ddd, $J_{\alpha,NH} = 8.8$ Hz, $J_{\alpha,\beta} = 3.6$ Hz each, 1H, H_α), 4.47-4.42 (m, 2H, SCH₂Ph), 4.19 & 4.08 (ABq, *J* = 14.0 Hz, 1H each, OCH₂Ph), 4.00 & 3.98 (dd, $J_{\alpha,\beta} = 3.6$ Hz, $J_{\beta,\beta} = 9.6$ Hz, 1H, CH₂β), 1.46 (s, 9H, 'Bu); ¹³C NMR(100 MHz, CDCl₃) δ 200.2, 155.4, 137.5, 137.2, 129.0, 128.7, 128.5, 127.9, 127.7, 127.4, 80.5, 73.5, 70.4, 60.4, 33.6, 28.4; ESIHRMS: *m*/*z* calcd. for C₂₂H₂₇NO₄SNa (M + Na)⁺ 424.1559, found 424.1572.

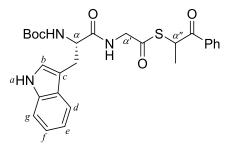
S-Benzyl *N-tert*-butoxycarbonyl-*O*-benzyl-L-thiothreonate (8f). Boc-L-Thr(OBn)-SMpa (7f, 51 mg, 0.11 mmol) was used as a *S*-α-methylphenacyl thioester. Purification was performed by silica gel column chromatography (10 g, hexane/EtOAc = 19/1) to afford the title compound as a colorless solid (33 mg, 73%). mp: 90.2-93.2 °C; $[\alpha]^{20}_{D} = -17.0$ (c = 0.48, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.05 (m, 10H, Ar-H), 5.42 (br d, J = 9.2 Hz, 1H, NH), 4.43 & 4.30 (ABq, J = 11.6 Hz, 1H each, SCH₂Ph), 4.33-4.25 (m, 2H, H_α, H_β), 4.20 & 4.03 (ABq, J = 13.6 Hz, 1H each, OCH₂Ph), 1.46 (s, 9H, ^{*I*}Bu), 1.24 (d, $J_{\beta,\gamma} = 6.0$ Hz, CH₃ $_{\gamma}$); ¹³C NMR (100 MHz, CDCl₃) δ 201.3, 156.0, 137.9, 137.4, 129.0, 128.7, 128.4, 127.8, 127.3, 80.4, 74,8, 71.7, 65.1, 33.6, 28.4, 16.9; ESIHRMS: m/z calcd. for C₂₃H₂₉NO₃SNa (M + Na)⁺ 438.1715, found 438.1725.



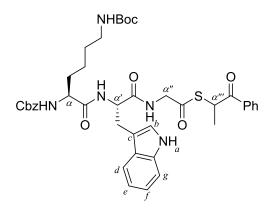
S-Benzyl *N*-fluorenylmethyloxycarbonyl-L-thiotryptophanate (8g). Fmoc-L-Trp-SMpa (7g, 80 mg, 0.09 mmol) was used as a *S*-α-Methylphenacyl thioester. Purification was performed by silica gel column chromatography (10 g, hexane/EtOAc = 9/1 to 2/1) to afford the title compound as a white foam (43 mg, 85%). [α]²⁰_D = -47.9 (*c* = 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.03 (br, 1H, NH_{*a*}), 7.75 (d, *J_{c',d'}* = 7.2 Hz, 2H, H_{d'}), 7.59 (d, *J_{d,e}* = 7.6 Hz, 1H, H_d), 7.52 (dd, *J_{b',c'}* = 7.6 Hz, *J_{c',d'}* = 7.2 Hz, 2H, H_{c'}), 7.43-7.18 (m, 11H, Fm-H x4, InH x2, Ar-H x5), 7.15 (dd, *J_{d,e}* = 7.6 Hz, *J_{e,f}* = 7.2 Hz, 1H, H_e), 6.79 (s, 1H, H_b), 5.32 (br d, *J_{α,NH}* = 8.8 Hz, 1H, NH), 4.82 (ddd, *J_{α,NH}* = 8.8 Hz, *J_{α,β}* = 5.2 Hz each, 1H, H_α), 4.35 (dd, *J_{e',f'}* = 7.2 Hz each, 2H, CH_{2,f'}), 4.18 (t, *J_{e',f'}* = 7.2 Hz, 1H, H_{e'}), 4.11 & 4.07 (ABq, *J* = 13.6 Hz, 1H each, CH₂Ph), 3.34 (ddd, *J_{α,β}* = 5.2 Hz each, *J_{β,β}* = 14.8 Hz, 2H, CH_{2,β}); ¹³C NMR (100 MHz, CDCl₃) δ 200.7, 155.8, 143.9, 143.8, 141.4, 137.1, 136.2, 129.1, 128.7, 127.8, 127.4, 127.2, 125.2, 123.3, 122.5, 120.0, 118.7, 111.4, 109.4, 67.3, 61.1, 47.2, 33.6, 28.2; ESIHRMS: *m/z* calcd. for C₃₃H₂₈N₂O₃SNa (M + Na)⁺ 555.1719, found 555.1709.



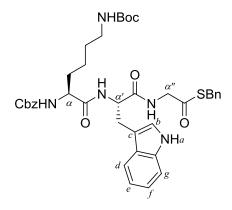
 S^{α} -Benzyl S^{γ} -9-fluorenylmethyl *N-tert*-butoxycarbonyl-L-dithioglutamate (8h).


Boc-L-Glu(SFm)-SMpa (**7h**, 110 mg, 0.19 mmol) was used as a *S*-α-Methylphenacyl thioester. Purification was performed by silica gel column chromatography (10 g, hexane/Acetone = 9/1 to 4/1) to afford the title compound as a colourless foam (79 mg, 78%). [α]²⁰_D = 3.26 (*c* = 0.31, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, $J_{c,d}$ = 7.6 Hz, 2H, H_d), 7.62 (d, $J_{a,b}$ = 7.2 Hz, 2H, H_a), 7.34 (dd, $J_{b,c}$ = 7.2 Hz, $J_{c,d}$ = 7.6 Hz, 2H, H_c), 7.31 (dd, $J_{a,b}$ = 7.2 Hz, $J_{b,c}$ = 7.2 Hz, 2H, H_b), 7.30-7.22 (m, 5H, Ar-H), 5.09 (br, 1H, NH), 4.36-4.26 (m, 1H, H_α), 4.16 (t, $J_{e,f}$ = 5.6 Hz, 1H, H_e), 4.19-4.04 (m, 2H, CH₂Ph), 3.53 (d, $J_{e,f}$ = 5.6 Hz, 2H, CH₂f), 2.65-2.48(m, 2H, CH₂*γ*), 2.22-2.17 & 2.04-1.80 (m, 1H each, CH₂*β*), 1.43 (s, 9H, ^{*I*}Bu); ¹³C NMR (100 MHz, CDCl₃) δ 200.1, 198.1, 155.2, 145.4, 141.2, 137.0, 129.0, 128.7, 127.9, 127.5, 127.2, 124.7, 124.7, 120.0, 80.6, 59.8, 46.8, 40.0, 33.4, 32.4, 28.4, 28.1; ESIHRMS: *m/z* calcd. for C₃₁H₃₃NO₄S2Na (M + Na)⁺ 570.1749, found 570.1771

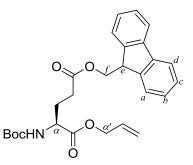
S^α-Benzyl *S*^γ-2,4,6-trimethoxybenzyl *N*-(9-fluorenylmethyloxycarbonyl)-L-dithioglutamate (8i). Fmoc-L-Glu(STmob)-SMpa (7i, 50 mg, 0.07 mmol) was used as a *S*-α-Methylphenacyl thioester. Purification was performed by silica gel column chromatography (10 g, hexane/EtOAc = 9/1 to 2/1) to afford the title compound as a colorless soild (38 mg, 81%). mp: 103.0-106.2 °C; $[\alpha]^{20}_{D}$ = -3.0 (*c* = 0.43 , CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J*_{*c*,*d*} = 7.2 Hz, 2H, H_{*d*}), 7.60 (d, *J*_{*a*,*b*} = 7.2 Hz, 2H, H_{*a*}), 7.38 (dd, *J*_{*b*,*c*} = 6.8 Hz, *J*_{*c*,*d*} = 7.2 Hz, 2H, H_{*c*}), 7.29 (m, 7H, Fm-H, Ar-H x 5), 6.08 (s, 2H, Ar-H), 5.58 (br d, *J*_{*α*,*NH*} = 8.4 Hz, 0.5H each, NH), 4.50-4.35 (m, 3H, H_{*α*}, CH_{2*f*}), 4.26-4.18 (m, 3H, CH₂Ph, H_{*e*}), 4.13 & 4.09 (ABq, *J* = 13.6 Hz, 2H, CH₂Ph), 3.77 (s, 9H, OCH₃ x 3), 2.70-2.54 (m, 2H, CH₂γ), 2.32-2.23 & 2.10-1.98 (m, 1H each, CH_{2*β*}); ¹³C NMR (100 MHz, CDCl₃) δ 199.9, 199.6, 161.0, 159.2, 155.9, 143.9, 143.8, 143.7, 141.3, 136.8, 129.0, 128.8, 127.8, 127.5, 127.2, 125.2, 120.0, 104.6, 90.6, 67.3, 60.5, 55.9, 55.4, 47.3, 39.5, 33.5, 28.0, 22.4; ESIHRMS: m/z calcd. for C₃₇H₃₇NO₇S₂Na (M + Na)⁺ 694.1909, found 694.1899.


S^α-**Cyanoethyl** *S*^{*r*}-(2,4,6-trimethoxybenzyl) *N*-(9-fluorenylmethyloxycarbonyl)-L-dithioglutama te (8j). Fmoc-L-Glu(STmob)-SMpa (7i, 48 mg, 0.07 mmol) was used as a *S*-α-Methylphenacyl thioester. Purification was performed by silica gel column chromatography (10 g, hexane/EtOAc = 2/1) to afford the title compound as a colorless form (33 mg, 77%). [α]²⁰_D = 6.9 (*c* = 0.15, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J*_{*c,d*} = 7.6 Hz, 2H, H_{*d*}), 7.61 (m, 2H, Fm-H), 7.39 (dd, *J*_{*b,c*} = 7.2 Hz, *J*_{*c,d*} = 7.6 Hz, 2H, H_{*c*}), 7.31 (dd, *J*_{*b,c*} = 7.2 Hz, *J*_{*a,b*} = 7.2 Hz, 2H, H_{*b*}), 6.08 (s, 2H, Ar-H), 5.68 (br d, *J*_{*α,NH*} = 8.4 Hz, 1H, NH), 4.55-4.45 (m, 1H, H_{*α*}), 4.45-4.35 (m, 2H, CH₂), 4.28-4.17 (m, 3H, CH₂Ph, H_{*e*}), 3.77 (s, 9H, OCH₃ x 3), 3.08 (q, *J* = 6.4 Hz, 2H, CH₂), 2.75-2.50 (m, 4H, CH₂, CH₂_{*γ*), 2.30-2.20 & 2.13-1.98 (m, 1H each, CH₂_{*β*); ¹³C NMR (100 MHz, CDCl₃) δ 199.9, 199.7, 161.0, 159.2, 156.0, 143.8, 143.6, 141.4, 128.8, 127.8, 127.2, 125.2, 125.2, 120.1, 117.8, 104.5, 90.6, 67.4, 60.7, 55.9, 55.4, 47.3, 39.4, 27.4, 24.6, 22.5, 18.4; ESIHRMS: *m*/*z* calcd. for C₃₃H₃₄N₂O₇S₂Na (M + Na)⁺ 657.1705, found 657.1679.}}

S-α-Methylphenacyl N-tert-butoxycarbonyl-L-tryptophanylthioglycinate (9).

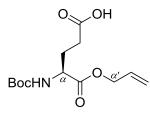

Boc-Gly-SMpa (**7c**, 472 mg, 1.5 mmol) was dissolved in 40% TFA/CH₂Cl₂ (15 mL), and the solution was stirred for 10 min. The solution was concentrated *in vacuo*, and the residual TFA was removed by azeotropic distillation with toluene *in vacuo*. In another flask, Boc-L-Trp-OH (667 mg, 2.2 mmol), and *N*-methylmorphiline (192 μ L, 1.8 mmol) were suspended in CH₂Cl₂ (3.0 mL), and HOBt·H₂O (355 mg, 2.6 mmol) and EDCI (336 mg, 1.8 mmol) were added. The reaction mixture was stirred for 15 min, and it was added to a solution of the residue in CH₂Cl₂ (3.0 mL). The reaction mixture was stirred for further 1 h, and the reaction was quenched with water (20 mL). The mixture was extracted with CH₂Cl₂ (10 mL x 3), and the combined organic layer was washed with brine (20 mL), dried over Na₂SO₄, and concentrated *in vacuo*. Purification of the residue by flash

chromatography (silica gel 20 g, hexane/EtOAc = 4/1 to 1/1) gave an orange foam (588 mg, 82%). ¹H NMR (400 MHz, CDCl₃) δ 8.92 (br s, 1H, NH_a), 7.95 & 7.94 (d, $J_{o,m}$ = 7.6 Hz, 1H each, Ar-H_o), 7.59 (t, $J_{m,p}$ = 7.6 Hz, 1H, Ar-H_p), 7.58 (d, $J_{d,e}$ = 6.8 Hz, 1H, H_d), 7.46 (dd, $J_{o,m}$ = 7.6 Hz, $J_{m,p}$ = 7.6 Hz, 2H, Ar-H_m), 7.32 (dd, $J_{d,e}$ = 6.8 Hz, $J_{e,f}$ = 8.0 Hz, 1H, H_e), 7.16 (dd, $J_{e,f}$ = 8.0 Hz, $J_{f,g}$ = 7.6 Hz, 1H, H_f), 7.09 & 7.08 (d, $J_{f,g}$ = 7.6 Hz, 0.5H each, H_g), 7.00 (s, 1H, H_b), 6.59 (br s, 1H, NH), 5.21 & 5.20 (q, $J_{\alpha'',\beta''}$ = 6.8 Hz, 0.5H each, H_{a''}), 5.12 (br s, 1H, NH), 4.51 (m, 1H, H_a), 4.04 (m, 2H, CH_{2a'}), 3.21 (m, 2H, CH_{2β}), 1.49 (d, $J_{\alpha'',\beta''}$ = 6.8 Hz, 3H, CH_{3β''}), 1.39 (s, 9H, ^{*I*}Bu); ¹³C NMR (100 MHz, CDCl₃) δ 197.6, 195.8, 172.4, 172.4, 156.5, 155.6, 136.3, 134.8, 133.9, 128.9, 128.7, 127.6, 123.7, 123.6, 122.3, 119.8, 118.7, 111.4, 110.2, 110.0, 55.4, 55.3, 55.2, 48.9, 42.5, 28.4, 28.0, 17.9, 17.8; ESIHRMS: m/z calcd. for C₂₇H₃₁N₃O₅SNa (M + Na)⁺ 532.1882, found 532.1895.

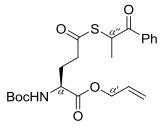


 $S-\alpha$ -Methylphenacyl N^{α} -benzyloxycarbonyl- N^{ε} -tert-butoxycarbonyl-L-lysyl-L-tryptophanylthio glycinate (10). Boc-L-Trp-Gly-SMpa (9, 526 mg, 1.1 mmol) was dissolved in 40% TFA/CH₂Cl₂ (11 mL), and the solution was stirred for 20 min. The solution was concentrated in vacuo, and the residual TFA was removed by azeotropic distillation with toluene in vacuo. In another flask, Cbz-L-Lys(Boc)-OH (605 mg, 1.6 mmol), and N-methylmorphiline (140 μ L, 1.3 mmol) were suspended in CH₂Cl₂ (2.1 mL), and HOBt · H₂O (258 mg, 1.9 mmol) and EDCI (244 mg, 1.3 mmol) were added. The reaction mixture was stirred for 10 min, and it was added to a solution of the residue in CH₂Cl₂ (1 mL). The reaction mixture was stirred for further 1 h, and the reaction was quenched with water (20 mL). The mixture was extracted with CH₂Cl₂ (10 mL x 3), and the combined organic layer was washed with brine (20 mL), dried over Na₂SO₄, and concentrated in *vacuo*. Purification of the residue by flash chromatography (silica gel 20 g, hexane/EtOAc = 4/1 to 1/1) gave an orange foam (662 mg, 86%). ¹H NMR (400 MHz, CDCl₃) δ 8.71 & 8.66 (br s, 0.5H each, NH_a), 7.94 & 7.90 (d, $J_{o,m}$ = 7.6 Hz, 1H each, Ar-H_o), 7.56 (t, $J_{m,p}$ = 7.6 Hz, 1H, Ar-H_p), 7.54 (d, $J_{d,e} = 6.8$ Hz, 1H, H_d), 7.45 & 7.39 (dd, $J_{o,m} = 7.6$ Hz, $J_{m,p} = 7.6$ Hz, 1H each, Ar-H_m), 7.35-7.18 (m, 7H, Ar-H x5, InH x2), 7.13 (dd, $J_{e,f} = 6.8$ Hz, $J_{f,g} = 6.8$ Hz, 1H, H_f), 7.08 (d, $J_{f,g} = 6.8$ Hz, 1H, H_g), 7.01 & 6.94 (s, 0.5H each, H_b), 6.80-6.73 (br, 1H, NH), 5.63 & 5.59 (br, 0.5H each, NH), 5.22 (q, $J_{\alpha''',\beta'''} = 6.8$ Hz, 1H, $H_{\alpha''}$), 5.05-4.65 (m, 4H, PhCH₂, H_{α} , NH), 4.25-4.10 (m, 1H, $H_{\alpha''}$), 3.96 (m, 2H,

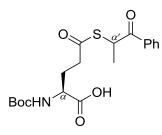
CH_{2 $\alpha''}), 3.39-3.17 (m, 2H, CH_{2<math>\beta'}), 3.08-2.80 (m, 2H, CH_{2<math>\beta$}), 1.49 (d, $J_{\alpha'',\beta''} = 6.8$ Hz, 3H, CH_{3 $\beta'''}),$ 1.39 (s, 9H, ¹Bu), 1.38-1.27 (m, 4H, CH₂ x2), 1.16-1.03 (m, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃) $<math>\delta$ 198.0, 197.7, 172.0, 156.9, 156.7, 156.6, 136.3, 136.0, 134.7, 134.0, 133.8, 129.0, 128.9, 128.8, 128.7, 128.6, 128.6, 128.4, 128.3, 127.6, 124.0, 123.7, 122.2, 119.8, 118.4, 118.3, 111.6, 110.0, 79.5, 77.3, 67.4, 67.3, 54.0, 49.1, 42.6, 29.8, 28.5, 18.1; ESIHRMS: m/z calcd. for C₄₁H4₉N₅O₈SNa (M + Na)⁺ 794.3200, found 794.3186.</sub></sub></sub>



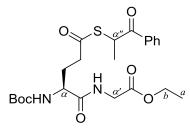
S-Benzvl N^{α} -benzyloxycarbonyl- N^{ε} -tert-butoxycarbonyl-L-lysyl-L-tryptophenylthioglycinate (11). Cbz-L-Lys(Boc)-L-Trp-Gly-SMpa (10, 62 mg, 0.08 mmol) in 90% AcOH (0.8 mL) was degassed, and freshly washed Zn (268 mg, 4.1 mmol) was added to the solution. The mixture was degassed again and stirred for 1 h at 40 °C, followed by concentration under high vacuum. The residue was suspended in CHCl₃/MeOH (5/1), and then filtrated through silica gel pad. The filtrate was concentrated *in vacuo*. To the residue in DMF (0.8 ml) were added Cs_2CO_3 (79 mg, 0.25 mmol) and BnBr, and the reaction mixture was stirred for 15 min. The reaction was quenched with water (10 mL). The mixture was extracted with EtOAc (7 mL x 3), and the combined organic layer was washed with brine (10 mL), dried over Na₂SO₄, and concentrated in vacuo. Purfication of the residue by flash chromatography (silica gel 10 g, CHCl₃ to CHCl₃/EtOAc = 1/1) gave the title compound as a colorless solid (50 mg, 89%). mp: 132.8-138.8 °C; $[\alpha]^{20}_{D} = -25.1$ (c = 0.63, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.43 (br, 1H, NH_a), 7.53 (d, J_{d,e} = 7.8 Hz, 1H, H_d), 7.37-7.16 (m, 11H, In-H, Ar-H x10), 7.12 (dd, $J_{d,e} = 7.8$ Hz, $J_{e,f} = 7.7$ Hz, 1H, H_e), 7.05 (dd, $J_{e,f} = 7.7$ Hz, $J_{f,g} = 7.0$ Hz 1H, H_f), 6.94 (s, 1H, H_b), 6.87 (br, 1H, NH), 5.73 (br, 1H, NH), 4.97 & 4.92 (ABq, J = 12.0 Hz, 1H each, PhCH₂), 4.82 (m, 1H, H_a), 4.71 (br, 1H, NH), 4.16-3.87 (m, 5H, CH₂Ph, CH₂ α'' , H_a), 3.32-3.17 (m, 2H, CH_{2β}), 3.30-2.87 (m, 2H, CH_{2β}), 1.40 (s, 9H, ^tBu), 1.32-1.20 (m, 4H, CH₂ x2), 1.15-1.00 (m, 2H, CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 196.6, 172.1, 171.9, 156.8, 156.6, 137.1, 136.3, 136.1, 129.0, 128.6, 128.4, 128.2, 127.5, 123.6, 122.1, 119.7, 118.5, 111.5, 110.0, 79.5, 77.3, 67.3, 55.8, 53.9, 49.0, 39.6, 33.0, 31.2, 29.7, 28.5, 27.3, 22.1; ESIHRMS: m/z calcd. for $C_{39}H_{47}N_5O_7SNa$ (M + Na)⁺ 752.3094, found 752.3100.


O^{α} -Allyl O^{γ} -(9-fluorenylmethyl) *N-tert*-butoxycarbonyl-L-glutamate (13).

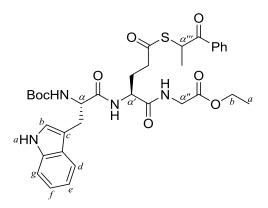
To Boc-L-Glu(OFm)-OH^[5] (**12**, 1.4 g, 3.3 mmol) in DMF (6.6 mL) were added AllBr (0.34 mL 4.0 mmol) and K₂CO₃ (0.55 g, 4.0 mmol) at room temperature. The reaction mixture was stirred for 3 h, and then poured to water (100 mL). The mixture was extracted with CH₂Cl₂ (50 mL x 3), and the combined organic layer was washed with brine (100 mL), dried over Na₂SO₄, and concentrated *in vacuo*. Purfication of the residue by flash chromatography (silica gel 10 g, hexane/EtOAc = 9/1 to 4/1) gave the title compound as a colorless syrup (1.5 g, 97%). [α]²⁰_D = 5.9 (*c* = 0.78, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J_{c,d}* = 7.2 Hz, 2H, H_d), 7.57 (d, *J_{a,b}* = 7.6 Hz, 2H, H_a), 7.38 (dd, *J_{b,c}* = 7.2 Hz, *J_{a,b}* = 7.6 Hz, 2H, H_b), 7.30 (dd, *J_{c,d}* = 7.2 Hz, *J_{b,c}* = 7.2 Hz, 2H, H_c), 5.90 (dddd, *J_{a',\beta'}* = 5.2 Hz each, *J_{β',γ'(E)}* = 16.8 Hz, *J_{β',γ'(Z)}* = 10.4 Hz, 1H, H_{β'}), 5.38 (ddd, *J_{β',γ'(E)}* = 16.8 Hz, *J_{β',γ'(Z)}* = 10.4 Hz, 1H, NH), 4.63 (dd, *J_{a',β'}* = 5.2 Hz each, 2H, CH_{2α'}), 4.4-4.33 (m, 3H, CH_{2β}, H_α), 4.19 (t, *J_{e,f}* = 6.8 Hz, 1H, H_e), 2.49 (td, *J_{β,γ}* = 6.8 Hz, *J_{γ,γ}* = 16.0 Hz, 2H, CH_{2α'}), NMR (100 MHz, CDCl₃) δ 172.7, 171.9, 155.5, 143.8, 143.8, 141.4, 131.6, 127.9, 127.2, 125.1, 120.1, 119.0, 80.1, 66.6, 66.1, 53.1, 46.9, 30.4, 28.4, 27.8; ESIHRMS: *m/z* calcd. for C₂₇H₃₁NO₆Na (M + Na)⁺ 488.2049, found 488.2053.


O^α-Allyl *N-tert*-butoxycarbonyl-L-glutamic acid (14). Boc-L-Glu(OFm)-OAll (13, 0.89 g, 1.9 mmol) was added 20% piperidine in DMF (7.3 mL) at room temperature, and the reaction mixture was stirred 20 min, followed by concentration under high vacuum. Purfication of the residue by flash chromatography (silica gel 20 g, hexane/EtOAc = 4/1 to EtOAc) gave the title compound as a colorless syrup (470 mg, 85%). $[\alpha]^{20}_{D} = 1.5$ (*c* = 1.55, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.30-8.30 (br, 1H, CO₂H), 5.88 (dddd, $J_{\alpha',\beta'} = 5.6$ Hz each, $J_{\beta',\gamma'(E)} = 17.2$ Hz, $J_{\beta',\gamma'(Z)} = 10.8$ Hz, 1H, H_{β'}), 5.28 (ddd, $J_{\alpha',\beta'} = 5.6$ Hz each, 2H, CH₂ α'), 4.35 (ddd, $J_{\alpha,NH} = 8.0$ Hz, $J_{\alpha,\beta} = 6.8$

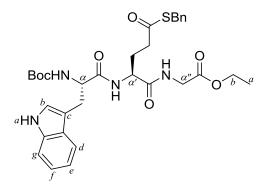
Hz each, 1H, H $_{\alpha}$), 2.44 (ttd, $J_{\beta,\gamma} = 6.8$ Hz each, $J_{\gamma,\gamma} = 7.2$ Hz, 2H, CH_{2 γ}), 2.18 & 1.95 (tdd, $J_{\alpha,\beta} = 6.8$ Hz, $J_{\beta,\gamma} = 6.8$ Hz, $J_{\beta,\beta} = 14.4$ Hz, 1H each, CH_{2 β}), 1.44 (s, 9H, 'Bu); ¹³C NMR (100 MHz, CDCl₃) δ 177.8, 172.0, 155.6, 131.5, 119.1, 80.3, 66.2, 52.9, 30.2, 28.3, 27.7; ESIHRMS: m/z calcd. for C₁₃H₂₁NO₆Na (M + Na)⁺ 310.1267, found 310.1251.


O^{α} -Allyl S^{γ} - α -methylphenacyl *N*-tert-butoxycarbonyl-L- γ -thioglutamate (15).

To Boc-L-Glu(OH)-OAll (**14**, 710 mg, 2.5 mmol) and *S*- α -methylphenacylthiol (500 mg, 3.0 mmol) in CH₂Cl₂ (5.0 mL) were added EDCI (570 mg, 3.0 mmol) and DMAP (30 mg, 0.25 mmol) at room temperature. The reaction mixture was stirred for 2 h, and the reaction was quenched with water (30 mL). The mixture was extracted with CH₂Cl₂ (15 mL x 3), and the combined organic layer was washed with brine (20 mL), dried over Na₂SO₄, and concentrated *in vacuo*. Purfication of the residue by flash chromatography (silica gel 20 g, hexane/EtOAc = 9/1 to 4/1) gave a yellow syrup (870 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J*_{o,m} = 7.2 Hz, 2H, Ar-H_o), 7.56 & 7.54 (t, *J*_{m,p} = 7.2 Hz, 0.5H each, Ar-H_p), 7.44 (dd, *J*_{o,m} =7.2 Hz, *J*_{m,p} =7.2 Hz, 2H, Ar-H_m), 5.86 (m, 1H, H_{β'}), 5.36-5.17 (m, 3H, CH_{2γ}, H_{α''}), 5.16-5.02 (br, 1H, NH), 4.54-4.65 (m, 2H, CH_{2α}), 4.37-4.25 (m, 1H, H_α), 2.73-2.52 (m, 2H, CH_{2γ}), 2.28-2.12 & 2.05-1.87 (m, 1H each, CH_{2β}), 1.53 & 1.52 (d, *J*_{α'',β''} = 6.8 Hz, 1.5H each, CH_{3β''}), 1.40 & 1.39 (s, 4.5H each, 'Bu); ¹³C NMR (100 MHz, CDCl₃) δ 197.3, 196.8, 196.7, 171.3, 155.3, 134.9, 133.7, 131.5, 128.8, 128.6, 119.2, 80.2, 66.2, 66.2, 52.8, 52.7, 42.4, 42.4, 39.6, 39.5, 28.3, 28.2, 28.1, 17.8, 17.8; ESIHRMS: *m*/z calcd. for C₂₂H₂₉NO₆SNa (M + Na)⁺ 458.1614, found 458.1630.


S^γ-α-Methylphenacyl *N-tert*-butoxycarbonyl-L-γ-thioglutamic acid (16). Triphenylphosphine (29 mg, 0.11 mmol) and palladium (II) acetate (5.0 mg, 0.02 mmol) in CH₂Cl₂ (2.3 mL) were added to a solution of Boc-L-Glu(SMpa)-OAll (15, 490 mg, 1.1 mmol) in CH₂Cl₂ (2.3 mL). The mixture was degassed, and then phenylsilane (0.07 mL, 0.56 mmol) was added. After stirring for 1 h, the resulting solution was concentrated *in vacuo*. Purification of the residue by flash chromatography (silica gel

15 g, CHCl₃/EtOAc = 9/1 to 4/1) gave a yellow form (436 mg, 98%). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, $J_{o,m}$ = 8.0 Hz, 2H, Ar-H_o), 7.55 (t, $J_{m,p}$ = 7.6 Hz, 1H, Ar-H_p), 7.43 (dd, $J_{o,m}$ = 8.0 Hz, $J_{m,p}$ = 7.6 Hz, 2H, Ar-H_m), 5.32 (br, 1H, NH), 5.25 (q, $J_{\alpha',\beta'}$ = 6.8 Hz, 1H, H_{\alpha'}), 4.36-4.09 (m, 1H, H_{\alpha}), 2.78-2.55 (m, 2H, CH_{2\gar{g}}), 2.30-2.13 & 2.09-2.00 (m, 1H each, CH_{2\beta}), 1.51 (d, $J_{\alpha',\beta'}$ = 6.8 Hz, 3H, CH_{3\beta}'), 1.39 (s, 9H, ^tBu); ¹³C NMR (100 MHz, CDCl₃) δ 197.6, 197.5, 197.2, 197.1, 197.1, 155.9, 155.8, 134.9, 133.8, 128.8, 128.6, 80.5, 80.4, 42.5, 39.7, 39.6, 39.6, 29.8, 28.4, 27.8, 27.8, 17.8, 17.8; ESIHRMS: *m/z* calcd. for C₁₉H₂₅NO₆SNa (M + Na)⁺ 418.1301, found 418.1329.



Ethyl *N-tert*-butoxycarbonyl-L- S^{γ} - α -metylphenacyl- γ -thioglutamylglycinate (17).

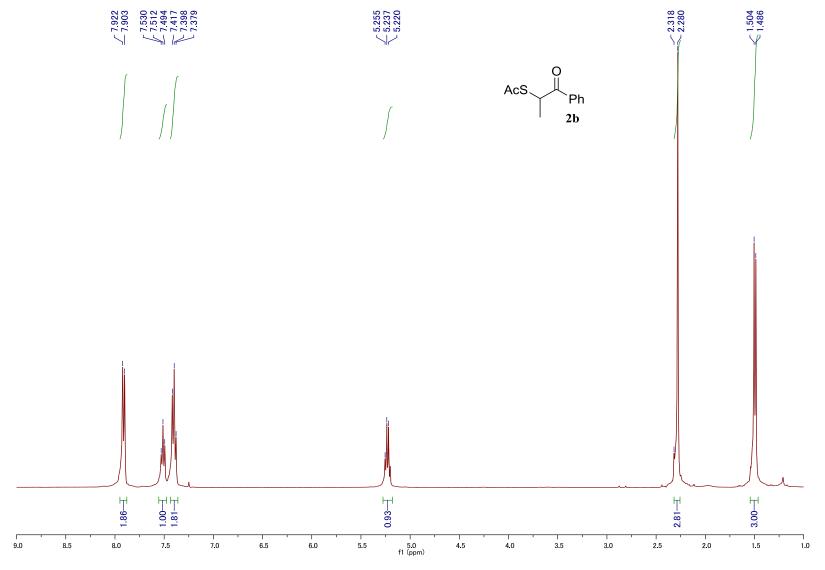
Boc-L-Glu(SMpa)-OH (**16**, 210 mg, 0.52 mmol), and HOBt·H₂O (120 mg, 0.79 mmol) were suspended in CH₂Cl₂ (5.0 mL), and EDCI (120 mg, 0.63 mmol) and *N*-methylmorphiline (68 μ L, 0.63 mmol) were added. The mixture was stirred for 10 min, and then H₂N-Gly-OEt·HCl (88 mg, 0.63 mmol) was added. The reaction mixture was stirred for further 3 h, and then quenched with water (20 mL). The mixture was extracted with CH₂Cl₂ (10 mL x 3), and the combined organic layer was washed with brine (20 mL), dried over Na₂SO₄, and concentrated *in vacuo*. Purification of the residue by flash chromatography (silica gel 15 g, hexane/EtOAc = 4/1 to 1/1) gave a yellow foam (210 mg, 82%). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, $J_{\alpha,m}$ = 7.2 Hz, 2H, Ar-H_o), 7.53 (t, $J_{m,p}$ = 7.2 Hz, 1H, Ar-H_p), 7.42 (dd, $J_{o,m}$ = 7.2 Hz, $J_{m,p}$ = 7.2 Hz, 2H, Ar-H_m), 6.99 (br, 1H, NH), 5.41 (br, 1H, NH), 5.23 (q, 1H, $J_{\alpha'',\beta''}$ = 6.8 Hz, $H_{\alpha''}$), 4.27-4.16 (m, 1H, H_{α}), 4.14 (q, $J_{a,b}$ = 6.8 Hz, 2H, CH_{2b}), 3.87-4.03 (m, 2H, CH_{2α}), 2.68 (m, 2H, CH_{2p}), 2.14 & 1.95 (m, 1H each, CH_{2β}), 1.50 (d, $J_{\alpha'',\beta''}$ = 6.8 Hz, 3H, CH_{3β}^{-''}), 1.37 (s, 9H, ¹Bu), 1.21 (t, $J_{a,b}$ = 6.8 Hz, 3H, CH_{3a}); ¹³C NMR (100MHz, CDCl₃) δ 197.4, 197.3, 197.3, 171.7, 169.6, 169.6, 155.7, 134.9, 133.6, 128.8, 128.6, 80.3, 61.5, 53.4, 53.2, 41.1, 39.7, 39.5, 28.4, 28.1, 17.8, 17.7, 14.2; ESIHRMS: *m*/*z* calcd. for C₂₃H₃₂N₂O₇SNa (M + Na)⁺ 503.1828, found 503.1851.

Ethyl *N-tert*-Butoxycarbonyl-L-tryptophanyl- S^{γ} - α -methylphenacyl-L-thioglutamylglycinate (18). Boc-L-Glu(SMpa)-Gly-OEt (17, 87 mg, 0.18 mmol) was dissolved in 40% TFA/CH₂Cl₂ (0.9 mL), and the solution was stirred for 15 min. The solution was concentrated in vacuo, and the residual TFA was removed by azeotropic distillation with toluene in vacuo. In another flask, Boc-L-Trp-OH (66 mg, 0.22 mmol) and N-methylmorphiline (24 µL, 0.22 mmol) were suspended in CH₂Cl₂/DMF (1/1, 1.0 mL), and HOBt · H₂O (42 mg, 0.27 mmol) and EDCI (42 mg, 0.22 mmol) were added. The reaction mixture was stirred for 10 min, and it was added to a solution of the residue in CH₂Cl₂/DMF (1/1, 1.0 mL). The reaction mixture was stirred for further 1 h, and then quenched with water (10 mL). The mixture was extracted with CH₂Cl₂ (5 mL x 3), and the combined organic layer was washed with brine (10 mL), dried over Na₂SO₄, and concentrated in vacuo. Purification of the residue by silica gel column chromatography (10 g, $CHCl_3$ to $CHCl_3/MeOH =$ 9/1) gave a colorless form (87 mg, 72%). ¹H NMR (400 MHz, CDCl₃) δ 8.73 & 8.59 (br, 0.5H each, NH_a), 7.98 & 7.94 (d, J_{o,m} = 7.2 Hz, 1H each, Ar-H_o), 7.64-7.54 (m, 2H, Ar-H, In-H), 7.48 & 7.45 (dd, $J_{o,m} = 7.2$ Hz, $J_{m,p} = 7.6$ Hz, 1H each, Ar-H_m), 7.30 (m, 1H, In-H), 7.16-7.03 (m, 2H, In-H), 6.99-6.82 (m, 3H, In-H, NH x 2), 5.30 & 5.28 (br, 1H, NH), 5.19 & 5.18 (q, $J_{\alpha'',\beta''} = 6.8$ Hz, 0.5H each, $H_{\alpha^{(n)}}$, 4.49-4.40 (m, 1H, H_{α}), 4.38-4.26 (m, 1H, H_{α}), 4.13 & 4.12 (q, $J_{a,b} = 7.2$ Hz, 1H each, (CH_{2b}) , 3.90-3.60 (m, 2H, $CH_{2a''})$, 3.35-3.23 & 3.19-3.08 (m, 1H each, $CH_{2b})$, 2.50-2.38 & 2.27-2.18 (m, 1H each, CH_{2γ}), 2.10-1.98 & 1.97-1.76 (m, 1H each, CH_{2β}), 1.50 & 1.49 (d, $J_{\alpha^{m},\beta^{m}} = 6.8$ Hz, 1.5H each, $CH_{3\beta''}$), 1.40 (s, 9H, ^tBu), 1.23 & 1.22 (t, $J_{a,b} = 7.2$ Hz, 1.5H each, CH_{3a}); ¹³C NMR (100 MHz, CDCl₃) δ 198.4, 198.2, 197.9, 197.8, 172.5, 172.4, 171.0, 170.9, 169.5, 162.9, 156.0, 156.0, 155.9, 136.3, 136.3, 135.1, 134.9, 133.8, 133.8, 129.0, 128.9, 128.7, 128.7, 127.5, 127.4, 126.7, 126.1, 123.6, 123.5, 122.2, 119.7, 118.7, 118.6, 111.6, 111.6, 109.7, 80.6, 61.5, 61.5, 56.0, 52.3, 52.1, 43.0, 43.0, 41.3, 39.1, 39.0, 36.7, 31.6, 28.4, 28.0, 27.9, 27.3, 17.5, 17.5, 14.2; ESIHRMS: *m/z* calcd. for $C_{34}H_{42}N_4O_8SNa (M + Na)^+ 689.2621$, found 689.2614.

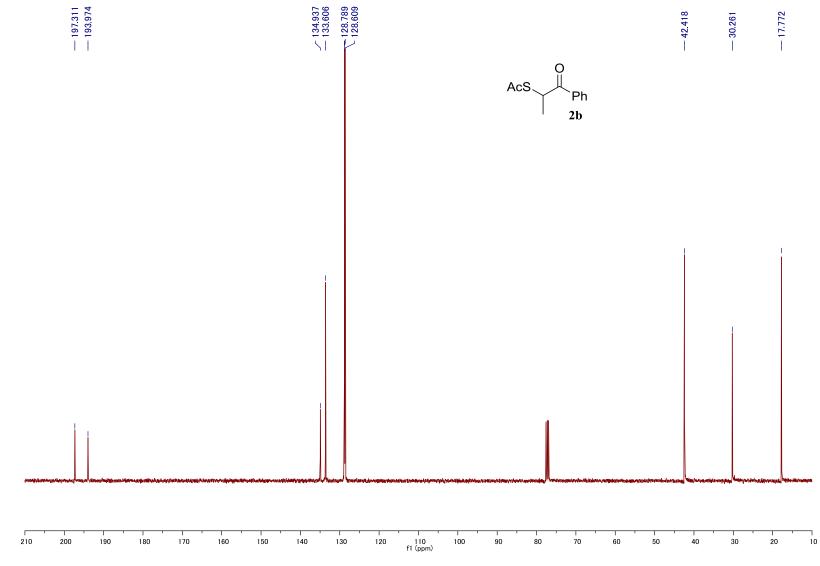
Ethyl *N-tert*-butoxycarbonyl-L-tryptophanyl-S^γ-benzyl-L-γ-thioglutamylglycinate(19).

Boc-L-Trp-L-Glu(SMpa)-Gly-OEt (18, 40 mg, 0.06 mmol) in 90% AcOH (0.6 mL) was degassed, and freshly washed Zn (198 mg, 3.0 mmol) was added to the solution. The mixture was degassed again and stirred for 6 h at 40 °C, followed by concentration under high vacuum. The residue was suspended in CHCl₃/MeOH (5/1), and then filtrated through silica gel pad. The filtrate was concentrated in vacuo. To the residue in DMF (0.6 ml) were added Cs₂CO₃ (60 mg, 0.18 mmol) and BnBr, and the reaction mixture was stirred for 15 min. The reaction was quenched with water (10 mL). The mixture was extracted with EtOAc (5 mL x 3), and the combined organic layer was washed with brine (10 mL), dried over Na₂SO₄, and concentrated in vacuo. Purfication of the residue by silica gel column chromatography (10 g, CHCl₃ to CHCl₃/MeOH = 9/1) gave the title compound as a white foam (30 mg, 79%). $[\alpha]^{20}_{D} = -41.3$ (c = 0.45, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.05-8.00 (br, 1H, NH_a), 7.90 (d, J_{d,e} = 7.6 Hz, 1H, H_d), 7.35-7.23 (m, 6H, In-H, Ar-H x 5), 7.15 (dd, $J_{d,e} = 7.6 \text{ Hz}, J_{e,f} = 7.2 \text{ Hz}, 1\text{H}, \text{H}_{e}), 7.09 \text{ (dd, } J_{e,f} = 7.2 \text{ Hz}, J_{f,g} = 7.6 \text{ Hz}, 1\text{H}, \text{H}_{f}), 6.97 \text{ (m, 1H, In-H)}, 6.97 \text{ (m, 2H, In-H)}, 6.97 \text{ ($ 6.90-6.79 (m, 2H, NH x 2), 5.16 (br d, $J_{\alpha,NH} = 5.6$ Hz, 1H, NH), 4.41 (ddd, $J_{\alpha,\beta} = 5.6$ Hz each, $J_{\alpha,NH}$ = 5.6 Hz, 1H, H_{α}), 4.33 (ddd, $J_{\alpha',\beta'}$ = 7.6 Hz each, $J_{\alpha',NH}$ = 6.4 Hz, 1H, H_{α'}), 4.16 (q, $J_{a,b}$ = 7.2 Hz, 2H, CH_{2b}), 4.06 & 4.02 (ABq, J = 14.0 Hz, 1H each, CH₂Ph), 3.90 & 3.71 (dd, $J_{\alpha'',NH} = 6.0$ Hz, $J_{\alpha'',\alpha''} =$ 18.0 Hz, 1H, CH_{2 $\alpha''}$), 3.32 & 3.14 (dd, $J_{\alpha,\beta} = 5.6$ Hz, $J_{\beta,\beta} = 14.4$ Hz, 1H each, CH_{2 β}), 2.49 & 2.20 (td,</sub> $J_{\beta',\gamma'} = 6.8$ Hz, $J_{\gamma',\gamma'} = 16.4$ Hz, 1H each, CH_{2 γ'}), 1.98 & 1.87 (dtd, $J_{\alpha',\beta'} = 7.6$ Hz, $J_{\beta',\gamma'} = 6.8$ Hz, $J_{\beta',\beta'}$ = 12.8 Hz, 1H each, $CH_{2\beta'}$), 1.42 (s, 9H, ^tBu), 1.25 (t, $J_{a,b}$ = 7.2 Hz, 3H, CH_{3a}); ¹³C NMR (100 MHz, CDCl₃) & 199.4, 172.3, 171.0, 169.5, 137.6, 136.2, 129.0, 128.8, 127.5, 127.4, 123.4, 122.4, 119.9, 118.9, 111.4, 110.0, 80.6, 61.5, 55.7, 52.5, 41.3, 39.2, 33.4, 29.8, 29.7, 28.4, 28.0, 27.1, 14.2; ESIHRMS: m/z calcd. for C₃₂H₄₀N₄O₇SNa (M + Na)⁺ 647.2516, found 647.2533.

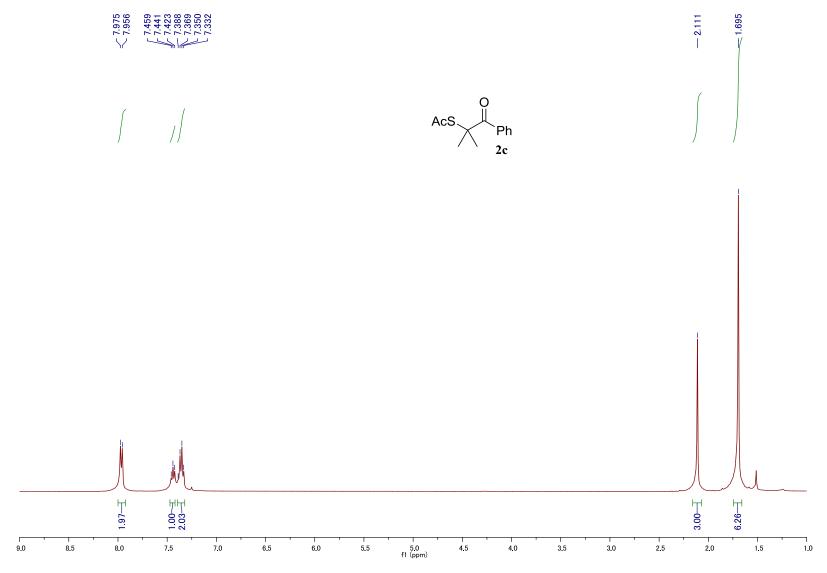
References

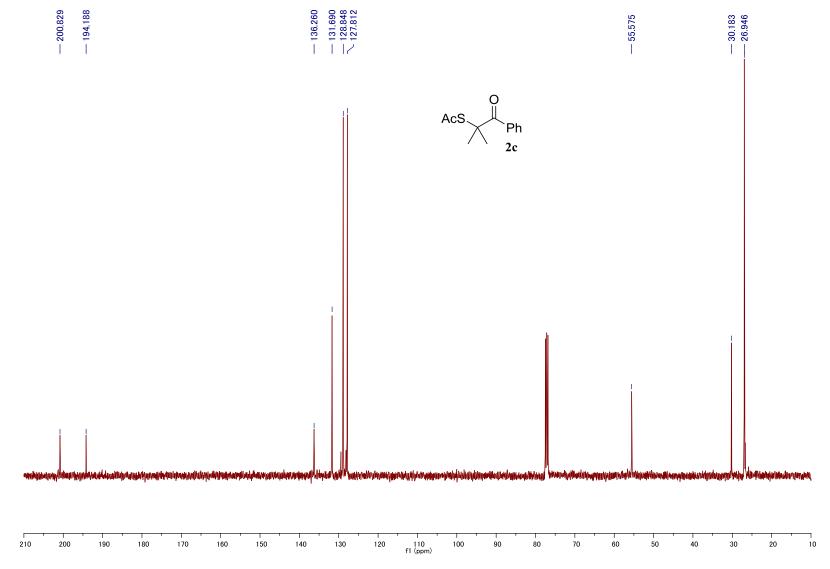

[1] Lienard, B. M. R.; Garau, G.; Horsfall, L.; Karsisiotis, A. I.; Damblon, C.; Lassaux, P.; Papamicael, C.; Roberts, G. C. K.; Galleni, M.; Dideberg, O.; Frere, J. M.; Schofield, C. J. *Org. Biomol. Chem.* **2008**, *6*, 2282-2294.

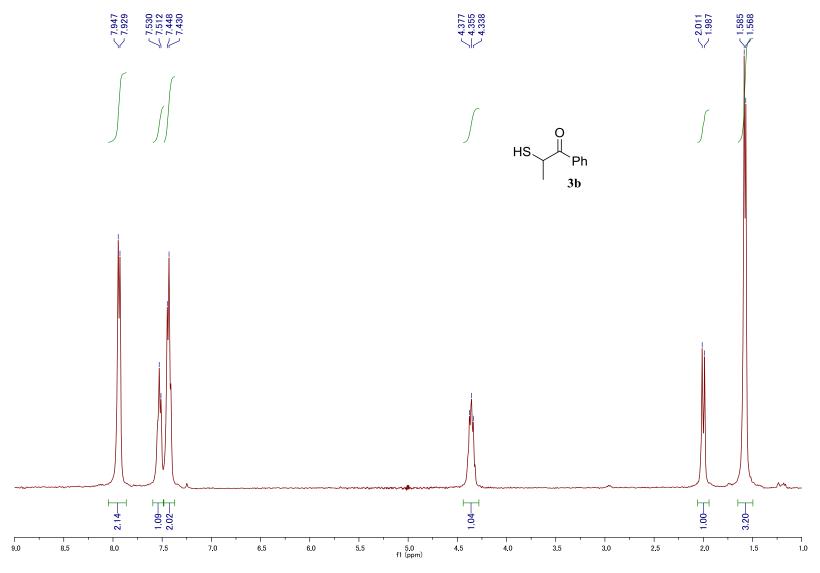
- [2] Nakayama, J.; Hirayama, A.; Yokomori, Y. Bull. Chem. Soc. Jpn. 1991, 64, 3593-3599.
- [3] Hornbuckle, S. F.; Livant, P.; Webb, T. R. J. Org. Chem. 1995, 60, 4153-4159.

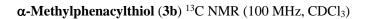

- [4] Crich, D.; Sana, K. J. Org. Chem. 2009, 74, 7383–7388.
- [5] Crich, D.; Sana, K.; Guo, S. Org. Lett. 2007, 9, 4423-4426.
- [6] Webster, K. L.; Maude, A. B.; O'Donnell, M. E.; Mehrotra, A. P.; Gani, D. J. Chem. Soc., Perkin

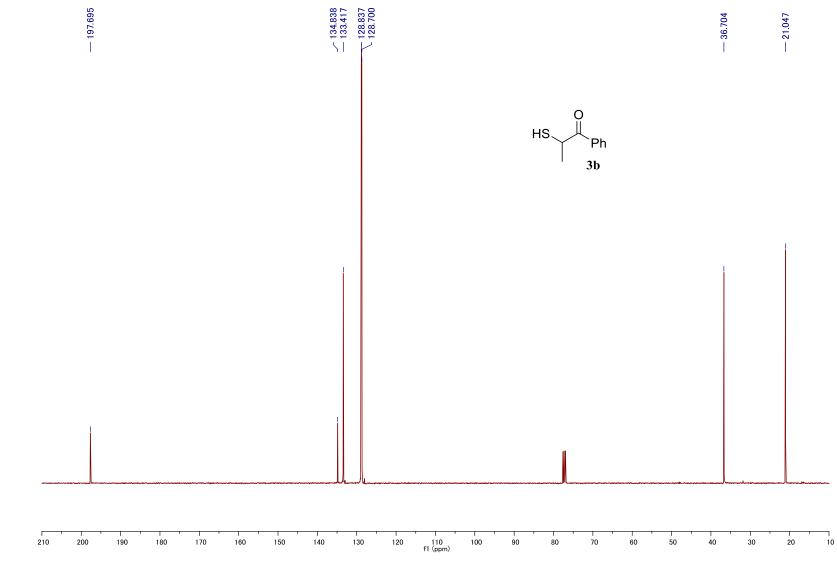
Trans. 1 2001, 1673–1695.

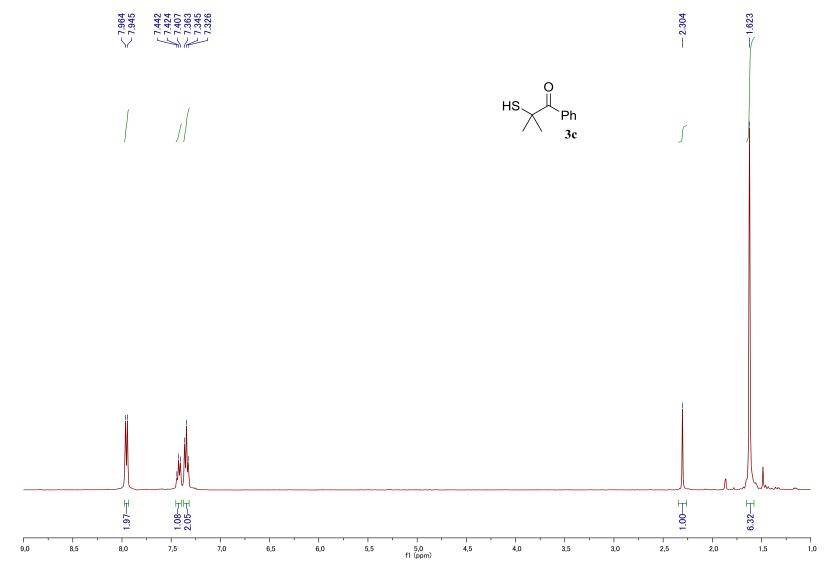

S-α-Methylphenacyl thioacetate (2b) ¹H NMR (400 MHz, CDCl₃)

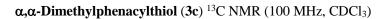

S-α-Methylphenacyl thioacetate (2b) ¹³C NMR (100 MHz, CDCl₃)

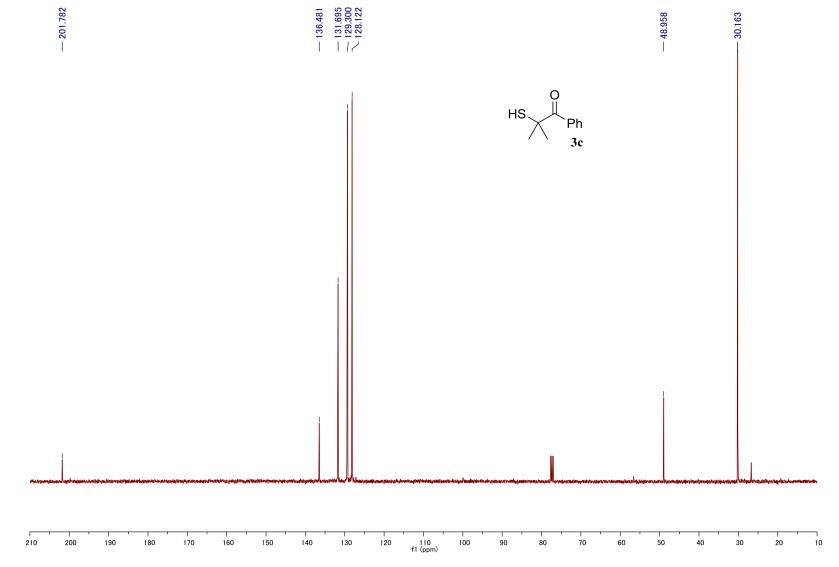

S-α,α-Dimethylphenacyl thioacetate (2c) ¹H NMR (400 MHz, CDCl₃)

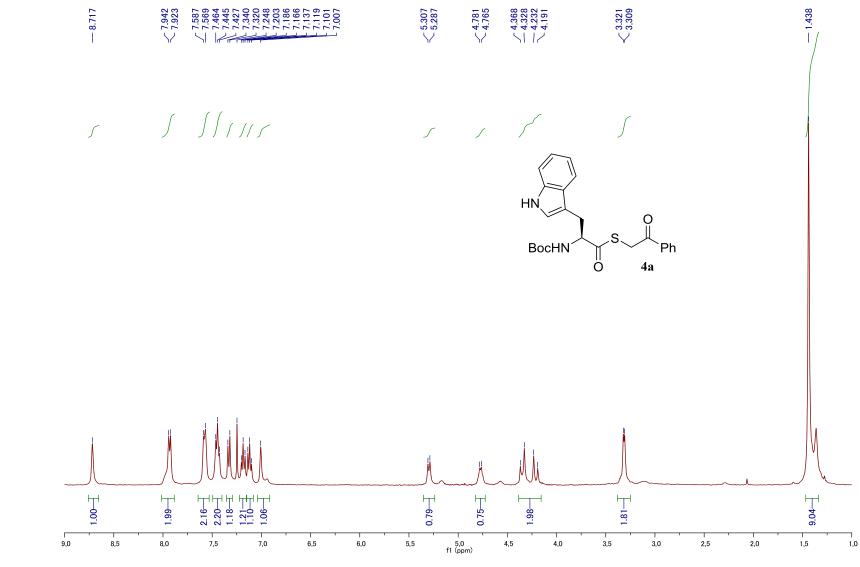



S-α,α-Dimethylphenacyl thioacetate (2c) ¹³C NMR (100 MHz, CDCl₃)

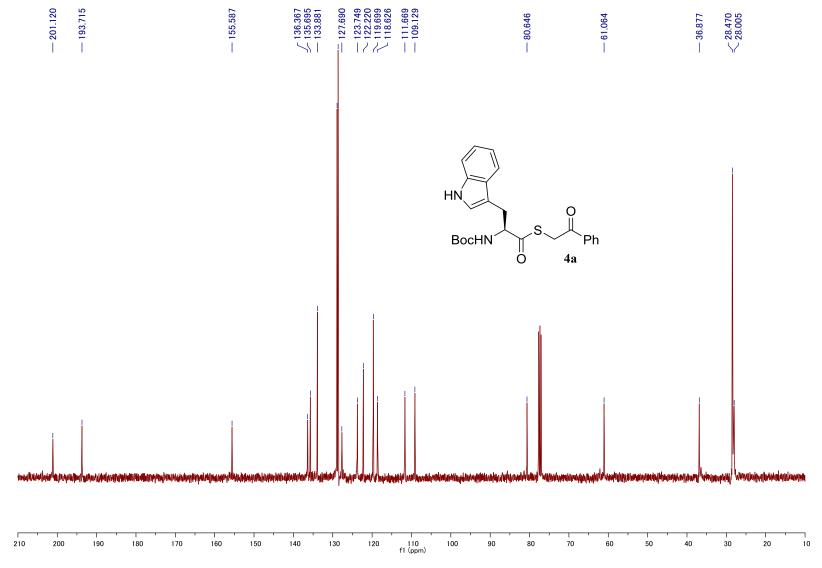

α-Methylphenacylthiol (3b) ¹H NMR (400 MHz, CDCl₃)

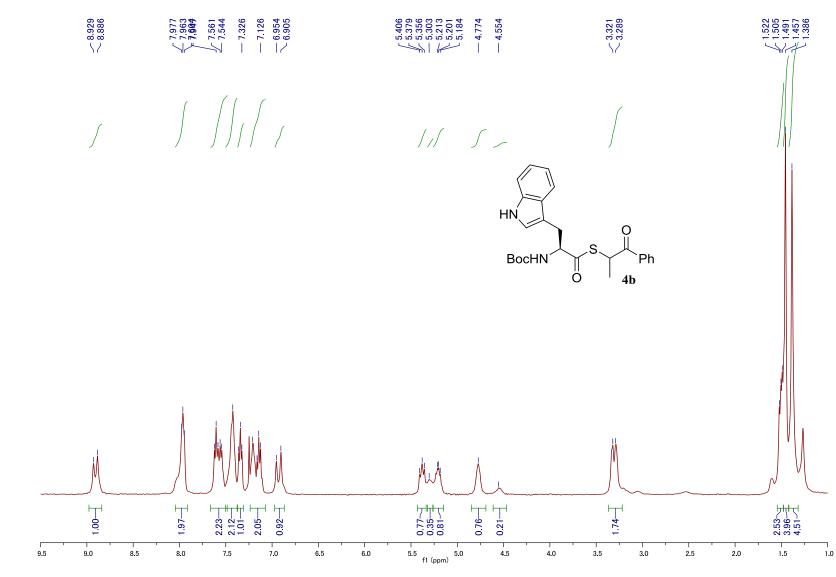




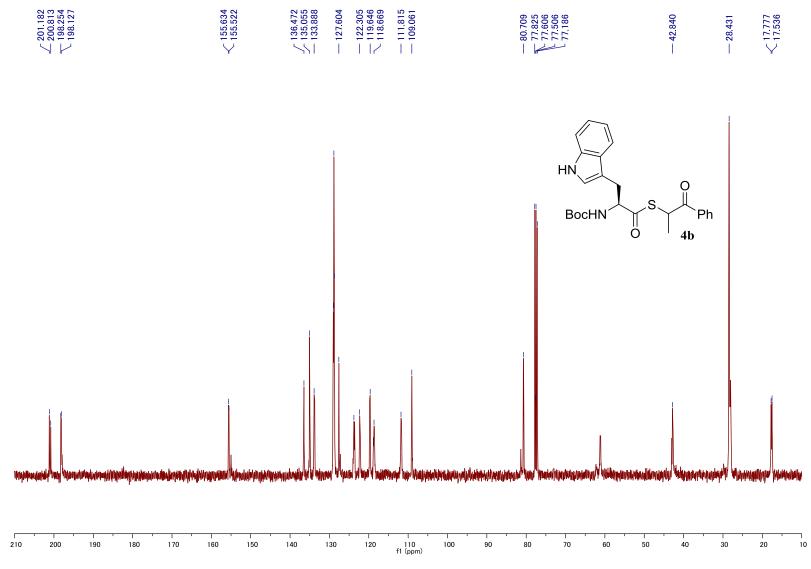


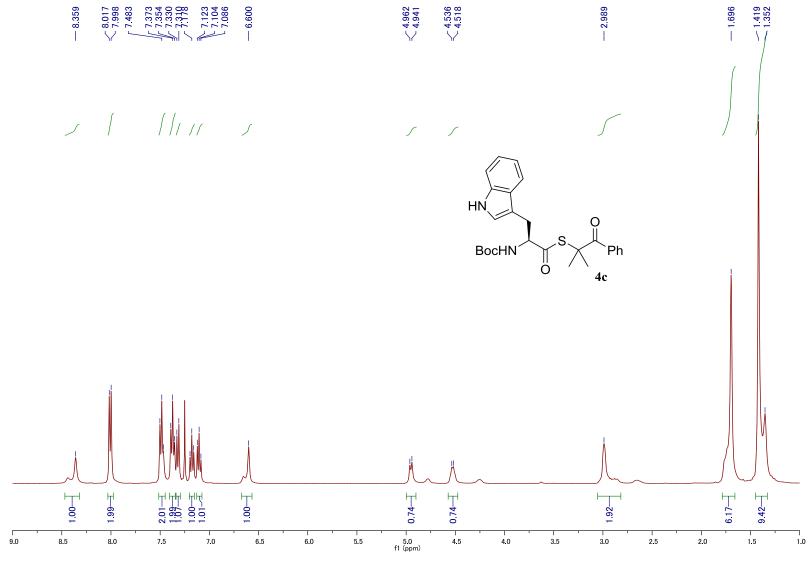
α,α-Dimethylphenacylthiol (3c) ¹H NMR (400 MHz, CDCl₃)

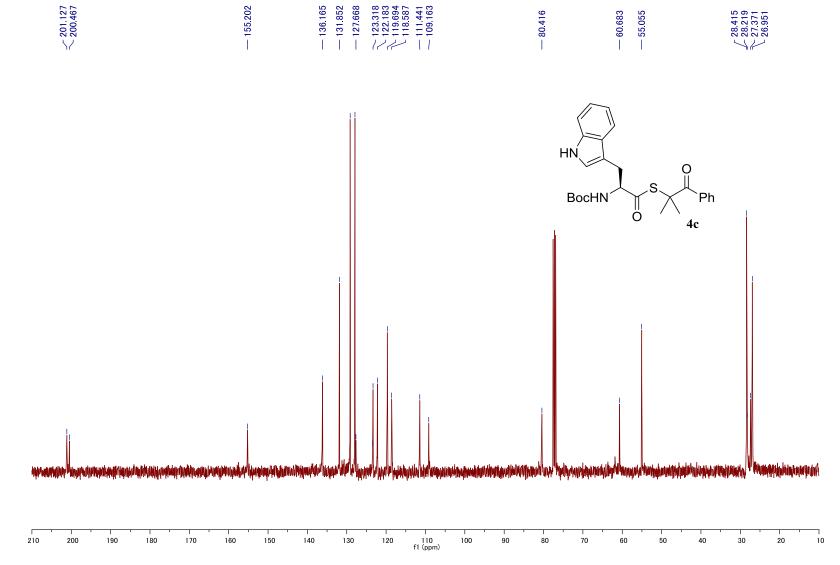


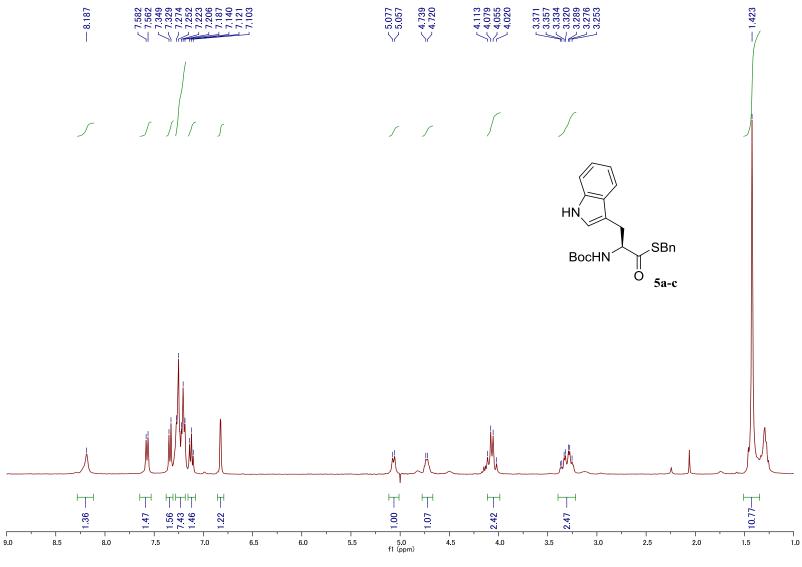


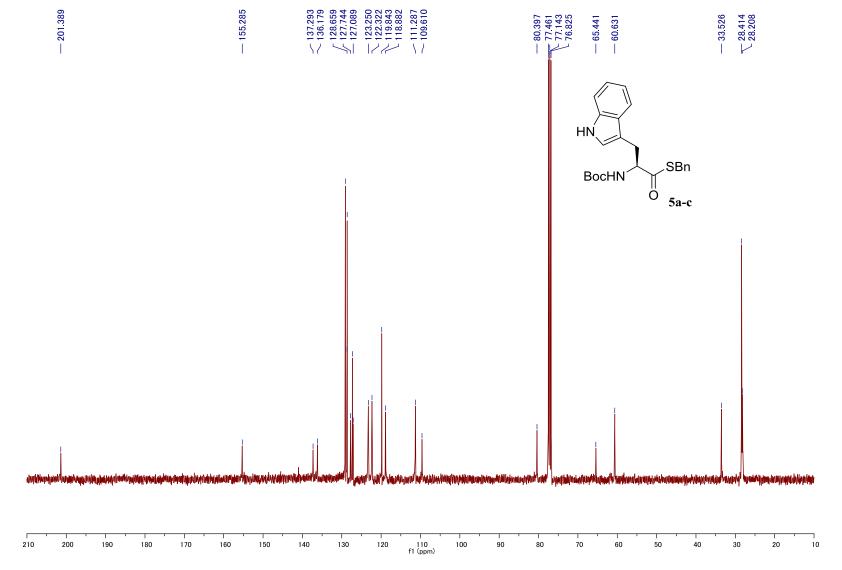
S-Phenacyl N-tert-butoxycarbonyl-L-thiotryptophanate (4a) ¹H NMR (400 MHz, CDCl₃)



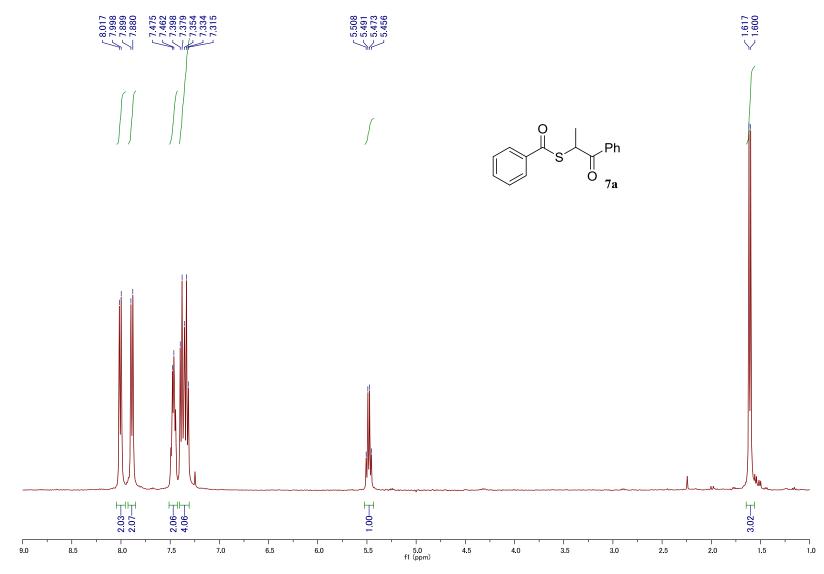

S-Phenacyl *N-tert*-butoxycarbonyl-L-thiotryptophanate (4a) ¹³C NMR (100 MHz, CDCl₃)


S-α-Methylphenacyl N-tert-butoxycarbonyl-L-thiotryptophanate (4b) ¹H NMR (400 MHz, CDCl₃)

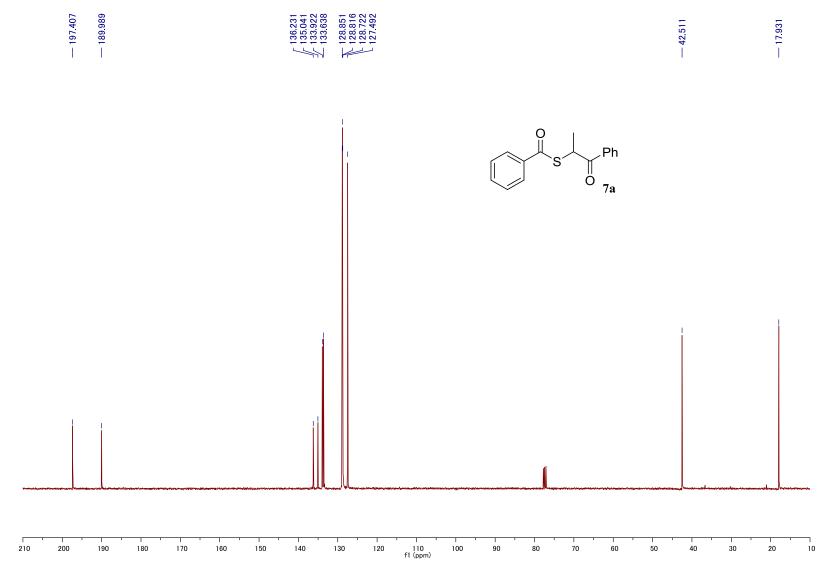



S-(α,α-Dimethylphenacyl) *N-tert*-butoxycarbonyl-L-thiotryptophanate (4c) ¹H NMR (400 MHz, CDCl₃)

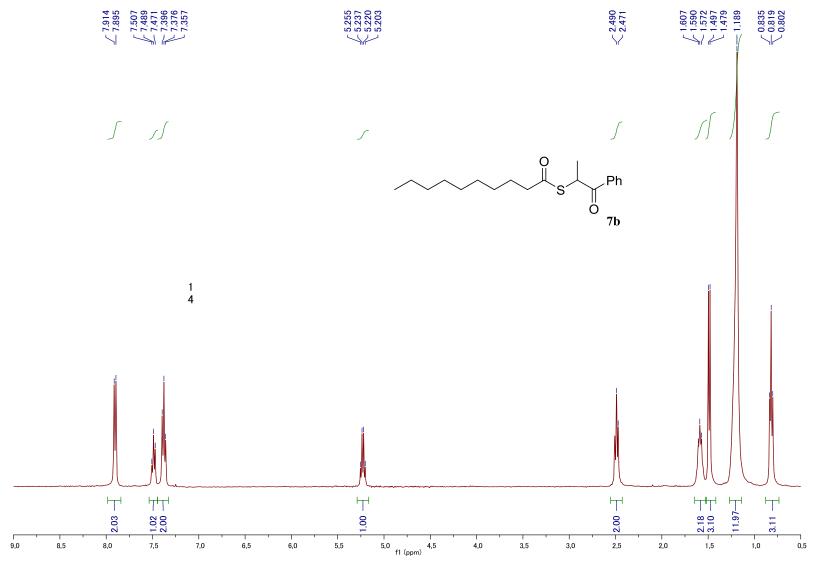
S-(α,α-Dimethylphenacyl) N-tert-butoxycarbonyl-L-thiotryptophanate (4c) ¹³C NMR (100 MHz, CDCl₃)

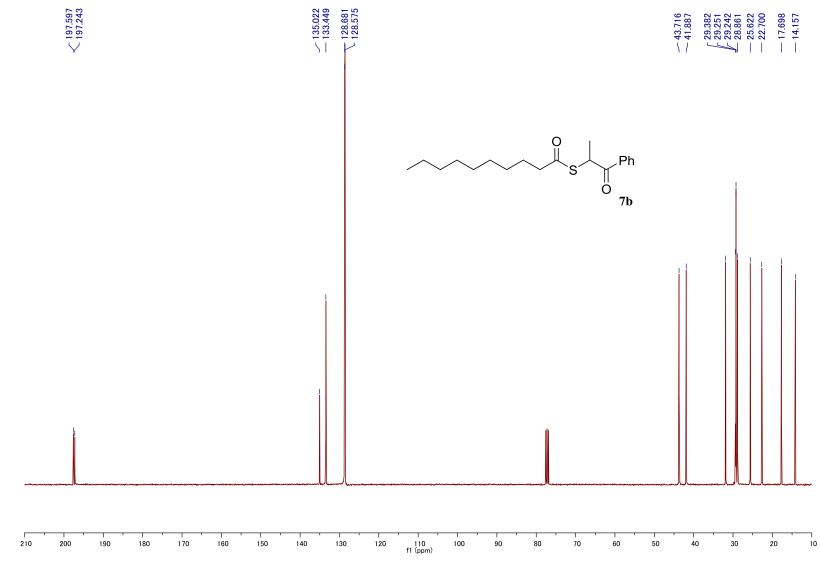


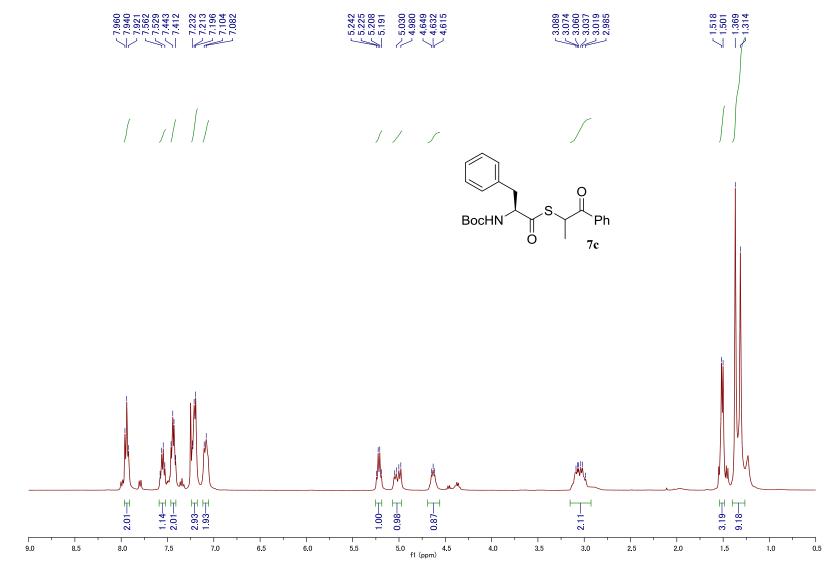
S-Benzyl *N-tert*-butoxycarbonyl-L-thiotryptophanate (5a-c) ¹H NMR (400 MHz, CDCl₃)



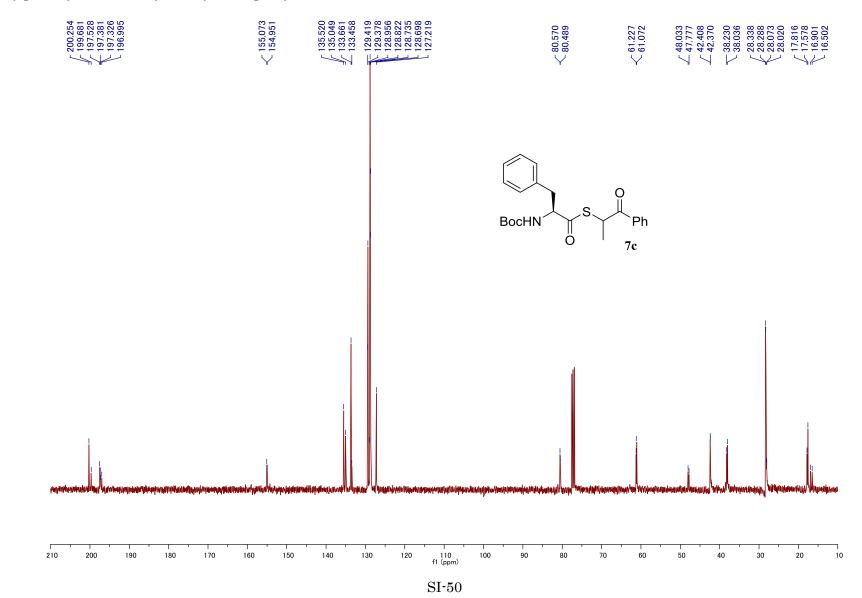
S-Benzyl *N*-*tert*-butoxycarbonyl-L-thiotryptophanate (5a-c) ¹³C NMR (100 MHz, CDCl₃)


S-α-Methylphenacyl thiobenzoate (7a) ¹H NMR (400 MHz, CDCl₃)

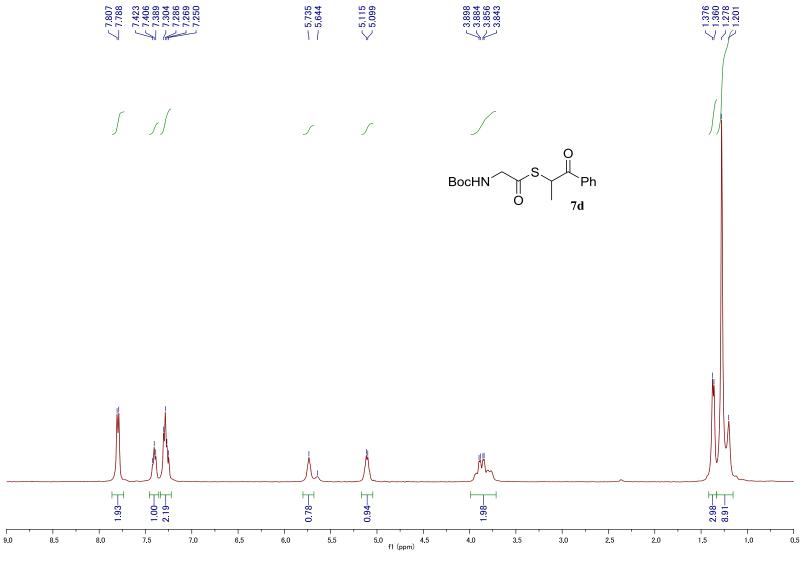

S-α-Methylphenacyl thiobenzoate (7a) ¹³C NMR (100 MHz, CDCl₃)

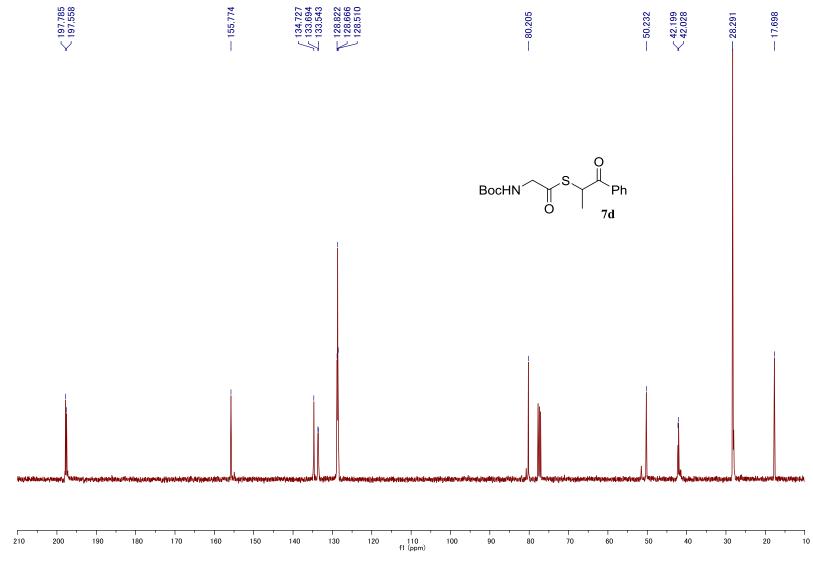


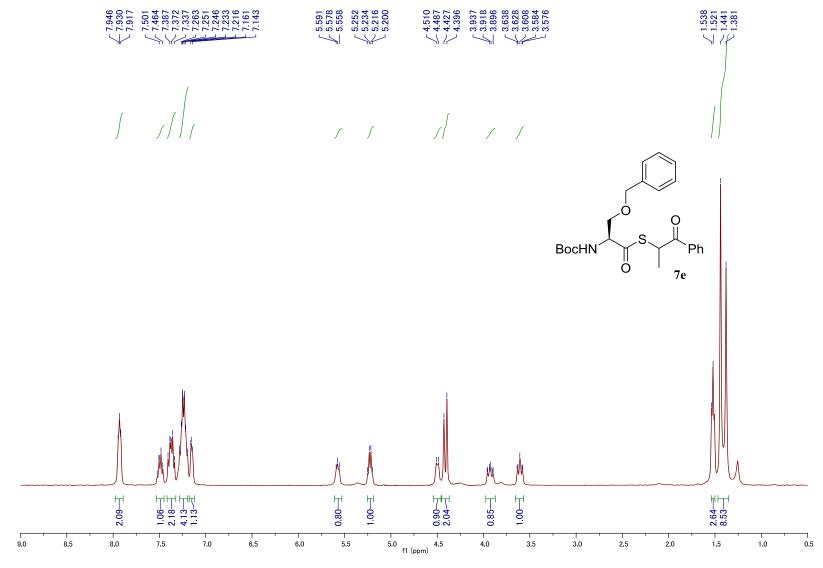
S-α-Methylphenacyl thiodecanoate (7b) ¹H NMR (400 MHz, CDCl₃)



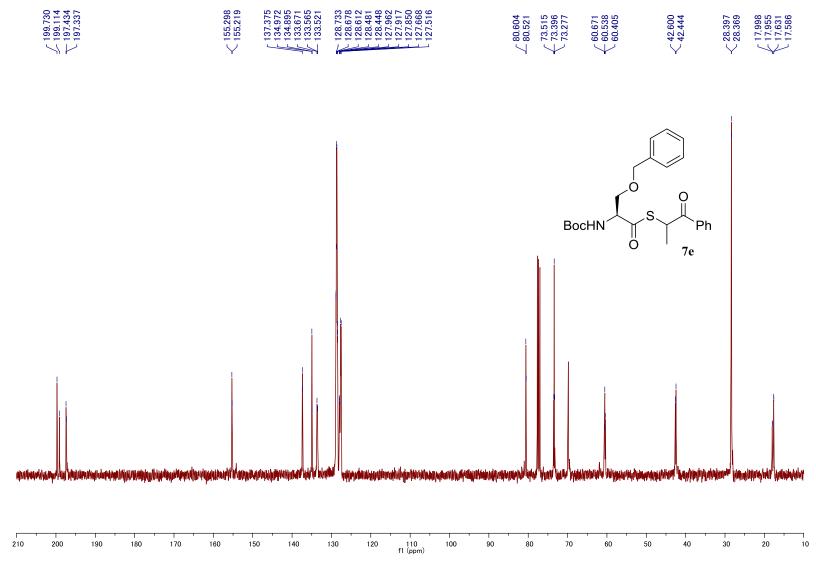
S-α-Methylphenacyl thiodecanoate (7b) ¹³C NMR (100 MHz, CDCl₃)

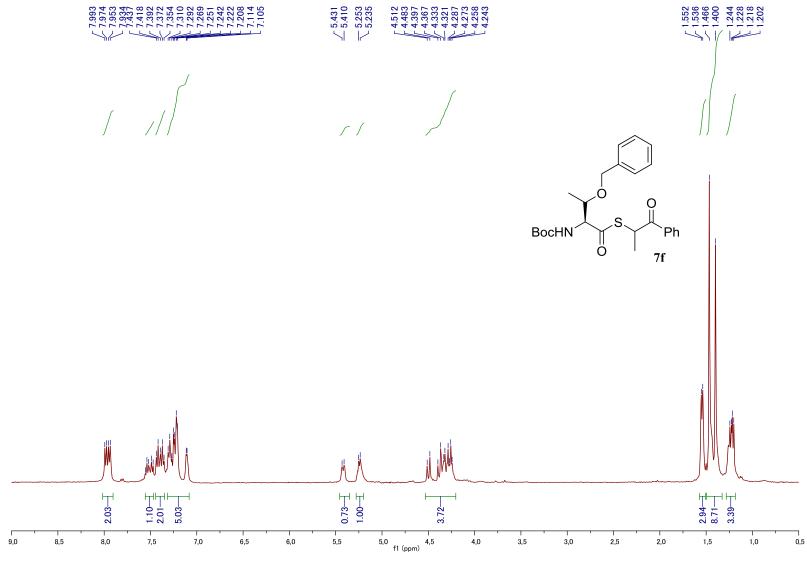



S-α-Methylphenacyl N-tert-butoxycarbonyl-L-thiophenylalainate (7c) ¹H NMR (400 MHz, CDCl₃)

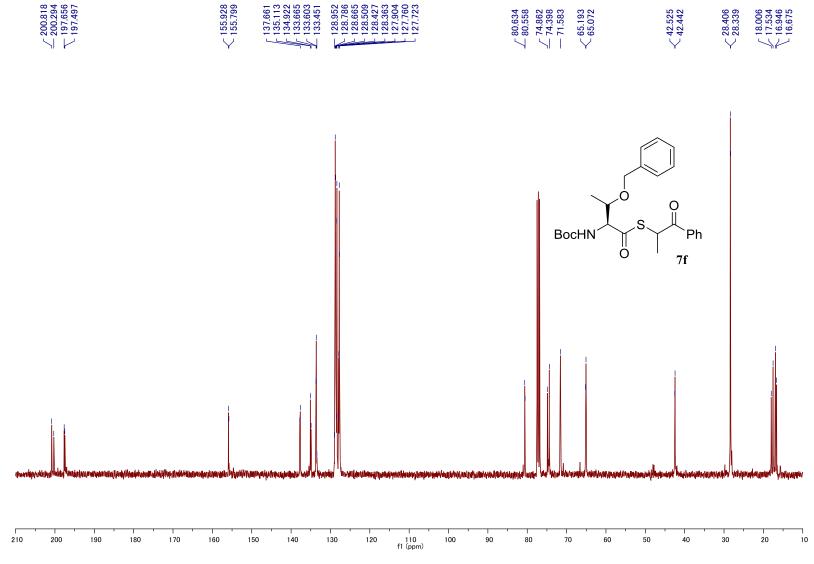

S-α-Methylphenacyl *N-tert*-butoxycarbonyl-L-thiophenylalainate (7c) ¹³C NMR (100 MHz, CDCl₃)

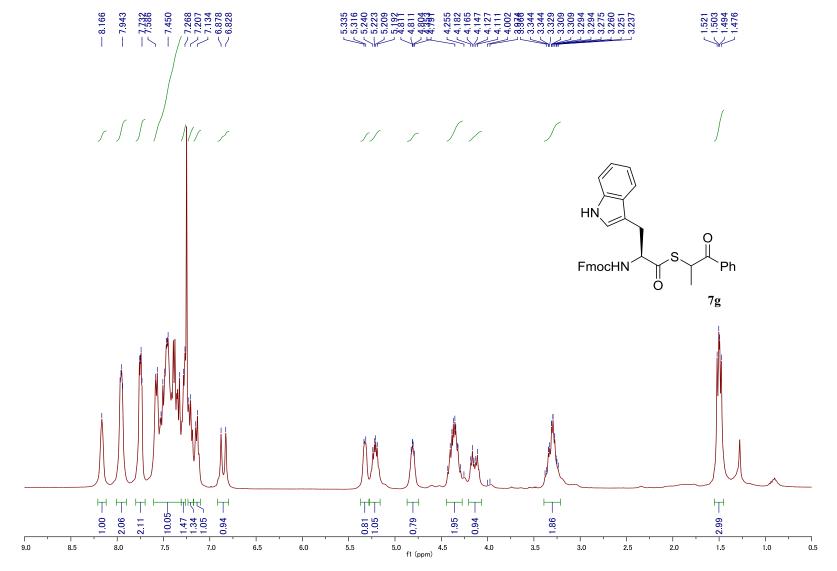
S-α-Methylphenacyl *N-tert*-butoxycarbonyl-thioglycinate (7d) ¹H NMR (400 MHz, CDCl₃)



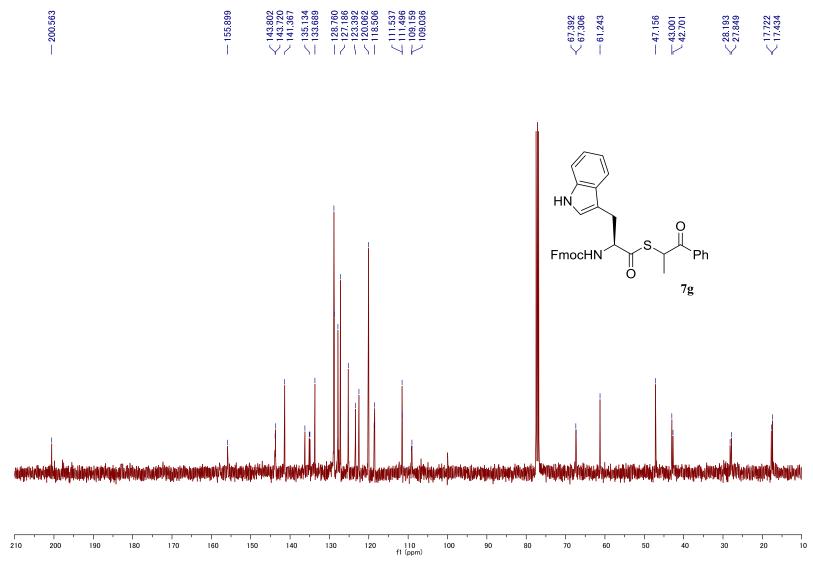

S-α-Methylphenacyl *N*-*tert*-butoxycarbonylthioglycinate (7d) ¹³C NMR (100 MHz, CDCl₃)

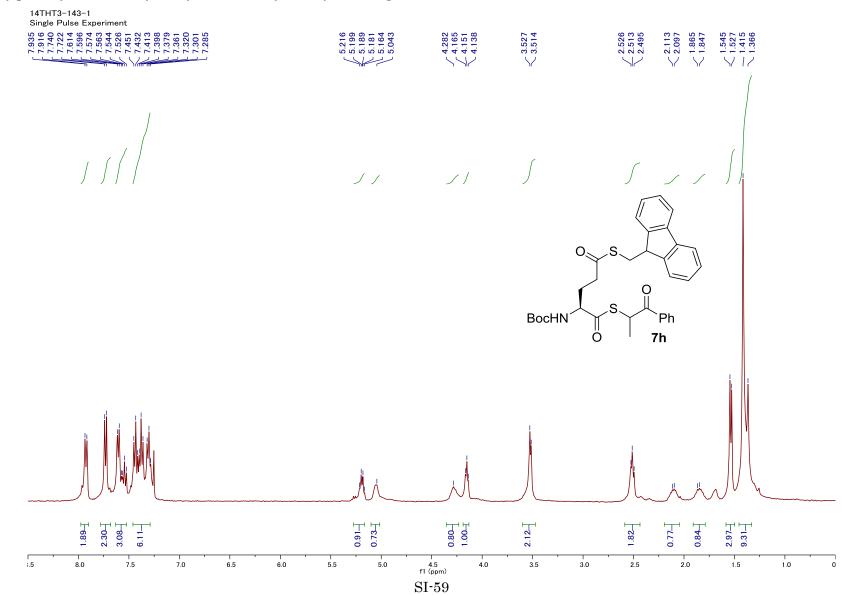
S-α-Methylphenacyl N-tert-butoxycarbonyl-O-benzyl-L-thioserinate (7e) ¹H NMR (400 MHz, CDCl₃)

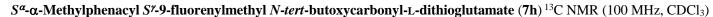

S-α-Methylphenacyl N-tert-butoxycarbonyl-O-benzyl-L-thioserinate (7e)¹³C NMR (100 MHz, CDCl₃)

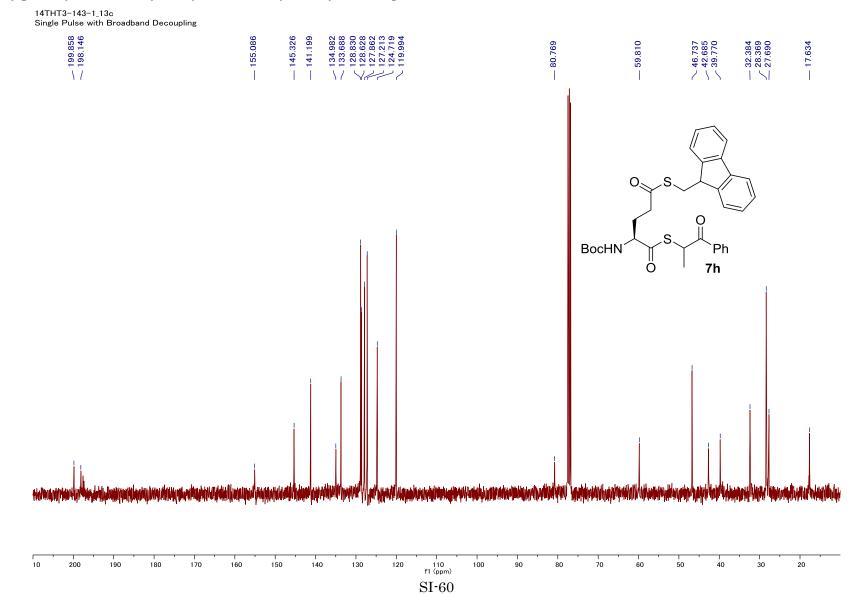


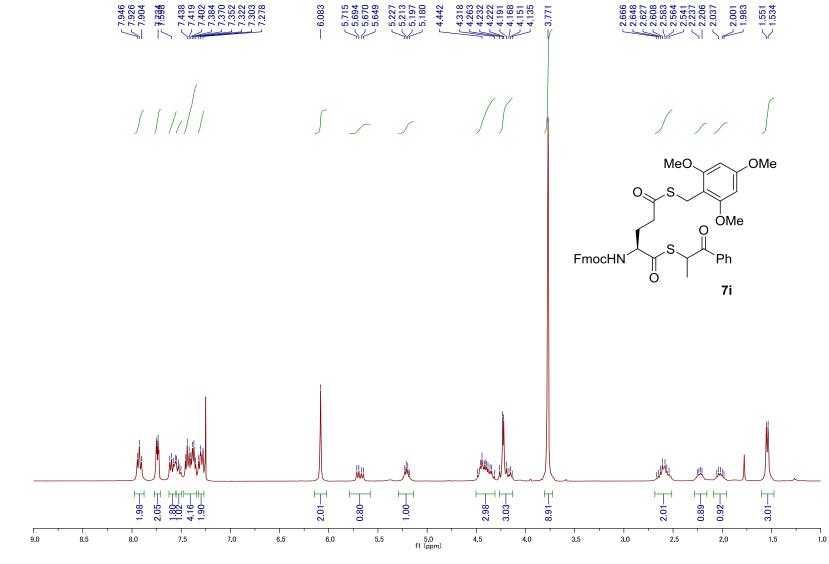
S-α-Methylphenacyl N-tert-butoxycarbonyl-O-benzyl-L-thiothreonate (7f) ¹H NMR (400 MHz, CDCl₃)


S-α-Methylphenacyl *N-tert*-butoxycarbonyl-*O*-benzyl-L-thiothreonate (7f)¹³C NMR (100 MHz, CDCl₃)

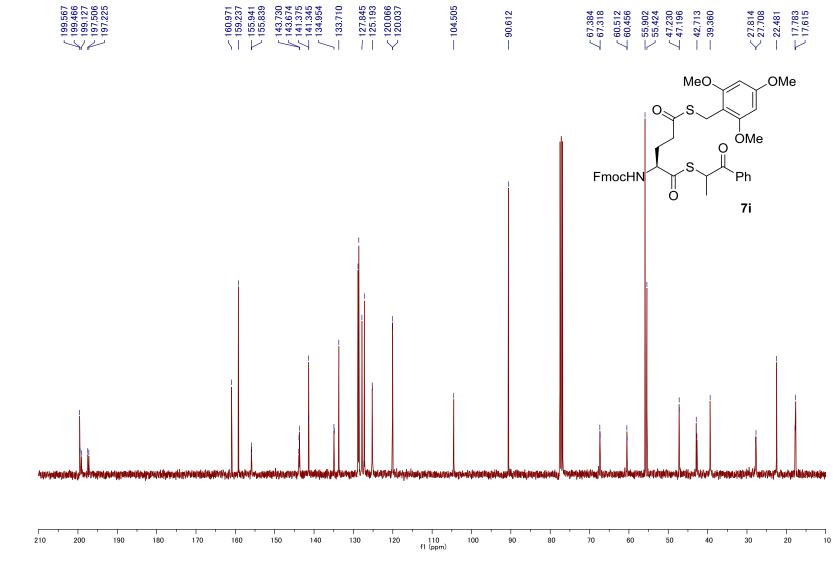

S-α-Methylphenacyl N-fluorenylmethyloxycarbonyl-L-thiotryptophanate (7g) ¹H NMR (400 MHz, CDCl₃)

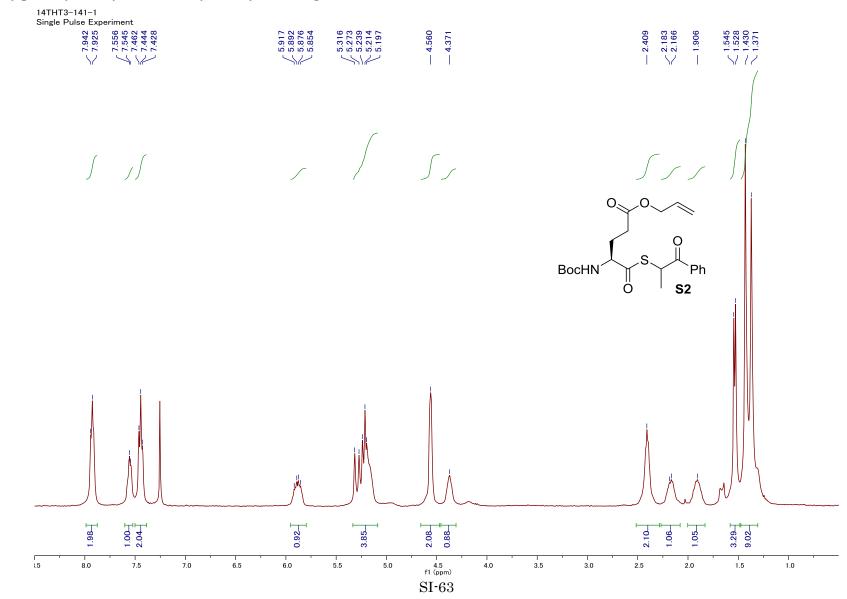



S-α-Methylphenacyl N-fluorenylmethyloxycarbonyl-L-thiotryptophanate (7g)¹³C NMR (100 MHz, CDCl₃)



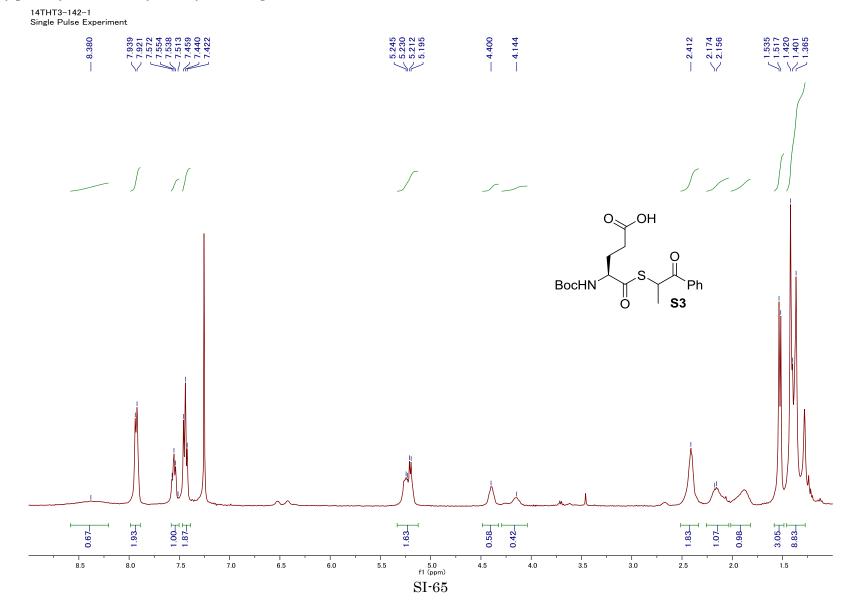
S^α-α-Methylphenacyl *S^γ*-9-fluorenylmethyl *N-tert*-butoxycarbonyl-L-dithioglutamate (7h) ¹H NMR (400 MHz, CDCl₃)

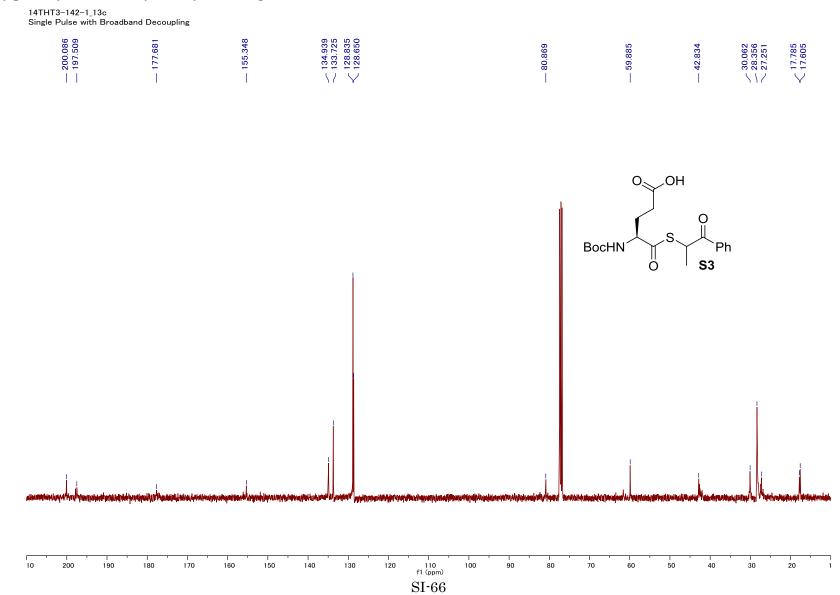




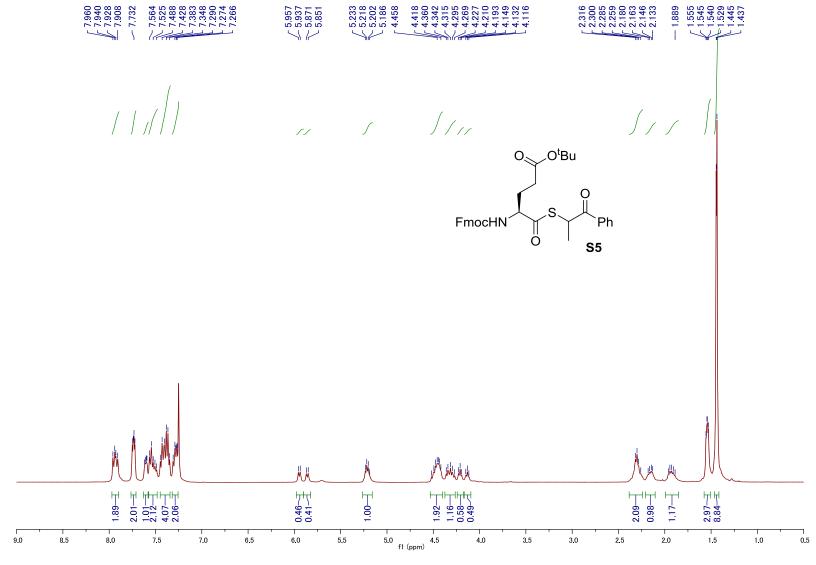
 S^{α} - α -Methylphenacyl S^{γ} -2,4,6-trimethoxybenzyl N-(9-fluorenylmethyloxycarbonyl)-L-dithioglutamate (7i) ¹H NMR (400 MHz, CDCl₃)

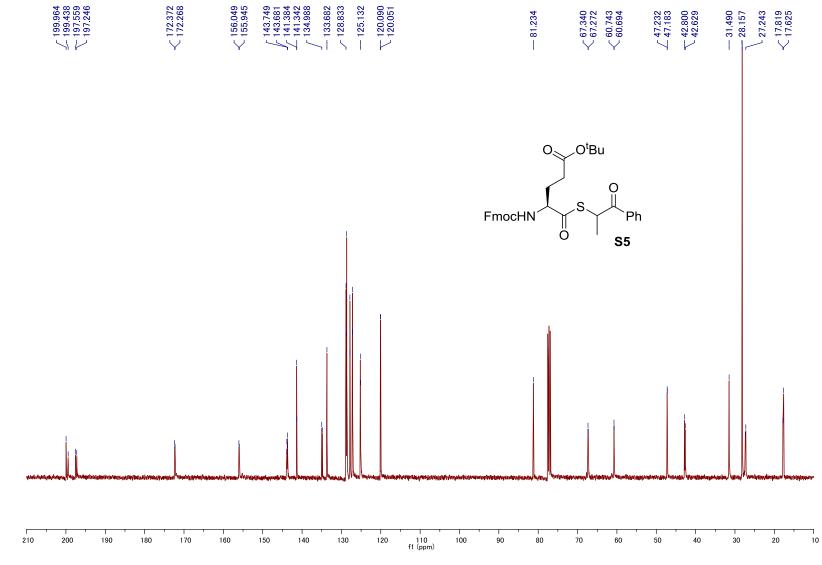
 S^{α} - α -Methylphenacyl S^{γ} -2,4,6-trimethoxybenzyl N-(9-fluorenylmethyloxycarbonyl)-L-dithioglutamate (7i) ¹³C NMR (100 MHz, CDCl₃)


S^{α} - α -Methylphenacyl O^{γ} -allyl *N-tert*-butoxycarbonyl-L- α -thioglutamate (S2) ¹H NMR (400 MHz, CDCl₃)

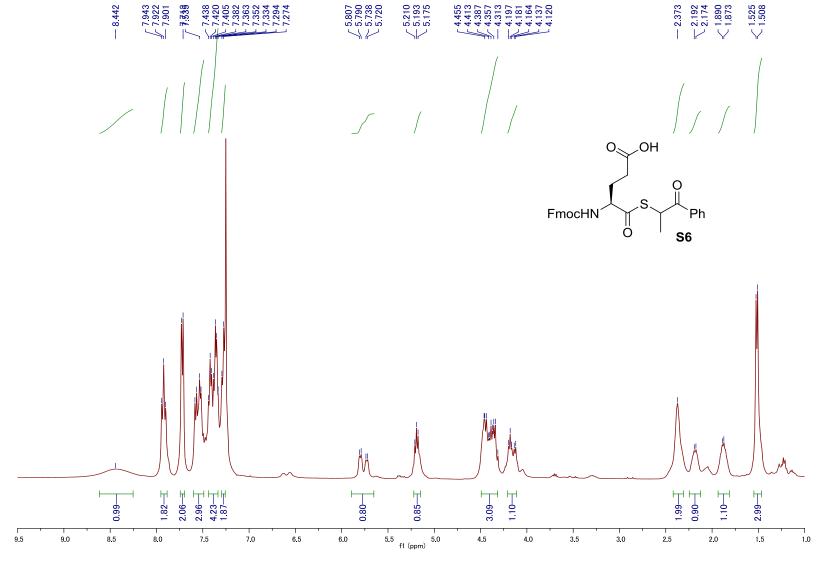

14THT3-141-1_13c Single Pulse with Broadband Decoupling $\begin{array}{c} & 134.989 \\ & \overbrace{} 133.655 \\ & \overbrace{} 131.972 \\ & 128.808 \\ & \overbrace{} 128.626 \end{array}$ $\int_{-10}^{-10} \frac{30.240}{28.367} \\ 28.367 \\ 27.320 \\ 27.320 \\ 17.810 \\ 17.624$ $< rac{42.674}{42.554}$ 80.704 65.576 60.047 1 0 *_*Ο、 O BocHN `Ph ö S2 110 f1 (ppm) 200 100 70 50 40 30 10 190 180 . 170 160 . 150 . 140 130 120 90 80 60 20 SI-64

S^{α} - α -Methylphenacyl O^{γ} -allyl *N-tert*-butoxycarbonyl-L- α -thioglutamate (S2) ¹³C NMR (100 MHz, CDCl₃)

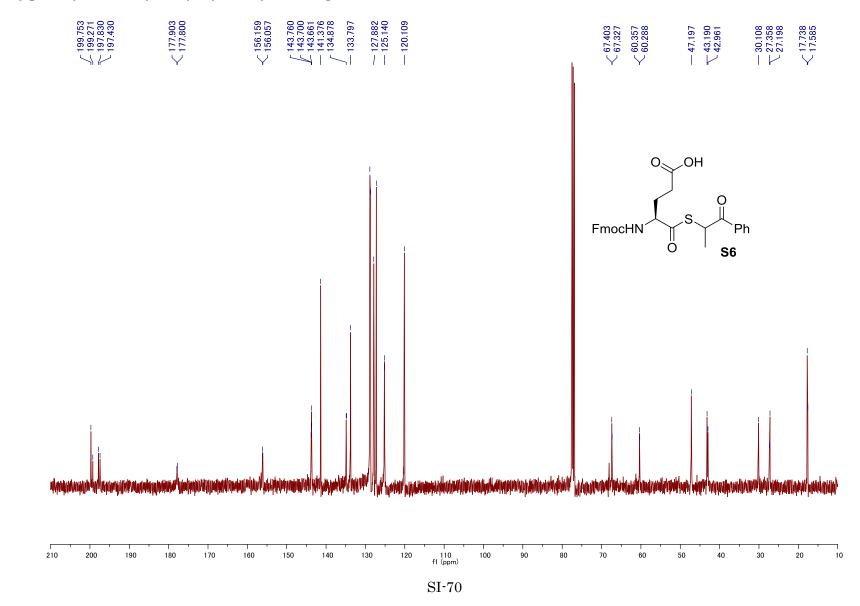

S^α-α-Methylphenacyl N-tert-butoxycarbonyl-L-α-thioglutamate (S3) ¹H NMR (400 MHz, CDCl₃)



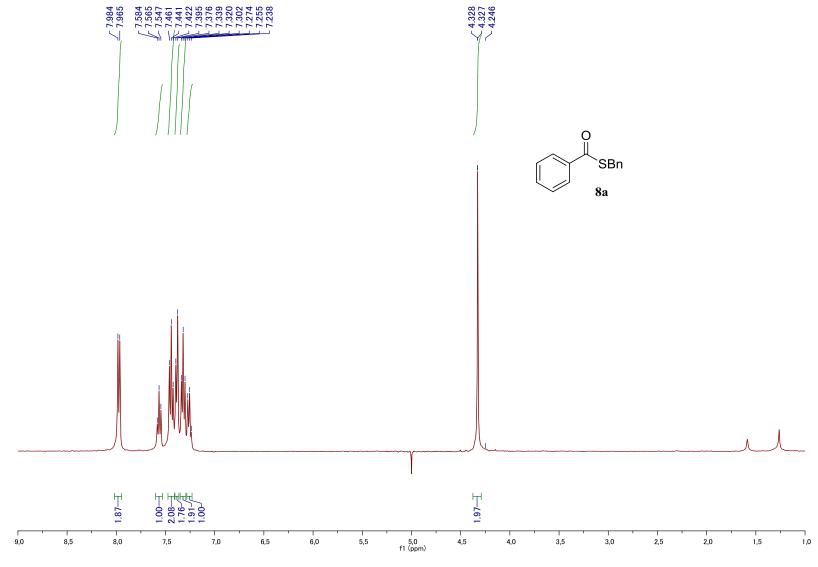
S^α-α-Methylphenacyl N-tert-butoxycarbonyl-L-α-thioglutamate (S3) ¹³C NMR (100 MHz, CDCl₃)

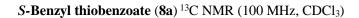


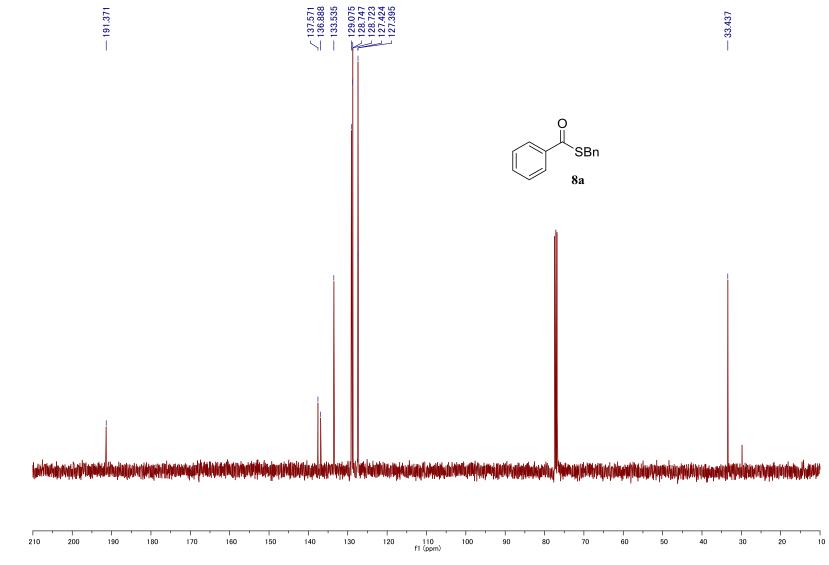
 S^{α} - α -Methylphenacyl O^{γ} -tert-butyl N-(9-fluorenylmethyloxycarbonyl)-L- α -thioglutamate (S5) ¹H NMR (400 MHz, CDCl₃)



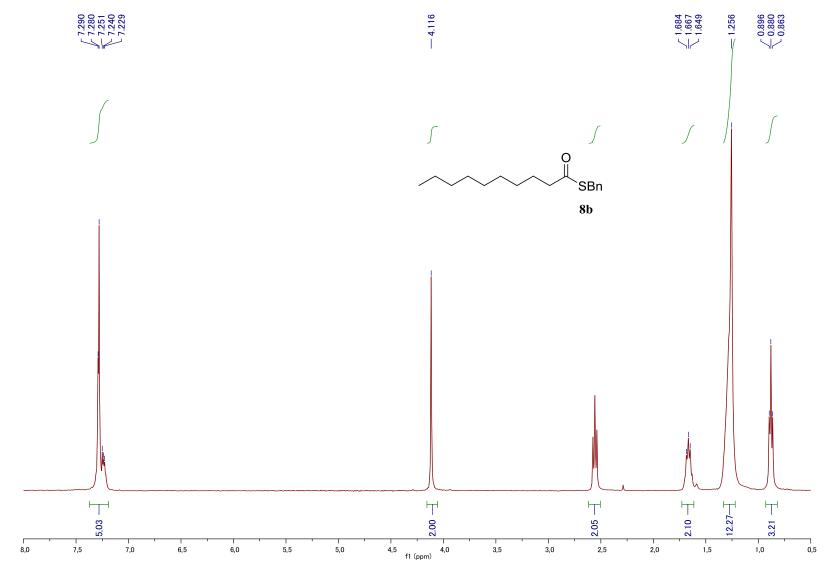
 S^{α} - α -Methylphenacyl O^{γ} -tert-butyl N-(9-fluorenylmethyloxycarbonyl)-L- α -thioglutamate (S5) ¹³C NMR (100 MHz, CDCl₃)

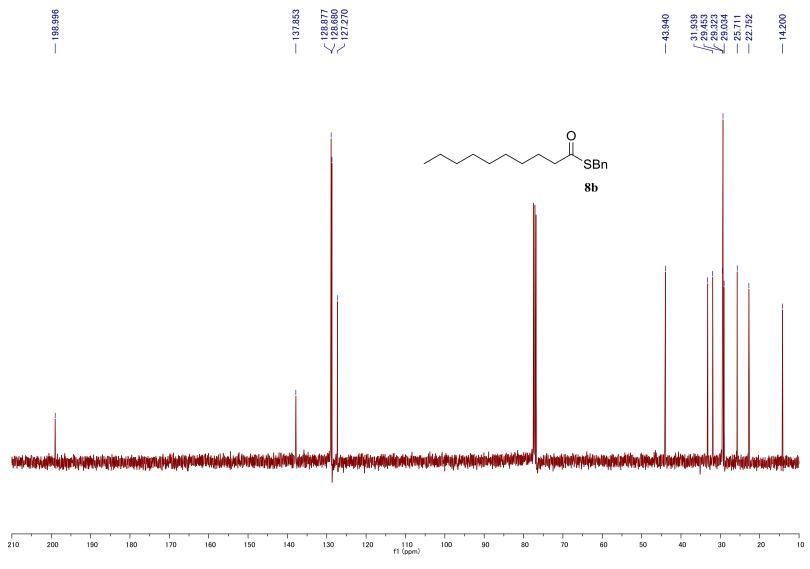


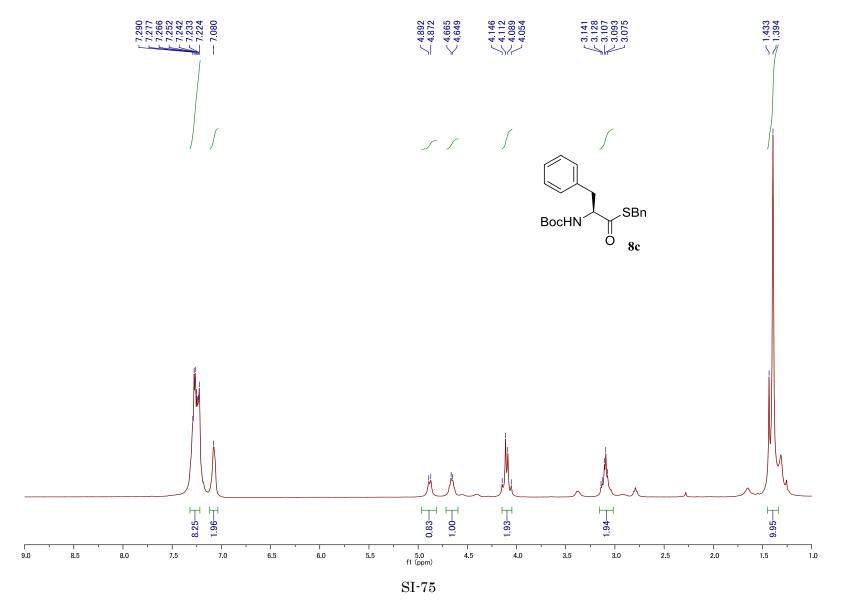

S^α-α-Methylphenacyl N-fluorenylmethyloxycarbonyl-L-α-thioglutamate (S6) ¹H NMR (400 MHz, CDCl₃)



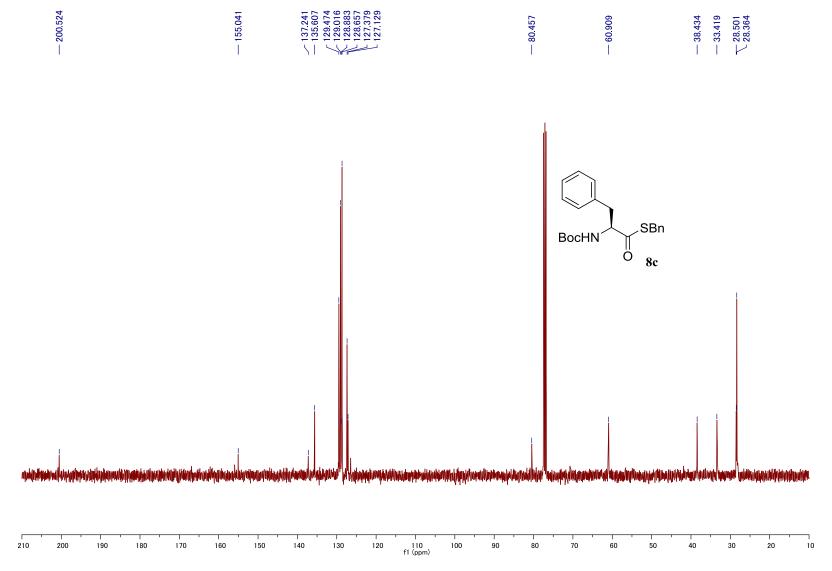
 S^{α} - α -Methylphenacyl *N*-fluorenylmethyloxycarbonyl-L- α -thioglutamate (S6) ¹³C NMR (100 MHz, CDCl₃)


S-Benzyl thiobenzoate (8a) ¹H NMR (400 MHz, CDCl₃)

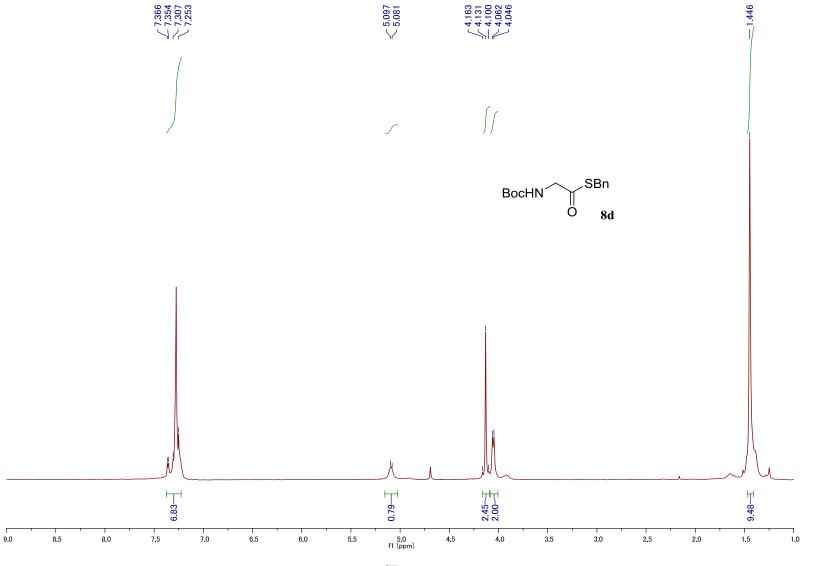




S-Benzyl thiodecanoate (8b) ¹H NMR (400 MHz, CDCl₃)



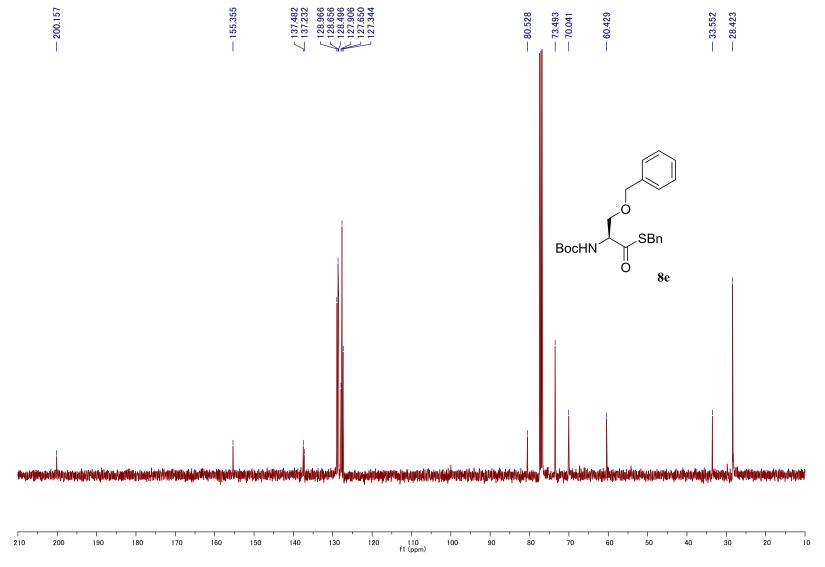
S-Benzyl thiodecanoate (8b) ¹³C NMR (100 MHz, CDCl₃)



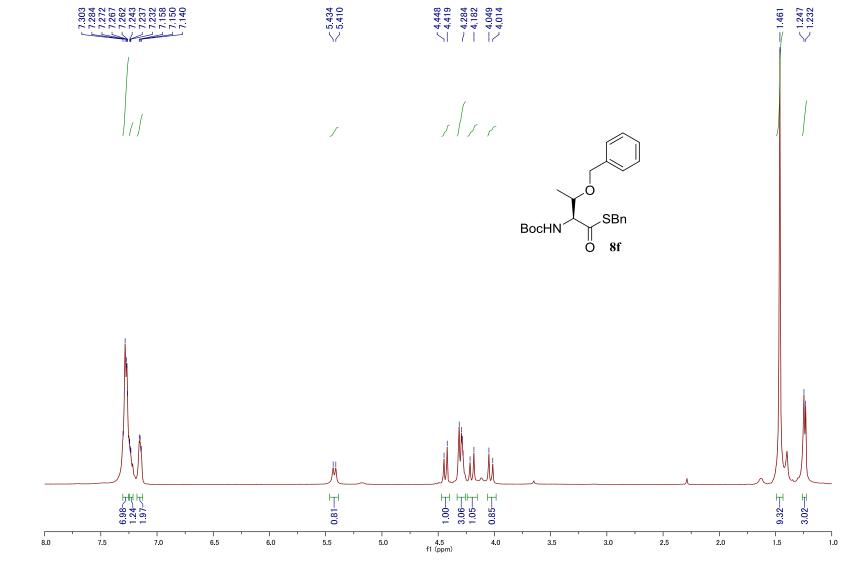
S-Benzyl *N*-*tert*-butoxycarbonyl-L-thiophenylalaninate (8c) ¹H NMR (400 MHz, CDCl₃)

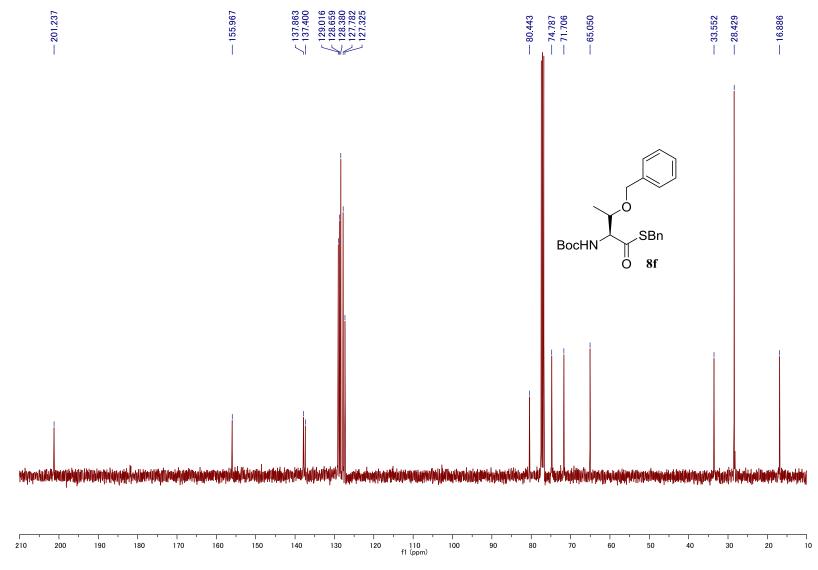

S-Benzyl *N*-*tert*-butoxycarbonyl-L-thiophenylalaninate (8c) ¹³C NMR (100 MHz, CDCl₃)

S-Benzyl N-tert-butoxycarbonylthioglycinate (8d) ¹H NMR (400 MHz, CDCl₃)

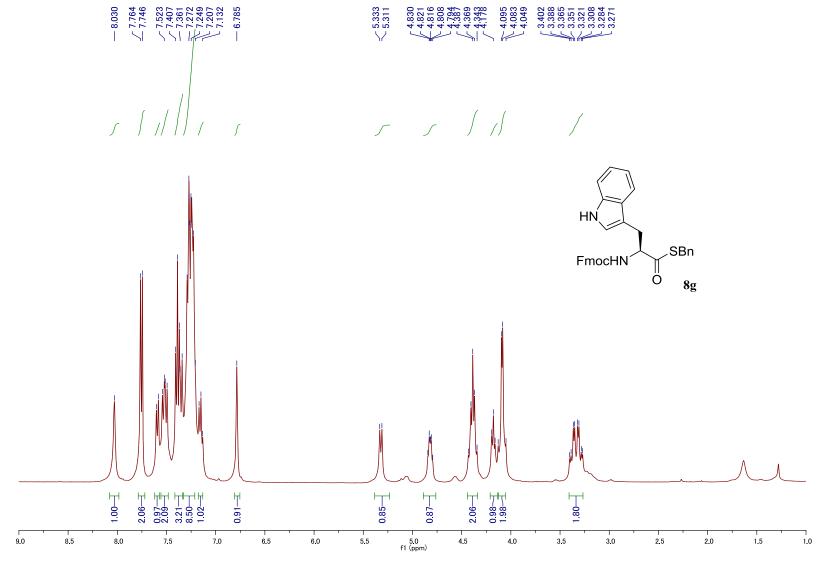


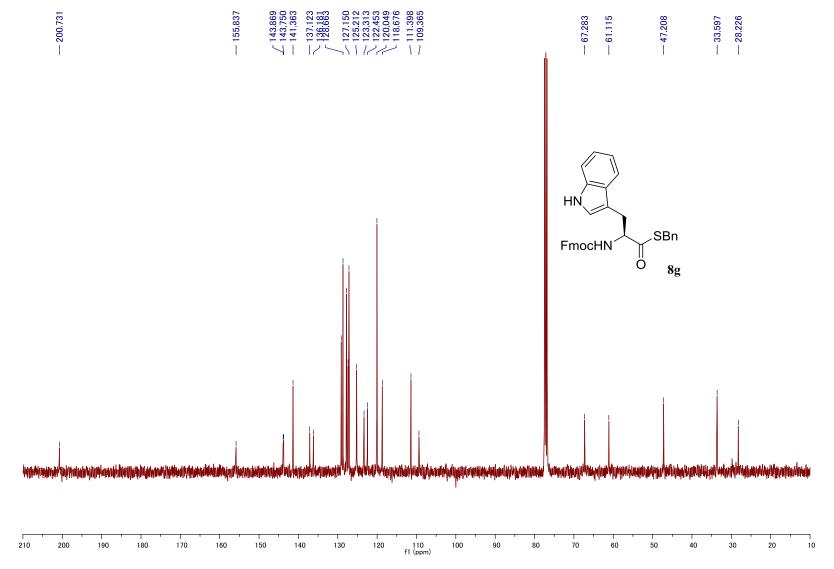
S-Benzyl N-tert-butoxycarbonylthioglycinate (8d) ¹³C NMR (100 MHz, CDCl₃)



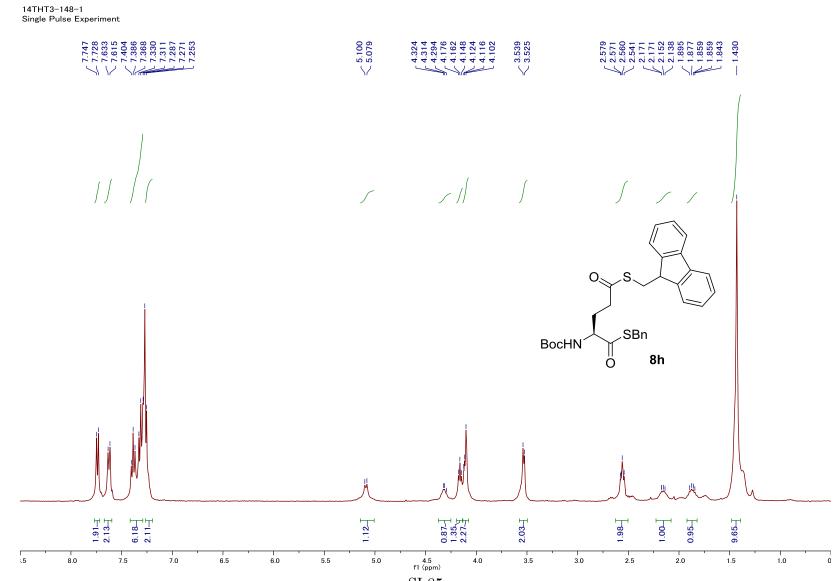

S-Benzyl N-tert-butoxycarbonyl-O-benzyl-L-thioserinate (8e) ¹H NMR (400 MHz, CDCl₃)

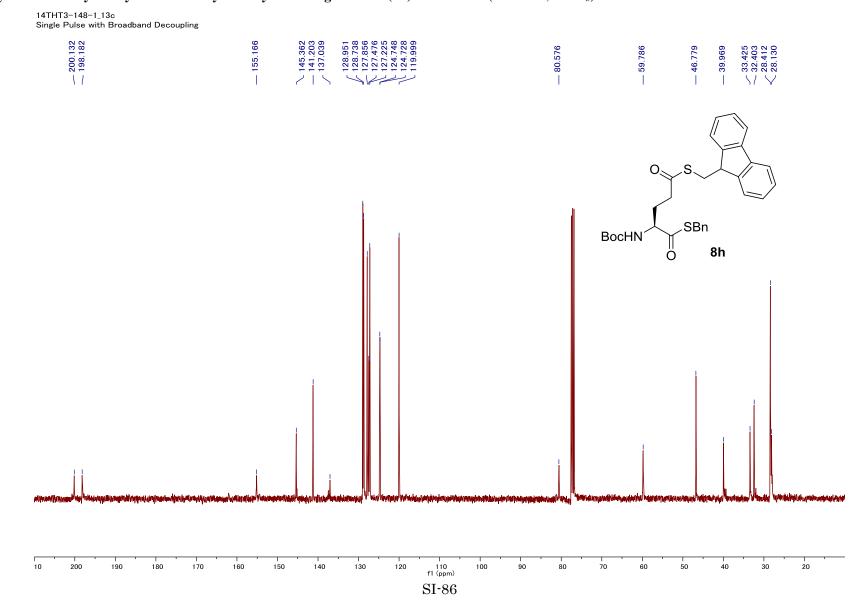
S-Benzyl *N*-*tert*-butoxycarbonyl-*O*-benzyl-L-thioserinate (8e) ¹³C NMR (100 MHz, CDCl₃)



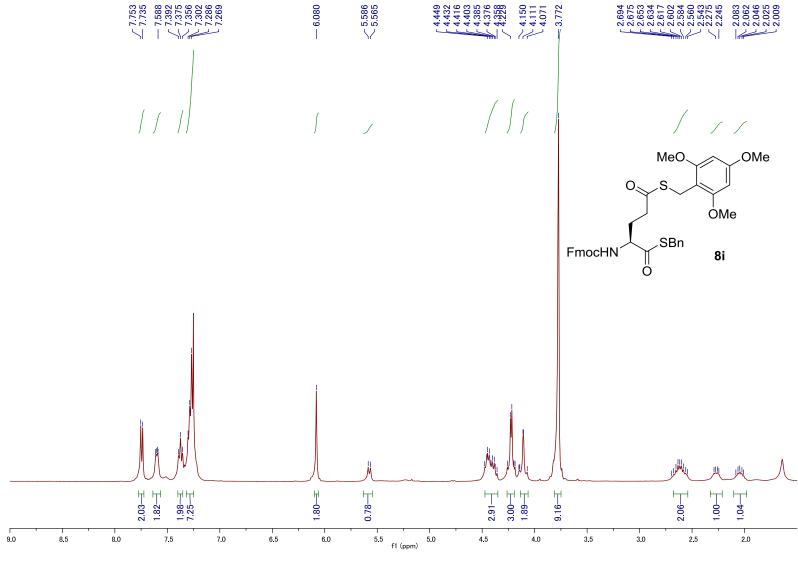

S-Benzyl *N*-tert-butoxycarbonyl-*O*-benzyl-L-thiothreonate (8f) ¹H NMR (400 MHz, CDCl₃)

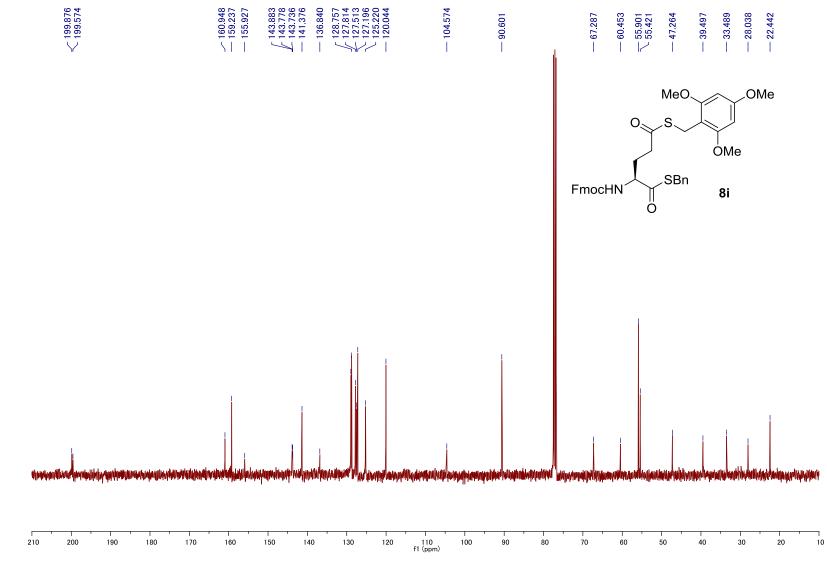
S-Benzyl *N*-tert-butoxycarbonyl-*O*-benzyl-L-thiothreonate (8f) ¹³C NMR (100 MHz, CDCl₃)

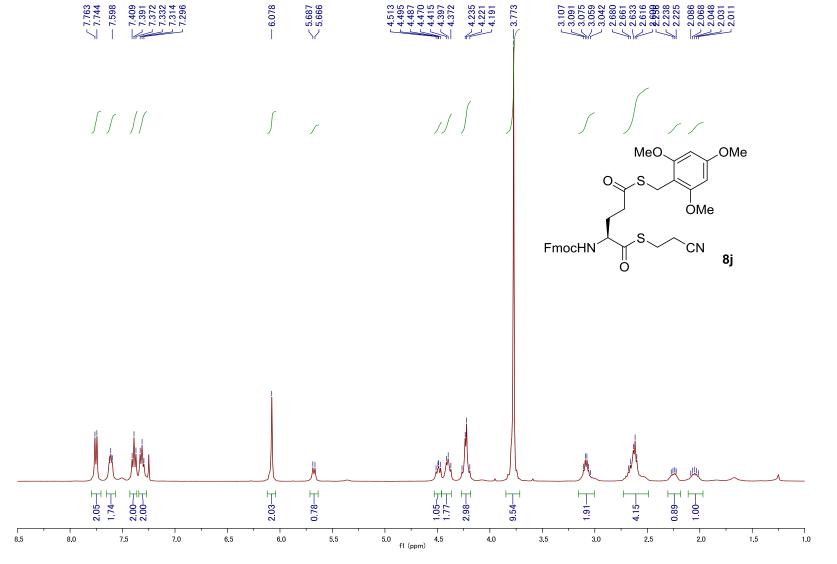

S-Benzyl N-fluorenylmethyloxycarbonyl-L-thiotryptophanate (8g) ¹H NMR (400 MHz, CDCl₃)

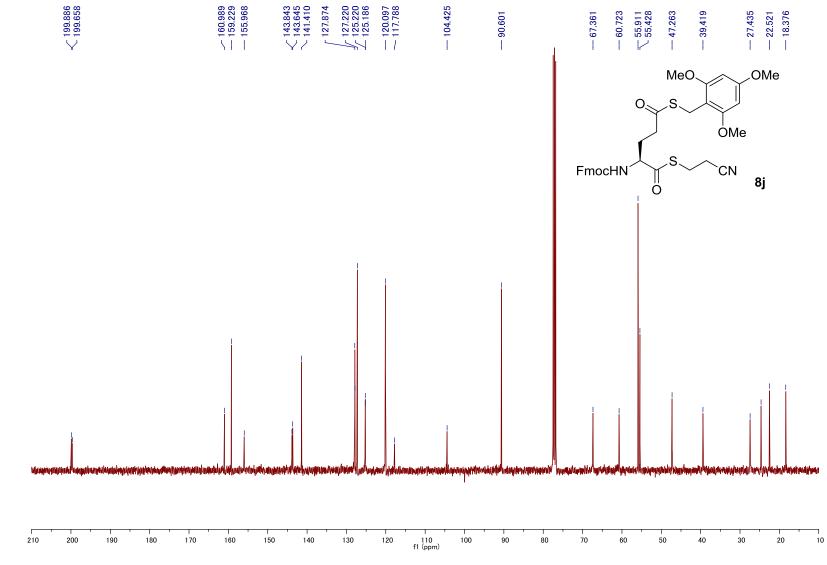


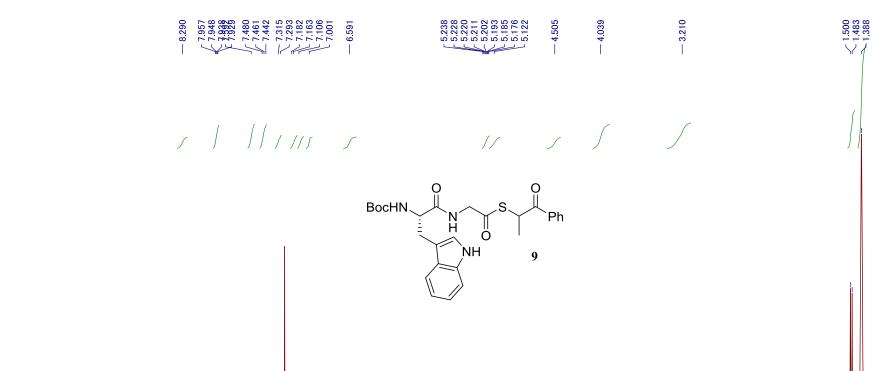
S-Benzyl N-fluorenylmethyloxycarbonyl-L-thiotryptophanate (8g) ¹³C NMR (100 MHz, CDCl₃)

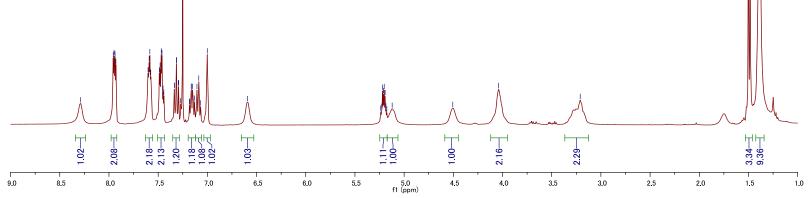

S^α-Benzyl *S*^γ-9-fluorenylmethyl *N-tert*-butoxycarbonyl-L-dithioglutamate (8h) ¹H NMR (400 MHz, CDCl₃)

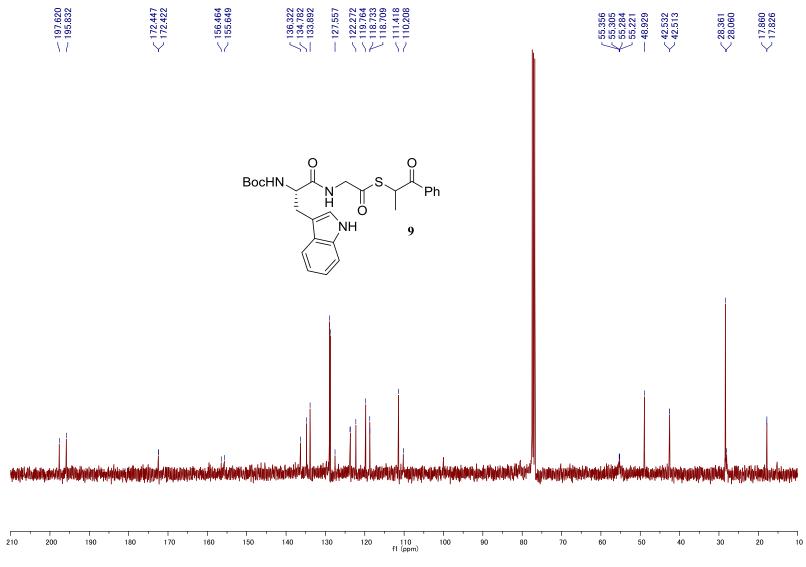

S^{α} -Benzyl S^{γ} -9-fluorenylmethyl *N-tert*-butoxycarbonyl-L-dithioglutamate (8h) ¹³C

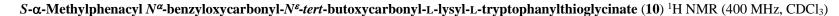

¹³C NMR (100 MHz, CDCl₃)

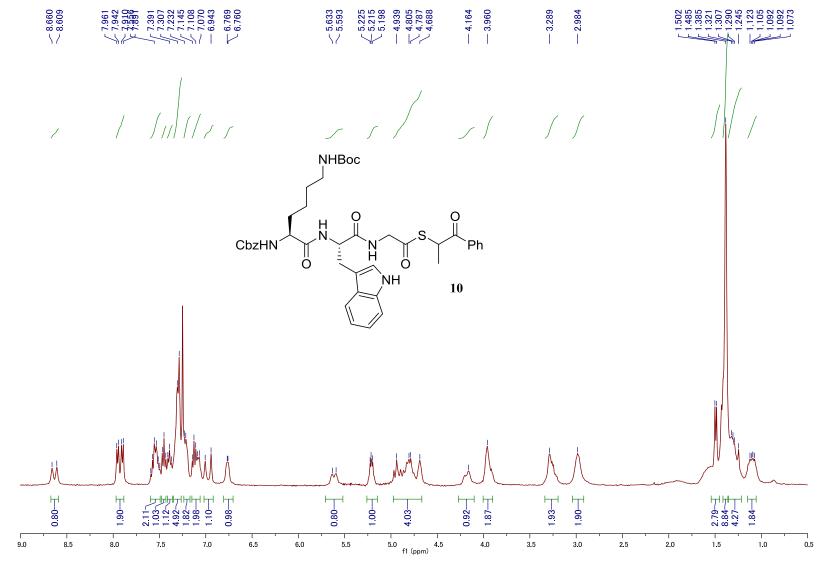

S^α-Benzyl *S*^γ-2,4,6-trimethoxybenzyl *N*-(9-fluorenylmethyloxycarbonyl)-L-dithioglutamate (8i) ¹H NMR (400 MHz, CDCl₃)

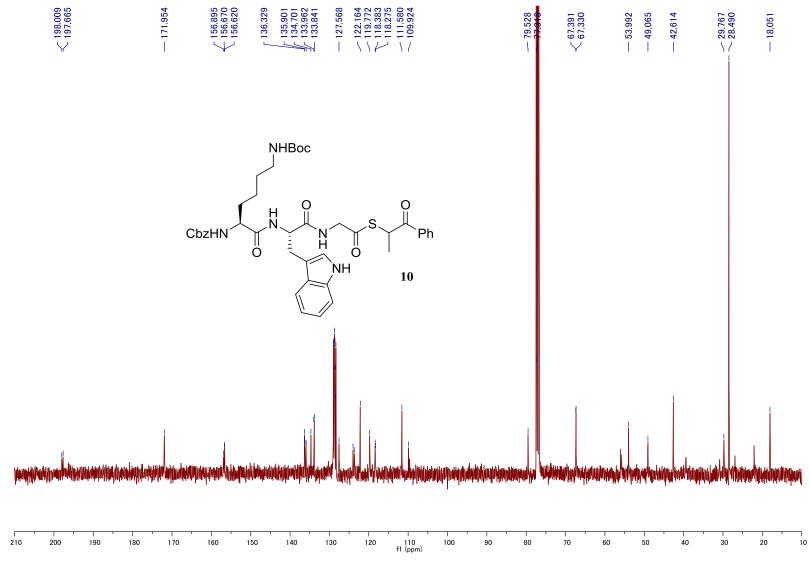

S^α-Benzyl S^γ-2,4,6-trimethoxybenzyl N-(9-fluorenylmethyloxycarbonyl)-L-dithioglutamate (8i) ¹³C NMR (100 MHz, CDCl₃)


 S^{α} -Cyanoethyl S^{γ} -(2,4,6-trimethoxybenzyl) N-(9-fluorenylmethyloxycarbonyl)-L-dithioglutamate (8j) ¹H NMR (400 MHz, CDCl₃)

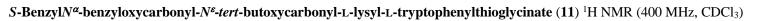

 S^{α} -Cyanoethyl S^{γ} -(2,4,6-trimethoxybenzyl) N-(9-fluorenylmethyloxycarbonyl)-L-dithioglutamate (8j) ¹³C NMR (100 MHz, CDCl₃)

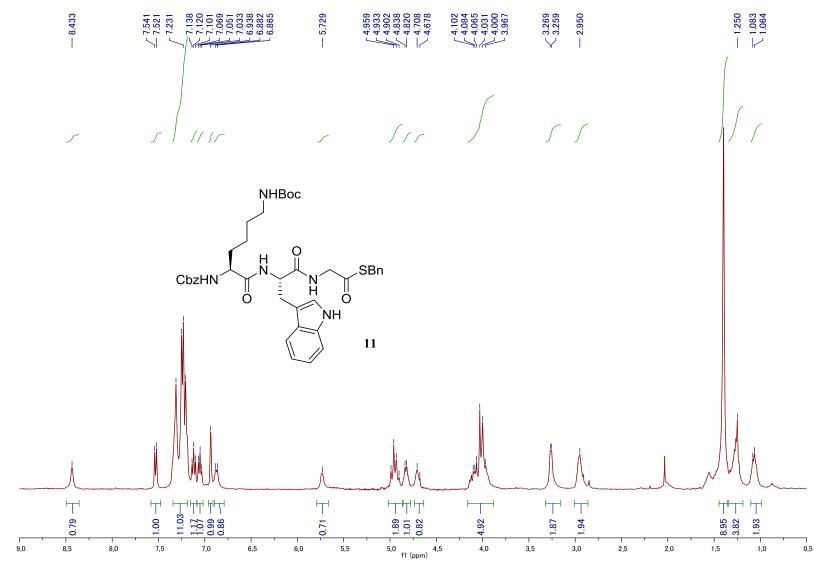


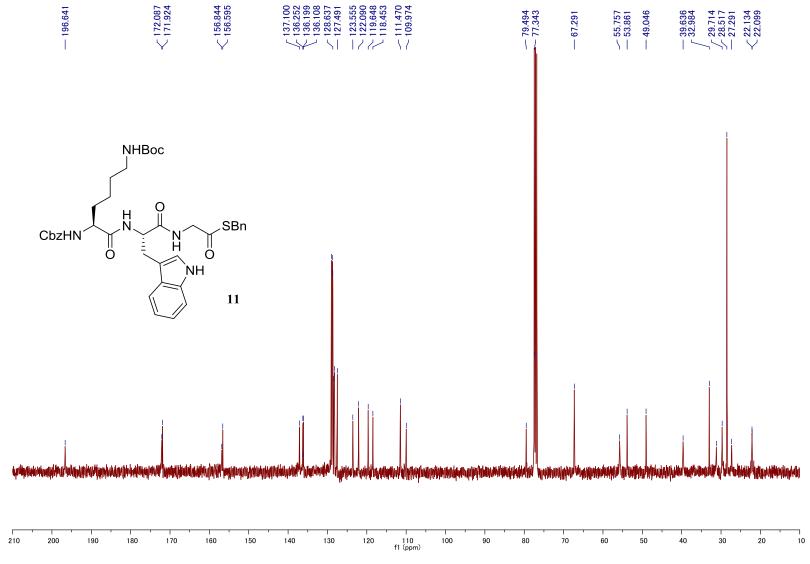

S-α-Methylphenacyl N-tert-butoxycarbonyl-L-tryptophanylthioglycinate (9) ¹H NMR (400 MHz, CDCl₃)



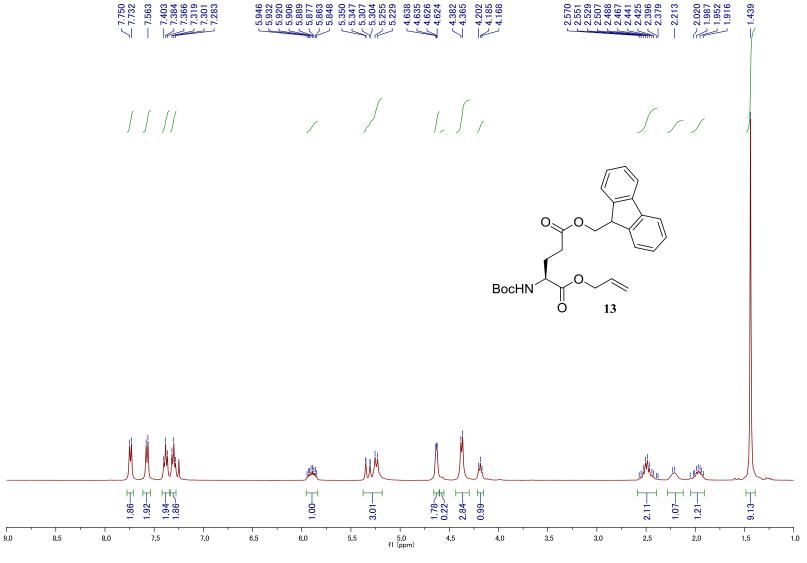
S-α-Methylphenacyl N-tert-butoxycarbonyl-L-tryptophanylthioglycinate (9)¹³C NMR (100 MHz, CDCl₃)

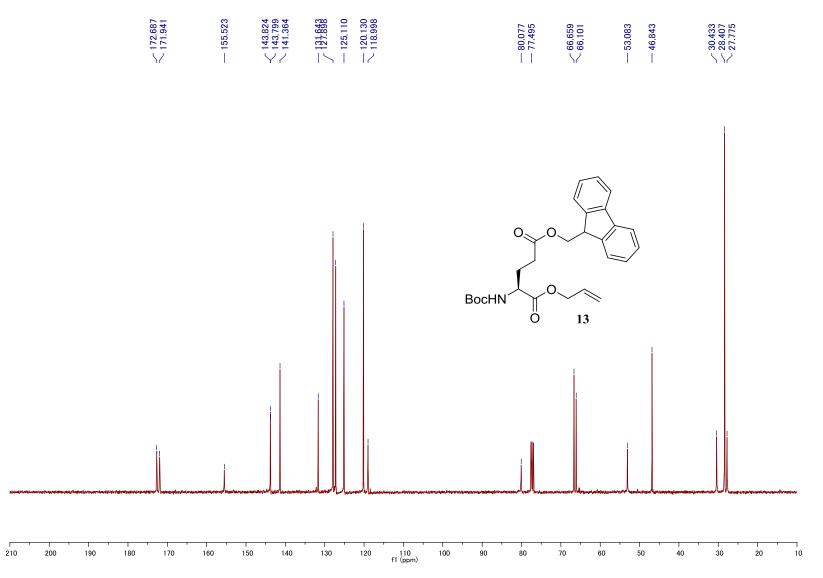




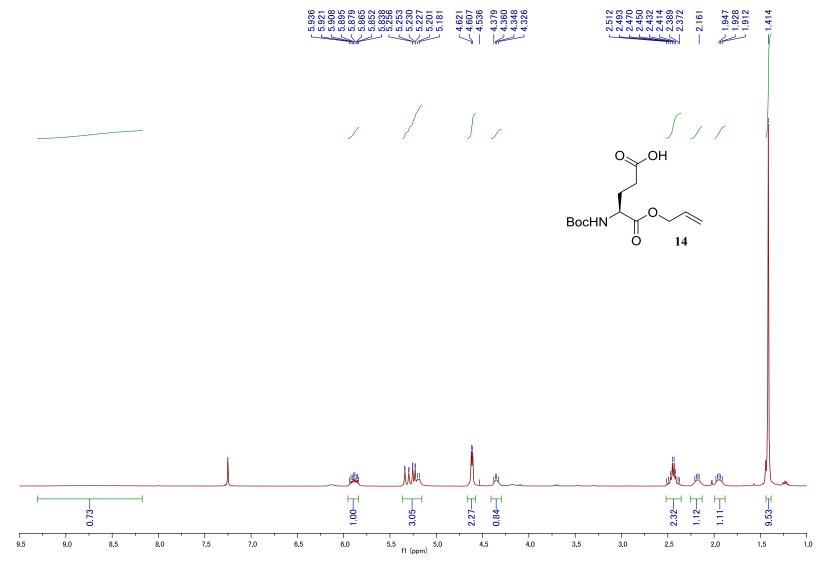


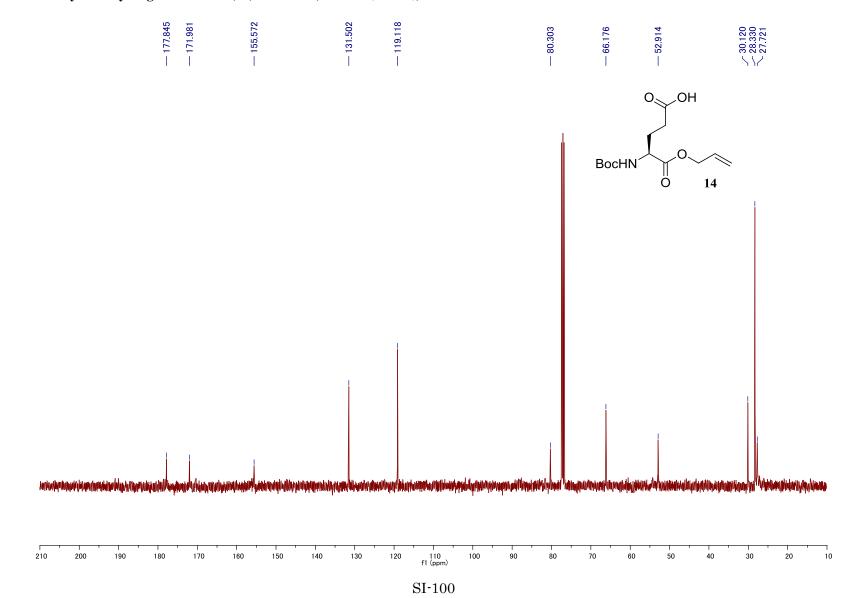
S- α -Methylphenacyl N^{α} -benzyloxycarbonyl- N^{ε} -tert-butoxycarbonyl-L-lysyl-L-tryptophanylthioglycinate (10) ¹³C NMR (100 MHz, CDCl₃)



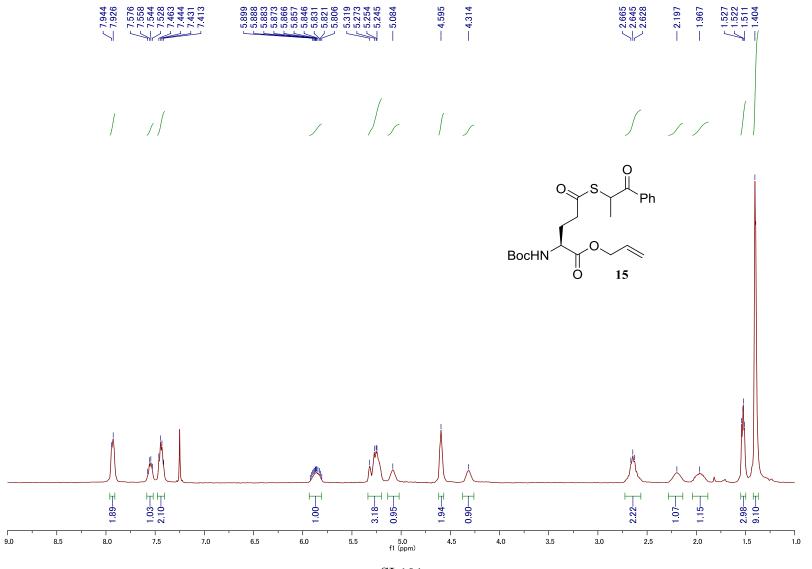


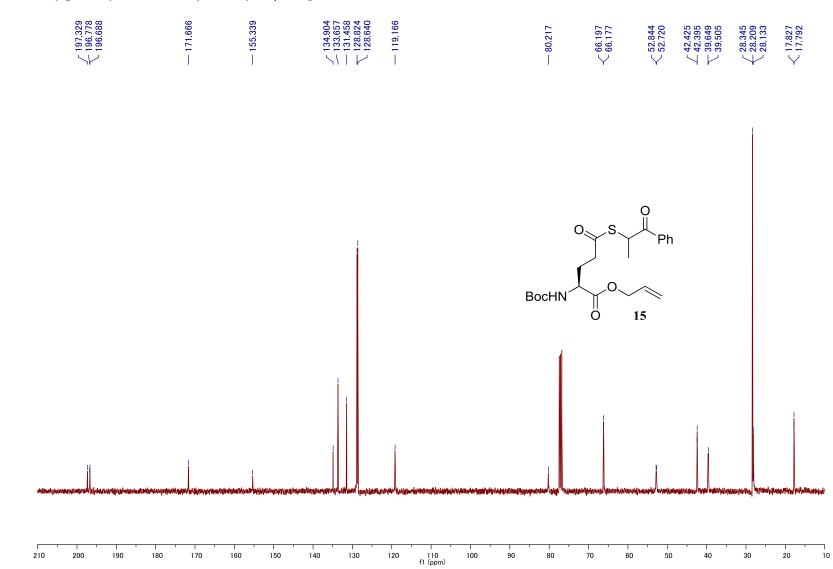
S-BenzylN^α-benzyloxycarbonyl-N^ε-tert-butoxycarbonyl-L-lysyl-L-tryptophenylthioglycinate (11) ¹³C NMR (100 MHz, CDCl₃)

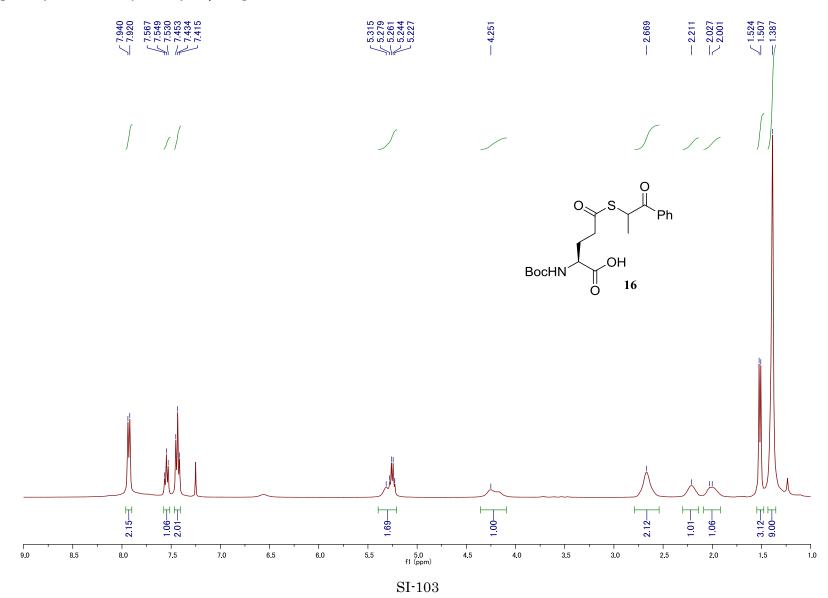




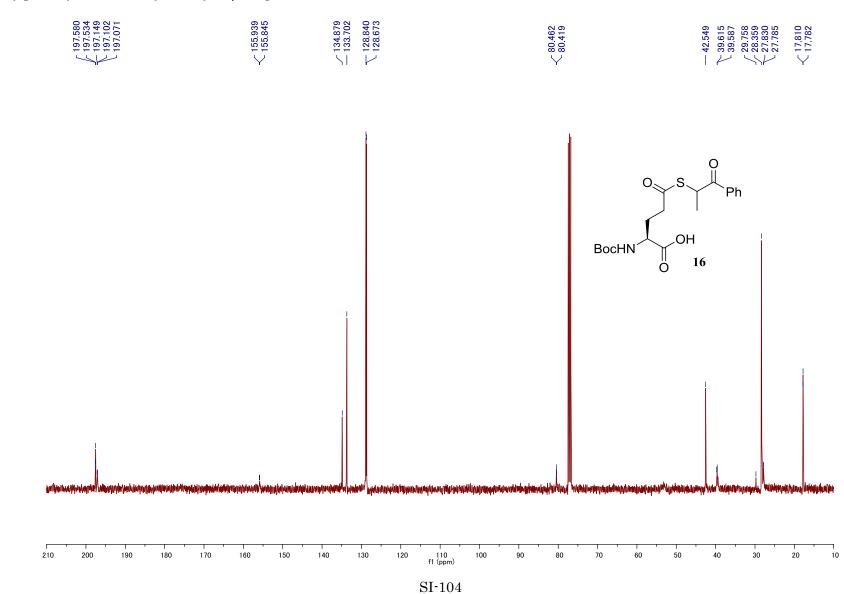
 O^{α} -Allyl O^{γ} -(9-fluorenylmethyl) *N-tert*-butoxycarbonyl-L-glutamate (13) ¹³C NMR (100 MHz, CDCl₃)

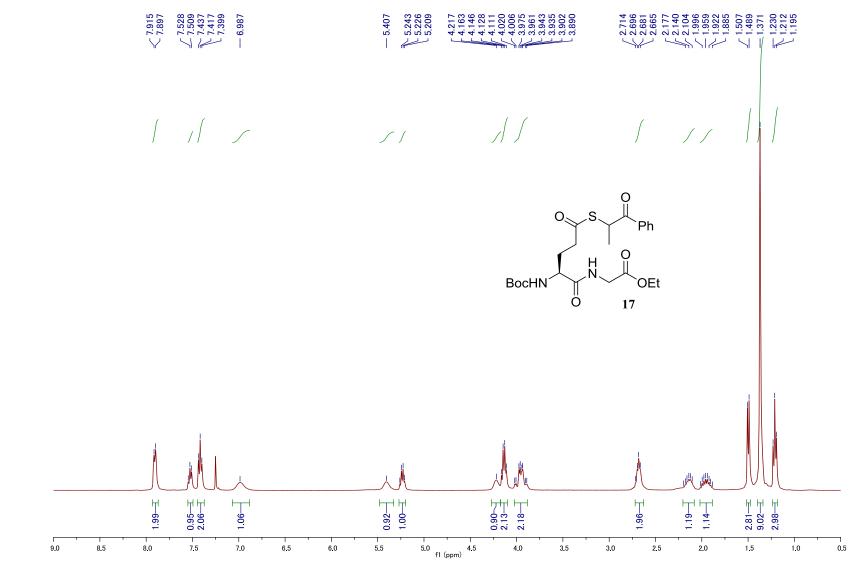

O^α-Allyl *N-tert*-butoxycarbonyl-L-glutamic acid (14) ¹H NMR (400 MHz, CDCl₃)

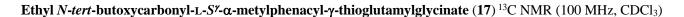


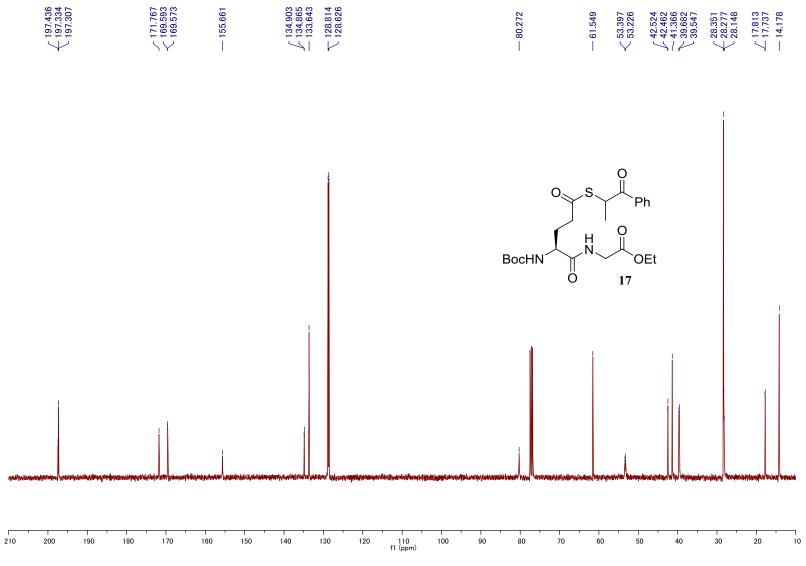

O^α-Allyl N-tert-butoxycarbonyl-L-glutamic acid (14)¹³C NMR (100 MHz, CDCl₃)

 O^{α} -Allyl S^{γ} - α -methylphenacyl *N-tert*-butoxycarbonyl-L- γ -thioglutamate (15) ¹H NMR (400 MHz, CDCl₃)

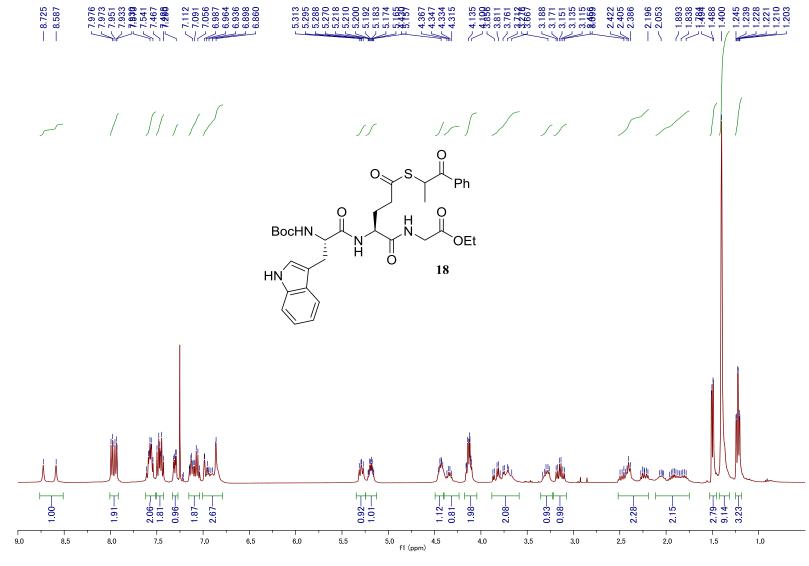



O^{α} -Allyl S^{γ}- α -methylphenacyl *N-tert*-butoxycarbonyl-L- γ -thioglutamate (15) ¹³C NMR (100 MHz, CDCl₃)

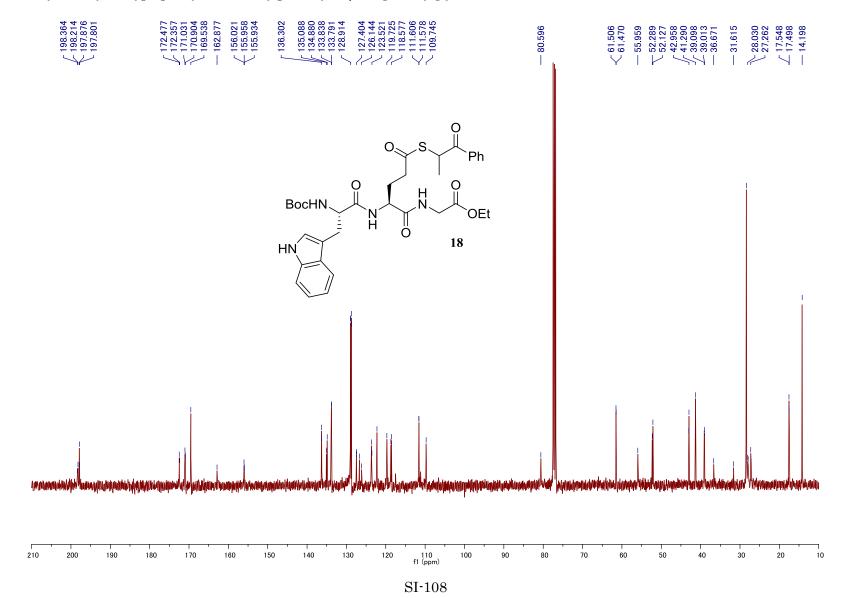

S⁷-α-Methylphenacyl N-tert-butoxycarbonyl-L-γ-thioglutamic acid (16) ¹H NMR (400 MHz, CDCl₃)

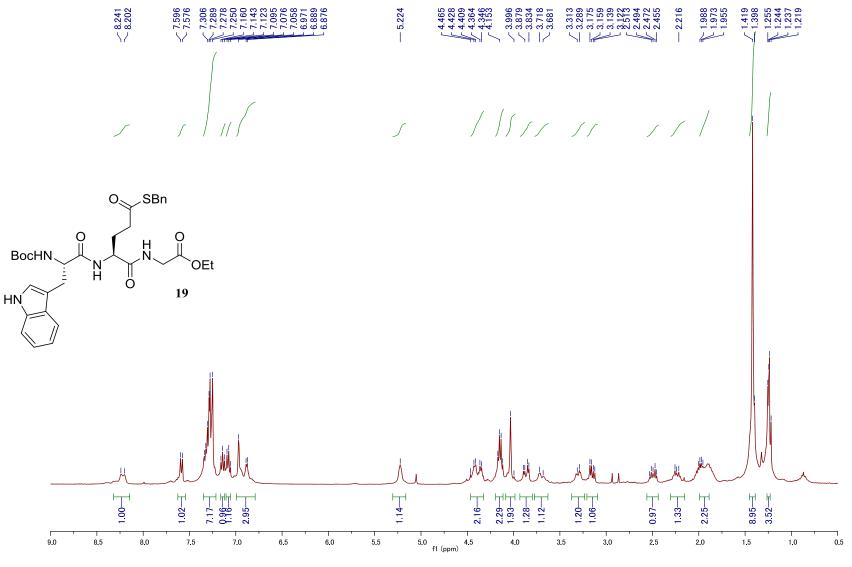


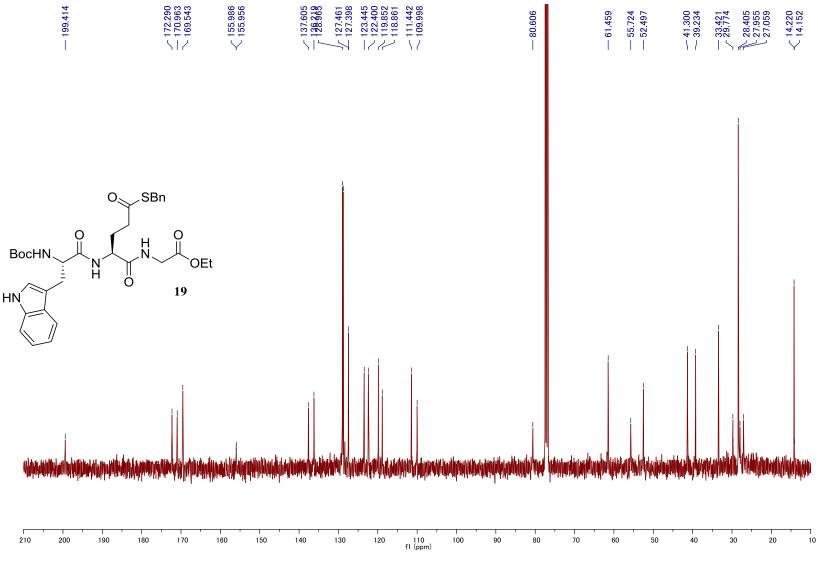
S^γ-α-Methylphenacyl N-tert-butoxycarbonyl-L-γ-thioglutamic acid (16)¹³C NMR (100 MHz, CDCl₃)



Ethyl *N-tert*-butoxycarbonyl-L- S^{γ} - α -metylphenacyl- γ -thioglutamylglycinate (17) ¹H NMR (400 MHz, CDCl₃)




Ethyl *N-tert*-Butoxycarbonyl-L-tryptophanyl-S^γ-α-methylphenacyl-L-γ-thioglutamylglycinate (18) ¹H NMR (400 MHz, CDCl₃)



Ethyl *N-tert*-Butoxycarbonyl-L-tryptophanyl-S^γ-α-methylphenacyl-L-γ-thioglutamylglycinate (18)¹³C NMR (100 MHz, CDCl₃)

Ethyl *N-tert*-butoxycarbonyl-L-tryptophanyl-S^γ-benzyl-L-γ-thioglutamylglycinate (19) ¹H NMR (400 MHz, CDCl₃)

Ethyl *N-tert*-butoxycarbonyl-L-tryptophanyl-S^γ-benzyl-L-γ-thioglutamylglycinate (19)¹³C NMR (100 MHz, CDCl₃)