Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Facilitation of DNA Self-Assembly by Relieving the Torsional Strains

between Building Blocks

Stands	Bases(1	mer) Base sequences(from 5' to 3')
PX ₅₅ (a ₁)	80	TCGCAGGGACATTCAGGCTAAAGGACAGATCGAGATCATGGCTA
		GAGTGGCTGCGATGAAGGTGTAGAGTCAGGAAAGC
$PX_{55}(a_2)$	80	GCACTTGACTTCCTTGACTCTGAATCTTCACCACTCTAGCCATGA
		TCTCGAAGTGCATCTGTTCCTTAGCCTACACGTCC
$PX_{55}(b_1)$	84	TCGCAGGAGACATTCAGGCTAAAGGACAGATTCGAGATCATGGC
		TAGAGTGGCTGCGATGGAAGGTGTAGAGTCAGGAAAGGTC
$PX_{55}(b_2)$	84	GCACTTGACCTTCGACTCTGAATCTTCCACCACTCTAGCCAT
		GATCTCGAAGTGCAATCTGTTCCTTAGCCTACACGTCTC
PX ₆₄ (a ₁)	80	TCGCAGGAGACATCAGGCTTTAGGACAGATCGAGATCATGGCTA
		GAGTGGCTGCGATGAAGGGTAGAGGTCAGAAAGGTC
$PX_{64}(a_2)$	80	GCACTTGACCTTCCTGACCTCTGATCTTCACCACTCTAGCCAT
		GATCTCGAAGTGCATCTGTTCTAAAGCCTACCGTCTC
$PX_{64}(b_1)$	82	TCGCAGGAGACATCAGGCTTTAGGACAGATTCGAGATCATGGCT
		AGAGTGGCTGCGATGAAGAGGTAGAGGTCAGAAAGGTC
$PX_{64}(b_2)$	82	GCACTTGACCTTCCTGACCTCTGATTCTTCACCACTCTAGCCATG
		ATCTCGAAGTGCAATCTGTTCTAAAGCCTACCGTCTC
$PX_{95}(a_1)$	92	TGCCGACCTAGACTGCTTACCTTCCCTCTGATCATTTCTGGTTGAC
		ATTGCGACACTCGGCATCTGGACCTTGTTACTGTGACATTCTGCT
		G
$PX_{95}(a_2)$	92	CGAGCACAGCACAGAGTCACAGTAAGCAGTTCCAGAGTGTCGCA
		ATGTCAACCAGATGCTCGAATGATGAATGGGAAGGTAACAAGGC
		TAGG
$PX_{95}(b_1)$	88	TGCCGACTATACTGCACACCTTCGCTCTGATCATTCTGGTAGACA
		TTGGGACACTCGGCATCTGACCTTGTGACTGTGACATTCTGCT
$PX_{95}(b_2)$	88	CGAGCAAGCACAGAGTCACAGTCAGCAGTTCAGAGTGTCCCAAT
		GTCTACCAGATGCTCGATGATGAATGCGAAGGTGTCAAGGATAG

Table s1 The sequences of PX motifs

AFM of the PX motifs self-assembly on Mica:

Fig. S1 Schematic diagram of lattice and designed length of lattice. All results are consistent with the design within the margin of error, taking PX_{55} (a) for example about theoretical calculation.

Fig. S2 Analysis of AFM DNA lattice self-assembly from PX₅₅ (a) motif.

Fig. S3 Analysis of AFM DNA lattice self-assembly from PX₅₅ (b) motif.

Fig. S4 Analysis of AFM DNA ladder self-assembly from $PX_{64}(a)$ motif.

Fig. S5 Analysis of AFM DNA lattice self-assembly from PX₆₄ (b) motif.

Fig. S6 AFM image of PX_{95} (a) motif self-assembly and corresponding cross-section analysis. From the dimensions of the section height, we can observe obviously DNA multimers.

Fig. S7 AFM image of PX_{95} (b) motif self-assembly and corresponding cross-section analysis.