General

<u>Chemicals and Solvents.</u> Commercial chemicals were used as obtained from Sigma-Aldrich or Fisher. Solvents were used without further purification. DMSO was dried over molecular sieves (certified <0.005% water content, Sigma-Aldrich).

<u>Analytical thin-layer chromatography.</u> TLC was performed using aluminium plates with silica gel and fluorescent indicator (Merck, 60F254). Thin layer chromatography plates were visualized by exposure to UV light.

<u>Column chromatography.</u> Flash column chromatography with silica gel 60 Å (220-240 mesh) from *Acros*. Pentane or mixtures thereof with ethyl acetate were used as eluents. Product yields were determined as isolated by column chromatography.

<u>Gas chromatography with mass-selective detector</u>. *Agilent* 6890N Network GC-System, mass detector 5975 MS. Column: BPX5 (30m x 0.25 mm x 0.25, from *SGE*, carrier gas: H₂. Standard heating procedure: 50° C (2 min), 25° C/min -> 300° C (5 min).

<u>Gas chromatography with FID.</u> Agilent 7820A GC-Systems. Column: HP 5 19091J 413 (30 m x 0.32 mm x 0.25 μ m) from Agilent, carrier gas: N₂. GC-FID was used for reaction optimization screening (Calibration with internal standard *n*-pentadecane or dodecanenitrile and analytically pure samples).

<u>NMR.</u> ¹H and ¹³C nuclear magnetic resonance spectra were recorded on a *Bruker* Avance 300 (300 MHz ¹H; 75 MHz ¹³C) and *Bruker* Avance 400 (400 MHz ¹H, 101 MHz ¹³C) spectrometers. Chemicals shifts are reported in ppm (δ) relative to solvent residual peak as internal reference. Coupling constants (*J*) are reported in Hertz (Hz). Following abbreviations are used for spin multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublet, dt = doublet of triplet, dq = doublet of quartet, ddt = doublet of triplet.

<u>IR spectroscopy.</u> Infrared spectra were recorded on a Cary 630 FTIR Spectrometer equipped with a ATR unit. Wavenumbers are indicated in cm⁻¹. Intensive absorption bands are indicated with "s" (strong), medium bands with "m" (medium), and weak bands with "w" (weak).

<u>High resolution mass spectrometry (HRMS).</u> The spectra were recorded by the Central Analytics Lab at the Department of Chemistry, University of Regensburg, on a MAT SSQ 710 A from *Finnigan*.

<u>Superscripts</u> behind compound names are literature references.

General procedure for the synthesis of arenediazonium salts

The parent aniline (10 mmol) was dissolved in glacial acetic acid (6 mL) and 32% aqueous tetrafluoroboric acid (1.6 mL) at room temperature. Then, a solution of *tert*-butyl nitrite (1.2 mL) in glacial acetic acid (2 mL) was slowly added at room temperature over 5 min. Diethylether (15 mL) was added, and the reaction mixture was cooled to -30 °C in order to induce crystallization of the ionic product. The crystals were filtered off, washed with cold diethylether (2 x 10 mL) and dried on air to give analytically pure arenediazonium tetrafluoroborates.

General procedure for base-induced thiolation, selenylation and telluration

A vial (5 mL) was charged with a magnetic stir bar, the arene diazonium salt (0.5 mmol), disulfide (0.5 mmol) and sodium acetate (0.5 mmol) and capped with a rubber septum. The vial was purged with N₂ (5 min). Dry DMSO (2.5 mL) was added. After 8 h of stirring water (5 mL) was added to give an emulsion, which was extracted with diethylether (3 x 5 mL). The organic phases were washed with brine (5 mL) and dried over MgSO4. The solvent was evaporated *in vacuo*, and the residue was purified by flash column chromatography (silica gel) using pentane/ethyl acetate mixtures (from 100/0 to 100/20) as eluent to obtain pure product.

4-Methoxyphenylmethylsulfane

	$C_8H_{10}OS$, 154.23 g/mol
Yield	68.5 mg, 0.44 mmol, 89% (isolated)
¹ H-NMR (300 MHz, CDCl ₃):	$\delta_{\rm H}$ [ppm] = 7.27 (d, J = 8.9 Hz, 2H), 6.85 (d, J = 8.9 Hz, 2H), 3.79 (s, 3H), 2.44 (s, 3H).
¹³ C-NMR (75 MHz, CDCl ₃):	δ _C [ppm] = 158.1, 130.1, 128.7, 114.5, 55.3, 18.0.
LR MS (EI, 70 eV, m/z):	154 [M ⁺]

4-Chlorophenylmethylsulfane

	C ₇ H ₇ ClS, 158.64 g/mol
Yield	55.3 mg, 0.35 mmol, 70% (isolated)
¹ H-NMR (300 MHz, CDCl ₃):	$\delta_{\rm H}$ [ppm] = 7.25 (d, J = 8.7 Hz, 2H), 7.17 (d, J = 8.7 Hz, 2H), 2.47 (s, 3H).
¹³ C-NMR (75 MHz, CDCl ₃):	δ _C [ppm] = 136.9, 130.8, 128.9, 127.8, 16.0.
LR MS (EI, 70 eV, m/z):	158 [M ⁺]

4-Nitrophenylmethylsulfane

	C ₇ H ₇ NO ₂ S, 169.20 g/mol
Yield	67.7 mg, 0.40 mmol, 85% (isolated)
¹ H-NMR (400 MHz, CDCl ₃):	$\delta_{\rm H}$ [ppm] = 8.15 (d, J = 9.0 Hz, 2H), 7.29 (d, J = 9.0 Hz, 2H), 2.55 (s, 3H).
¹³ C-NMR (101 MHz, CDCl ₃):	$\delta_{\rm C}$ [ppm] = 148.8, 144.8, 125.0, 123.9, 14.8.
LR MS (EI, 70 eV, m/z):	169 [M ⁺]

4-Methylthiophenol

C₇H₈OS, 140.20 g/mol

Yield	61.0 mg, 0.44 mmol, 87% (isolated)
¹ H-NMR (300 MHz, CDCl ₃):	$\delta_{\rm H}$ [ppm] = 7.19 (d, J = 8.7 Hz, 2H), 6.79 (d, J = 8.7 Hz, 2H), 2.42 (s, 3H).
¹³ C-NMR (75 MHz, CDCl ₃):	δ _C [ppm] = 154.8, 130.5, 128.0, 116.1, 18.2.
LR MS (EI, 70 eV, m/z):	$140 [M^+]$

2-Nitrophenylmethylsulfane

	C ₇ H ₇ NO ₂ S, 169.20 g/mol
Yield	40.8 mg, 0.24 mmol, 80% (isolated)
¹ H-NMR (300 MHz, CDCl ₃):	$\delta_{\rm H}$ [ppm] = 8.26 (dd, <i>J</i> = 8.3 Hz, <i>J</i> = 1.2 Hz, 1H), 7.59 (ddd, <i>J</i> = 8.6 Hz, <i>J</i> = 7.3 Hz, <i>J</i> = 1.3 Hz, 1H), 7.37 (d, <i>J</i> = 8.1 Hz, 1H), 7.26 (ddd, <i>J</i> = 8.2 Hz, <i>J</i> = 7.2 Hz, <i>J</i> = 1.2 Hz, 1H), 2.50 (s, 3H).
¹³ C-NMR (75 MHz, CDCl ₃):	δ _C [ppm] = 145.4, 139.3, 133.7, 126.2, 125.6, 124.1, 15.9.
LR MS (EI, 70 eV, m/z):	169 [M ⁺]

2-Bromophenylmethylsulfane

C7H7BrS, 203.10 g/mol

Yield	40.1 mg, 0.20 mmol, 66% (isolated)
¹ H-NMR (300 MHz, CDCl ₃):	$\delta_{\rm H}$ [ppm] = 7.52 (dd, J = 7.9 Hz, J = 1.4 Hz, 1H), 7.30 (ddd, J = 7.9 Hz, J = 7.4 Hz, J = 1.3 Hz, 1H), 7.13 (dd, J = 8.0 Hz, J = 1.5 Hz, 1H), 7.0 (ddd, J = 7.8 Hz, J = 7.6 Hz, J = 1.6 Hz, 1H), 2.47 (s, 3H).
¹³ C-NMR (75 MHz, CDCl ₃):	δ _C [ppm] = 139.6, 132.6, 127.8, 125.6, 125.3, 121.6, 15.7.
LR MS (EI, 70 eV, m/z):	203 [M ⁺]

1,2-Bis(methylthio)benzene

	C ₈ H ₁₀ S ₂ , 170.29 g/mol
Yield	37.2 mg, 0.22 mmol, 73% (isolated)
¹ H-NMR (300 MHz, CDCl ₃):	$\delta_{\rm H}$ [ppm] = 7.24-7.13 (m, 4H), 2.48 (s, 6H).
¹³ C-NMR (75 MHz, CDCl ₃):	$\delta_{\rm C}$ [ppm] = 137.3 (s), 126.6 (s), 125.8 (s), 16.2 (s).
LR MS (EI, 70 eV, m/z):	170 [M ⁺]

Methyl-2-(methylthio)benzoate

SMe COOMe

C₉H₁₀O₂S, 182.24 g/mol

64.7 mg, 0.36 mmol, 71% (isolated)

Yield

¹H-NMR (300 MHz, CDCl₃):

 $\delta_{\rm H}$ [ppm] = 7.98 (dd, J = 7.9 Hz, J = 1.5 Hz, 1H), 7.30 (ddd, J = 8.2 Hz, J = 7.3 Hz, J = 1.5 Hz, 1H), 7.25 (d, J = 8.0 Hz, 1H), 7.14 (ddd, J = 8.0 Hz, J = 7.8 Hz, J = 1.1 Hz, 1H), 3.90 (s, 3H), 2.44 (s, 3H).

¹³ C-NMR (75 MHz, CDCl ₃):	$\delta_{\rm C}$ [ppm] = 166.7, 143.2, 132.4, 131.2, 126.6, 124.2, 123.3, 52.0, 15.5.
LR MS (EI, 70 eV, m/z):	182 [M ⁺]

3-nitrophenylmethylsulfane

	C ₇ H ₇ NO ₂ S, 169.20 g/mol
Yield	36.2 mg, 0.36 mmol, 77% (isolated)
¹ H-NMR (300 MHz, CDCl ₃):	$\delta_{\rm H}$ [ppm] = 8.04 (t, J = 2.0 Hz, 1H), 7.95 (ddd, J = 8.1 Hz, J = 2.2 Hz, J = 1.1 Hz, 1H), 7.52 (ddd, J = 7.9 Hz, J = 1.8 Hz, J = 1.1 Hz, 1H), 7.43 (t, J = 8.0 Hz, 1H), 2.55 (s, 3H).
¹³ C-NMR (101 MHz, CDCl ₃):	δ _C [ppm] = 141.6, 131.9, 129.4, 120.2, 119.7, 119.0, 15.4.
LR MS (EI, 70 eV, m/z):	169 [M ⁺]

[1,1'-Biphenyl]-4-yl(methyl)sulfane

	C ₁₃ H ₁₂ S, 200.30 g/mol
Yield	35.6 mg, 0.18 mmol, 58% (isolated)
¹ H-NMR (300 MHz, CDCl ₃):	$\delta_{\rm H}$ [ppm] = 7.60-7.50 (m, 4H), 7.47-7.40 (m, 2H), 7.37-7.30 (m, 3H), 2.53 (s, 3H).
¹³ C-NMR (101 MHz, CDCl ₃):	$\delta_{\rm C}$ [ppm] = 140.5, 138.0, 137.5, 128.8, 127.5, 127.2, 126.9, 126.8, 15.9.
LR MS (EI, 70 eV, m/z):	200 [M ⁺]

	C ₁₁ H ₁₀ S, 174.26 g/mol
Yield	46.2 mg, 0.27 mmol, 53% (isolated)
¹ H-NMR (300 MHz, CDCl ₃):	$\delta_{\rm H}$ [ppm] = 8.30 (d, J = 7.2 Hz, 1H), 7.85 (d, J = 7.4 Hz, 1H), 7.68 (d, J = 7.8 Hz, 1H), 7.57-7.51 (m, 2H), 7.57-7.37 (m, 2H), 2.59 (s, 3H).
¹³ C-NMR (75 MHz, CDCl ₃):	$\delta_{\rm C}$ [ppm] = 135.7, 133.5, 131.5, 128.5, 126.2, 126.1, 125.7, 125.6, 124.2, 123.5, 16.1.
LR MS (EI, 70 eV, m/z):	174 [M ⁺]

2,4,6-Trichlorophenylmethylsulfane

	C ₇ H ₅ Cl ₃ S, 227.53 g/mol
Yield	78.3 mg, 0.34 mmol, 55% (isolated)
¹ H-NMR (300 MHz, CDCl ₃):	$\delta_{\rm H}$ [ppm] = 7.40 (s, 2H), 2.42 (s, 3H).
¹³ C-NMR (75 MHz, CDCl ₃):	$\delta_{\rm C}$ [ppm] = 141.4 (s), 134.9 (s), 133.3 (s), 128.5 (s), 18.3 (s).
LR MS (EI, 70 eV, m/z):	226 [M ⁺]
HR MS (m/z):	found: 225.91721 [M ⁺] (calculated: 225.91721)
FT-IR:	794(s), 828(s), 857(s), 1118(m), 1178(m), 1364(s), 1532(s), 1562(m), 2922(w), 3068(w).

3-(Bis(methylthio)methyl)benzofuran

	$C_{11}H_{12}OS_2$, 224.34 g/mol
Yield	62.6 mg, 0.28 mmol, 58% (isolated)
¹ H-NMR (400 MHz, CDCl ₃):	$ δ_{\rm H} [\rm ppm] = 7.79 (d, J = 7.4 Hz, 1H), 7.67 (d, J = 0.6 Hz, 1H), 7.48 (d, J = 8.0 Hz, 1H), 7.35-7.24 (m, 2H), 5.05 (d, J = 0.9 Hz, 1H), 2.14 (s, 6H). $
¹³ C-NMR (75 MHz, CDCl ₃):	$\delta_{\rm C}$ [ppm] = 155.6, 142.8, 125.9, 124.8, 122.6, 120.7, 119.0, 111.6, 47.2, 14.2.
LR MS (EI, 70 eV, m/z):	224 [M ⁺]
HR MS (m/z):	found: 224.03292 [M ⁺] (calculated: 224.03241)

3-(Bis(ethylthio)methyl)benzofuran

C ₁₃ H ₁₆ OS ₂ , 252,39 g/mol	
Yield	54.3 mg, 0.22 mmol, 56% (isolated)
¹ H-NMR (300 MHz, CDCl ₃):	$ δ_{\rm H} \text{ [ppm]} = 7.85-7.81 \text{ (m, 1H)}, 7.69 \text{ (d, } J = 0.5 \text{ Hz, 1H)}, 7.50-7.45 \text{ (m, 1H)}, 7.35-7.23 \text{ (m, 2H)}, 5.18 \text{ (d, } J = 0.7 \text{ Hz}, 1\text{H}), 2.85-2.45 \text{ (m, 4H)}, 1.26 \text{ (t, } J = 7.4 \text{ Hz}, \text{ 6H)}. $
¹³ C-NMR (75 MHz, CDCl ₃):	δ_{C} [ppm] = 155.7 (s), 142.7 (s), 125.9 (s), 124.7 (s), 122.6 (s), 121.0 (s), 119.8 (s), 111.6 (s), 43.4 (s), 25.7 (s), 14.2 (s).
LR MS (EI, 70 eV, m/z):	252 [M ⁺]
HR MS (m/z):	found: 252.06298 [M ⁺] (calculated: 252.06371)
FT-IR:	742(s), 857(m), 1178(m), 1264(m), 1450(s), 1573(w), 2870(w), 2926(w), 2967(w).

3-((methylthio)methyl)-2,3-dihydrobenzofuran

	C ₁₀ H ₁₂ OS, 180,06 g/mol
Yield	70.2 mg, 0.39 mmol, 20% (isolated)
¹ H-NMR (400 MHz, CDCl ₃):	$ δ_{\rm H} [ppm] = 7.26 (d, J = 7.4 Hz, 1H), 7.16 (t, J = 7.5 Hz, 1H), 6.88 (t, J = 7.1 Hz, 1H), 6.81 (d, J = 8.0 Hz, 1H), 4.66 (t, J = 9.0 Hz, 1H), 4.42 (dd, J = 9.1 Hz, J = 5.7 Hz, 1H), 3.66 (tt, J = 9.0 Hz, J = 4.8 Hz, 1H), 2.78 (q, J = 7.3 Hz, 1H), 2.77 (q, J = 7.3 Hz, 1H), 2.15 (s, 3H). $
¹³ C-NMR (101 MHz, CDCl ₃):	$\begin{split} \delta_{C} \text{ [ppm]} &= 160.0 \text{ (s)}, 129.3 \text{ (s)}, 128.7 \text{ (s)}, 124.4 \text{ (s)}, 120.4 \\ \text{ (s)}, 109.7 \text{ (s)}, 76.1 \text{ (s)}, 41.4 \text{ (s)}, 39.2 \text{ (s)}, 15.8 \text{ (s)}. \end{split}$
LR MS (EI, 70 eV, m/z):	180 [M ⁺]
HR MS (m/z):	found: 180.06031 [M ⁺] (calculated: 180.06034)
FT-IR:	746(s), 958(m), 1230(s), 1480(s), 1595(m), 2915(w).

(4-Methoxyphenyl)(phenyl)sulfane

	C ₁₃ H ₁₂ OS, 216.30 g/mol
Yield	32.8 mg, 0.15 mmol, 51% (isolated)
¹ H-NMR (300 MHz, CDCl ₃):	$\delta_{\rm H}$ [ppm] = 7.43 (d, J = 8.8 Hz, 2H), 6.91 (d, J = 8.9 Hz, 2H), 7.30-7.10 (m, 5H), 3.83 (s, 3H).
¹³ C-NMR (75 MHz, CDCl ₃):	$\begin{split} \delta_{\text{C}} \text{[ppm]} &= 159.8 \text{ (s)}, \ 138.6 \text{ (s)}, \ 135.4 \text{ (s)}, \ 128.9 \text{ (s)}, \ 128.1 \\ \text{(s)}, \ 125.7 \text{ (s)}, \ 124.2 \text{ (s)}, \ 114.9 \text{ (s)}, \ 55.3 \text{ (s)}. \end{split}$
LR MS (EI, 70 eV, m/z):	216 [M ⁺]

Benzyl(4-methoxyphenyl)sulfane

MeO SCH₂Ph

	C ₁₄ H ₁₄ OS, 230.33 g/mol
Yield	37.4 mg, 0.16 mmol, 54% (isolated)
¹ H-NMR (300 MHz, CDCl ₃):	$\delta_{\rm H}$ [ppm] = 7.28-7.16 (m, 2H), 6.83-6.76 (m, 2H), 3.99 (s, 2H), 3.78 (s, 3H).
¹³ C-NMR (75 MHz, CDCl ₃):	δ _C [ppm] = 159.2, 138.1, 134.0, 128.8, 128.3, 126.9, 126.0, 114.4, 55.3, 41.2.
LR MS (EI, 70 eV, m/z):	230 [M ⁺]

(4-Methoxyphenyl)(trifluoromethyl)sulfane

	C ₈ H ₇ F ₃ OS, 208.20 g/mol
Yield	84.2 mg, 0.40 mmol, 81% (isolated)
¹ H-NMR (400 MHz, CDCl ₃):	$\delta_{\rm H}$ [ppm] = 7.28-7.16 (m, 2H), 6.83-6.76 (m, 2H), 3.99 (s, 2H), 3.78 (s, 3H).
¹³ C-NMR (75 MHz, CDCl ₃):	$\delta_{\rm C}$ [ppm] = 161.9, 138.3, 134.8, 129.6 (q, <i>J</i> = 308.1 Hz), 115.0, 55.4.
¹⁹ F-NMR (282 MHz, CDCl ₃):	$\delta_{\rm F}[{\rm ppm}] = -44.43.$
LR MS (EI, 70 eV, m/z):	208 [M ⁺]

Benzyl(3-nitrophenyl)sulfane

C₁₃H₁₁NO₂S, 245.30 g/mol

19.2 mg, 0.08 mmol, 39% (isolated)

Yield

¹ H-NMR (300 MHz, CDCl ₃):	$ δ_{\rm H} [\rm ppm] = 8.13 (t, J = 2.0 Hz, 1H), 7.99 (ddd, J = 8.2 Hz, J) $ = 2.2 Hz, J = 1.1 Hz, 1H), 7.55 (ddd, J = 7.9 Hz, J = 1.7 Hz, J = 1.0 Hz, 1H), 7.40 (t, J = 8.0 Hz, 1H), 7.36-7.26 (m, 5H), 4.21 (s, 2H).
¹³ C-NMR (101 MHz, CDCl ₃):	δ_{C} [ppm] = 148.4, 139.4, 136.0, 134.6, 129.4, 128.8, 128.7, 127.6, 123.2, 120.8, 38.3.
LR MS (EI, 70 eV, m/z):	245 [M ⁺]

Methyl 2-(benzylthio)benzoate

	C ₁₅ H ₁₄ O ₂ S, 258.34 g/mol
Yield	11.5 mg, 0.04 mmol, 22% (isolated)
¹ H-NMR (400 MHz, CDCl ₃):	$ δ_{\rm H} [\rm ppm] = 7.96 (dd, J = 7.8 Hz, J = 1.4 Hz, 1H), 7.44-7.26 (m, 7H), 7.16 (td, J = 7.5 Hz, J = 1.1 Hz, 1H), 4.17 (s, 2H), 3.90 (s, 3H). $
¹³ C-NMR (75 MHz, CDCl ₃):	$\delta_{\rm C}$ [ppm] = 166.9, 141.9, 136.1, 132.4, 131.2, 129.1, 128.6, 127.5, 127.3, 126.0, 124.1, 52.1, 37.3.
LR MS (EI, 70 eV, m/z):	258 [M ⁺]

(3-Nitrophenyl)(phenyl)selane

	C ₁₂ H ₉ NO ₂ Se, 278.17 g/mol
Yield	51.6 mg, 0.19 mmol, 55% (isolated)
¹ H-NMR (300 MHz, CDCl ₃):	$\delta_{\rm H}$ [ppm] = 8.20 (t, J = 1.9 Hz, 1H), 8.05 (ddd, J = 8.2 Hz, J = 2.2 Hz, J = 1.0 Hz, 1H), 7.64 (ddd, J = 7.7 Hz, J = 1.6 Hz, J = 1.1 Hz, 1H), 7.61-7.56 (m, 2H), 7.42-7.35 (m, 4H).
¹³ C-NMR (101 MHz, CDCl ₃):	δ _C [ppm] = 148.5, 136.9, 134.7, 129.9, 129.8, 128.8, 128.3, 125.7, 121.5.
LR MS (EI, 70 eV, m/z):	278 [M ⁺]

C₁₄H₁₂O₂Se, 291.21 g/mol

Yield	71.7 mg, 0.25 mmol, 82% (isolated)
¹ H-NMR (300 MHz, CDCl ₃):	$\delta_{\rm H}$ [ppm] = 8.05 (dd, <i>J</i> = 7.0 Hz, <i>J</i> = 2.2 Hz, 1H), 7.74-7.68 (m, 2H), 7.50-7.38 (m, 3H), 7.23-7.12 (m, 2H), 6.93-6.89 (m, 1H), 3.97 (s, 3H).
¹³ C-NMR (75 MHz, CDCl ₃):	$\delta_{\rm C}$ [ppm] = 167.2, 140.4, 137.5, 132.6, 131.2, 129.7, 129.1, 128.9, 128.8, 126.9, 124.7, 52.3.
LR MS (EI, 70 eV, m/z):	292 [M ⁺]

Methyl 2-(phenyltellanyl)benzoate

TePh COOMe

C₁₄H₁₂O₂Te, 339.85 g/mol

Yield	99.3 mg, 0.29 mmol, 97% (isolated)
¹ H-NMR (300 MHz, CDCl ₃):	$ δ_{\rm H} [\rm ppm] = 8.13-8.08 (m, 1H), 7.98 (dd, J = 8.0 Hz, J = 1.3 Hz, 2H), 7.47 (tt, J = 7.4 Hz, J = 2.0 Hz, 1H), 7.40-7.33 (m, 2H), 7.24-7.10 (m, 3H), 3.99 (s, 3H). $
¹³ C-NMR (75 MHz, CDCl ₃):	$\delta_{\rm C}$ [ppm] = 168.4, 141.7, 133.3, 132.7, 131.4, 129.7, 129.2, 128.9, 127.1, 125.6, 117.7, 52.7.
LR MS (EI, 70 eV, m/z):	342 [M ⁺]

(4-Nitrophenyl)(phenyl)tellane

C₁₂H₉NO₂Te, 326.81 g/mol 40.5 mg, 0.12 mmol, 41% (isolated)

Yield

¹ H-NMR (300 MHz, CDCl ₃):	$\delta_{\rm H}$ [ppm] = 7.99-7.94 (m, 2H), 7.89-7.84 (m, 2H), 7.58 (dt, J = 8.9 Hz, J = 2.1 Hz, 2H), 7.45 (tt, J = 7.4 Hz, J = 1.6 Hz, 1H), 7.37-7.30 (m, 2H).
¹³ C-NMR (75 MHz, CDCl ₃):	δ _C [ppm] = 147.1, 140.3, 135.2, 130.1, 129.3, 127.9, 123.7, 112.6.
LR MS (EI, 70 eV, m/z):	329 [M ⁺]

Radical trapping experiment

See standard procedure above, but with addition of TEMPO (1 equiv., 0.5 mmol) after 30 min.

	1	Best	Formula	Score V	Mass	Mass (MFG)	Diff (ppm)	Diff (abs. ppm)	Diff (mDa)	ID Source	Cases (MEQ)	
7			C8 H11 O S2	96.18	187.0252	187.0251	-0.49	0.49	-0.09	MFG	96.18	3.5
		Species	Ion Formula	m/z	Height	Score (MFG)	Score (MS)	Score (MFG, MS/MS)	Score (mass)	Score (iso, abund)	Score (iso spacing)	
	M*	+	C8 H11 O S2	187.0246	21004.3	96.18	96.18		99.91	93.26	92.24	
	-	miz	m/z (Calc)	Diff (ppm)	Diff (mDa)	Height	Height (Calc)	Height %	Height % (Calc)	Height Sum %	Height Sum% (Calc)	ĺ
	-	187.0245	187.0246	0.34	0.1	21768	21004.3	100	100	85.7	82.7	
	-	188.0278	188.0274	-2.28	-0.4	1877.4	2183.7	8.6	10.4	7.4	8.6	
		189.0227	189.0211	-8.96	-1.7	1625.9	2025.1	7.5	9.6	6.4	8	
		190.025	190.0238	-6.6	-1.3	129.6	187.9	0.6	0.9	0.5	0.7	

Spectroscopic Compound Characterizations

¹H-NMR (300 MHz, CDCl₃)

¹³C-NMR (75 MHz, CDCl₃)

но∫

<7.21
<7.18
<6.80
<6.77</pre>

SMe

-2.42

-141.63 -129.36 -129.36 -129.36 -129.36 -129.36 -120.18 -129.36 -120.38 -120.58 -120.38 -120.5	- 15.41
---	------------

		ſ
<u></u>	 l	<u> </u>

 																							<u></u>
135	125	115	105	95	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0
									ppm														

145 135 125 115 105 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 ppm

1					·		·							- L. Y. L. Y. L.						т
40	30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-110	-130	-150	-170	-190	-210	
													ppm							

-148.43	139.36 136.01 134.59 128.81 128.81 128.71 128.71 127.65 120.79	SCH ₂ Ph	-77.00	-38.26
1		NO ₂		

															- I
150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
100	110	100	120	110	100	50		opm		50		50	20	10	
								1.							

150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

¹³C-NMR (101 MHz, CDCl₃)

Calculated geometries of the optimized structures and transition states:

$H_{C_{H_2}} O_{H_3}$			
solvated complex			
С	-3.75654000	-0.35292600	-0.17780300
С	-3.39646500	0.99452800	-0.24593100
С	-2.05530100	1.37374700	-0.09357500
С	-1.14888500	0.35898900	0.12264900
С	-1.44364500	-0.98519200	0.19797400
С	-2.79071000	-1.33851600	0.04167800
Н	-4.79731100	-0.63707500	-0.29706000
Н	-4.15411900	1.75379500	-0.41643200
Н	-1.75810100	2.41696100	-0.14347800
Н	1.17871000	1.62544600	1.07466900
Н	-0.66435000	-1.72206400	0.37143000
Н	-3.08238300	-2.38372300	0.09150300
С	2.17728200	1.42647200	0.68214700
Н	2.49817800	2.24910300	0.04000800
Н	2.88418200	1.26552800	1.49923400
S	2.06244100	-0.08797600	-0.29437700
0	1.74965700	-1.20170500	0.70616100
С	3.82056300	-0.25402500	-0.67649400
Н	3.94354000	-1.18709500	-1.22722900
Н	4.13499500	0.58892300	-1.29527700
Н	4.38254600	-0.28700900	0.25950600

transition state

С	-3.72533200	-0.42086800	-0.10887600
С	-3.43064800	0.94387600	-0.13590800
С	-2.10633700	1.37761200	-0.01126800
С	-1.12199800	0.41427600	0.13688100
С	-1.37559600	-0.94768700	0.16739800
С	-2.70606900	-1.36345200	0.04139200
Н	-4.75476000	-0.75179000	-0.20499000
Н	-4.22790500	1.67184000	-0.25369900
Н	-1.86363500	2.43632000	-0.02984800
Н	0.18409400	0.82706700	0.27221300
Н	-0.56247700	-1.65921500	0.28513400
Н	-2.94401200	-2.42309800	0.06108700
С	1.42657200	1.16914300	0.39646000
Н	1.52862400	2.13947200	-0.09035200
Н	1.63949900	1.16863600	1.46710800
S	2.30201600	-0.12796500	-0.46626900
0	1.95360500	-1.41821300	0.27776500
С	3.97928700	0.30274300	0.05879900
Н	4.65304400	-0.44349900	-0.36468700
Н	4.22959000	1.29450700	-0.32298700
Н	4.01756700	0.27904000	1.14992200

solvated complex

С	-1.90524600	-1.46853900	1.38567200
С	-1.74940300	-0.12792600	1.04812700
С	-1.67297500	0.23012400	-0.30258100
С	-1.76033000	-0.73671200	-1.30359300
С	-1.91583700	-2.07630900	-0.95327300
С	-1.98839400	-2.44488700	0.38919700
Н	-1.96403100	-1.75130100	2.43165000
Н	-1.69198600	0.63241600	1.82137200
Н	-1.70035100	-0.42984300	-2.34294600
Н	-1.98067900	-2.82989900	-1.73113700
Н	-2.11013600	-3.48815600	0.66122600
N	-1.51623200	1.57213600	-0.76170900
N	-1.30014400	2.42815400	0.09815600
0	-1.12911600	3.61977100	0.03557500
Н	0.94576300	1.00043300	1.11986700
С	1.75730500	1.13738100	0.40030200
Н	2.37919900	1.98160100	0.69992300
Н	1.37087400	1.28666000	-0.61155200
S	2.80213300	-0.33570400	0.41109000
0	3.82479800	-0.13098300	-0.70656700
С	1.57388200	-1.48282800	-0.24643800
Н	2.05852900	-2.45385300	-0.35424400
Н	0.73791900	-1.55768700	0.45428200
Н	1.23593200	-1.11325700	-1.21754800

transtion state

-0.42283400 -0.09041000 0.24146300 0.26976600 -0.04791400
-0.09041000 0.24146300 0.26976600 -0.04791400
0.24146300 0.26976600 -0.04791400
0.26976600
-0.04791400
0 (5700100
-0.65/28100
-0.70724800
0.47989300
0.53476900
-0.03199200
-0.08595100
-0.08463700
-0.09327900
-0.08586700
-0.14425200
-1.06401800
0.76421300
-0 28393600
0.203330000
-0.34410800
-0.34410800 1.40072200
-0.34410800 1.40072200 1.50191200
-0.34410800 1.40072200 1.50191200 1.54782000

