Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting Information

DIASTEREOSELECTIVE SYNTHESIS OF TRIFLUOROMETHYLATED 1,3 DIOXANES BY INTRAMOLECULAR OXA-MICHAEL REACTION

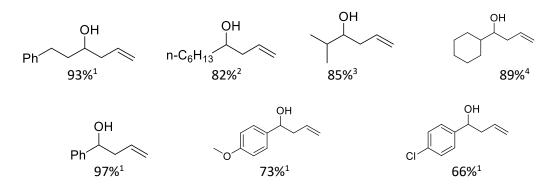
Liliana Becerra-Figueroa,^a Elodie Brun,^b Michael Mathieson,^b Louis J. Farrugia,^b Claire Wilson,^b Joëlle Prunet,^{b*}and Diego Gamba-Sánchez^{a*}

^aLaboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Departament, Universidad de los Andes, Cra 1 No. 18A-12 Q:305, Bogotá 111711, Colombia.

^bWestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, UK

TABLE OF CONTENTS

S3	General methods
S3	Procedure for formation of homoallylic alcohols
S4	Procedure for Cross Methatesis
S6	Synthesis of O-Carbamates
S9	Synthesis of N-Carbamate
S11	Synthesis of Trifluoromethylated 1,3-Dioxanes
S20	Copy of NMR spectra
S70	X-ray Analysis
S87	References


GENERAL METHODS

¹H NMR, ¹³C NMR and ¹⁹F spectra were recorded in CDCl₃ as solvent on 300 MHz or 400 MHz spectrometer. The coupling constant *J* is given in Hz. The chemical shifts are expressed in parts per million (ppm) referenced to TMS and trifluoracetic acid (¹⁹F). Data are reported as follows: δ , chemical shift; multiplicity (recorded as br, broad; s, singlet; d, doublet; t, triplet; q, quadruplet; quint, quintuplet and m, multiplet). FTIR spectral values are reported in wave number (cm⁻¹). Optical rotations were measured on digital polarimeter using a 1 mL cell with a 1 dm path length. Mass spectrometry (MS) was performed in electron impact (EI; 70 eV) mode. Mass spectrums data are reported as m/z. High resolution mass spectrometry (HRMS) was performed on a Q-TOF LC/MS instrument. Solvents for reactions were distilled prior to use: THF and diethyl ether were distilled from Na and benzophenone; DCM from CaH₂. All air– or moisture–sensitive reactions were conducted under a nitrogen or argon atmosphere in flame– dried or oven–dried glassware with magnetic stirring. Column chromatography was carried out using silica gel 60 (230–400 mesh).

Known compounds were found to be identical to those described in literature, in consequence in some cases only ¹H NMR spectra is shown.

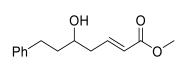
TYPICAL PROCEDURE FOR FORMATION OF HOMOALLYLIC ALCOHOLS

To a solution of allyl bromide (2 equiv) in THF (0.96 M) was added Zn dust (2 equiv) and the aldehyde (1 equiv) at 0°C. This mixture was vigorously stirred and an aqueous solution of NH_4CI (sat) (equal volumes with THF) was added dropwise over a period of 30 min. The reaction mixture was stirred at room temperature for 12 to 24 h (followed by TLC), then, water was added and 5% aqueous HCl to dissolve the suspension. The aqueous layer was extracted with DCM and the organic phases were washed with aqueous $NaHCO_3$ (sat), water and NaCI (sat). The organic layer was dried over $MgSO_4$ and the solvent was evaporated *in vacuo*. The crude mixture was purified using flash chromatography to afford the pure product. The known products obtained by this procedure are listed below.

(2S,3R)-2-(benzyloxy)hex-5-en-3-ol⁵

The typical procedure for formation of homoallylic alcohols was applied to (S)-2-(benzyloxy)propanal⁶ (1.2 mmol, 200 mg). The crude extract was purified by flash chromatography to afford a mixture of diasteroisomers *syn* (m) and *anti* (M) (1:1.8) as a yellow oil (164 mg, 66%).

¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.22 – 7.50 (m, 5H), 5.72 - 5.98 (m, 1H), 5.05 - 5.26 (m, 2H), 4.56 (m, 2H), 3.76 - 3.81 (m, 0.5H), 3.49 - 3.61 (m, 1H), 3.41 - 3.49 (m, 0.5H), 2.25 (t, J = 6.8 Hz, 1.5H), 2.12 – 2.22 (m, 0.5H), 1.20 (dd, J = 6.1, 3.5 Hz, 3H).


¹³C NMR (75 MHz, CDCl₃) δ (ppm):

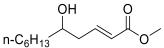
138.7 (M), 138.5 (m), 135.2 (M), 135.0 (m), 128.7, 128.7, 128.1, 128.0, 127.9, 117.9 (M), 117.5 (m), 77.8 (m), 77.4 (M), 74.5 (m), 72.8 (M), 71.3 (m), 71.0 (M), 37.8 (m), 37.2 (M), 15.7 (m), 14.0.

GENERAL PROCEDURE FOR CROSS-METATHESIS REACTION

To a solution of homoallylic alcohol (1 equiv) and methyl acrylate (3.2 equiv) in dry DCM (0.34 M) under Argon was added Grubb's II catalyst (0.025 equiv). The mixture was heated at reflux and stirred overnight. The mixture was cooled at room temperature and concentrated *in vacuo*. The crude mixture was purified using flash chromatography to afford the pure product.

Methyl (E)-5-hydroxy-7-phenylhept-2-enoate (1a)

The general procedure for cross-metathesis reaction was applied to 1-phenylhex-5-en-3-ol (2.8 mmol, 500 mg). The crude residue was purified by column chromatography with petroleum ether/AcOEt (8:2) to give a brown oil (550 mg, 83%).

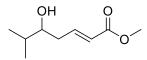

¹H NMR (400 MHz, CDCl₃) δ (ppm):

7.17 – 7.38 (m, 5H), 6.99 - 7.07 (m, 1H), 5.96 (dt, *J* = 15.7, 1.4 Hz, 1H), 3.83 – 3.86 (m, 1H), 3.78 (s, 3H), 2.78 - 2.88 (m, 2H), 2.41 – 2.48 (m, 2H), 1.78 – 1.96 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ (ppm):

166.6, 145.1, 141.5, 128.4, 128.3, 125.9, 123.5, 69.7, 51.4, 40.3, 38.6, 31.9. **IR:** 3493, 3022, 2942, 1720, 1656, 1437, 1325, 1273, 1172, 1033, 977, 700. **HRMS:** Calculated for C₁₄H₁₈O₃Na: 257.1154; found: 257.1148.

Methyl (E)-5-hydroxyundec-2-enoate⁵ (1b)


The general procedure for cross-metathesis reaction was applied to dec-1-en-4-ol (1.3 mmol, 200 mg) The crude residue was purified by column chromatography with $CH_2Cl_2/AcOEt$ (9.5:0.5) to give a brown

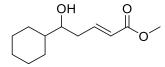
oil (270 mg, 98%).

¹H NMR (300 MHz, CDCl₃) δ (ppm):

7.00 (dt, *J* = 15.2, 7.4 Hz, 1H), 5.91 (d, *J* = 15.7 Hz, 1H), 3.80 – 3.69 (m, 1H), 3.73 (s, 3H), 2.23 – 2.46 (m, 2H), 1.94 (s, 1H), 1.21 – 1.55 (m, 10H), 0.88 (t, *J* = 6.5 Hz, 3H).

(E)-Ethyl 5-Hydroxy-2-methyl-7-phenylhept-2-enoate (1c)

The general procedure for cross-metathesis reaction was applied to 2methylhex-5-en-3-ol (0.89 mmol, 102 mg). The crude residue was purified by column chromatography with petroleum ether/AcOEt (8:2) to give a yellow oil (140 mg, 91%).

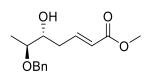

¹H NMR (400 MHz, CDCl₃) δ (ppm):

6.95 (dt, J = 15.6, 7.6 Hz, 1H), 5.86 (dt, J = 15.6, 1.2 Hz, 1H), 3.67 (s, 3H), 3.46 (m, 1H), 2.35 (m, 1H), 2.25 (m, 1H), 1.63 (m, 1H), 1.44 (d, J = 4.4 Hz, 1H), 0.88 (d, J = 0.8 Hz, 3H), 0.87 (d, J = 0.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm):

166.8, 146.2, 123.3, 75.3, 51.5, 37.2, 33.4, 18.7, 17.3.

IR: 3457, 2955, 2878, 1713, 1659, 1435, 1273, 1211, 1165, 1042. **MS (CI):** 155.3, 173.3 (M + H⁺, 100%).

Methyl (E)-5-cyclohexyl-5-hydroxypent-2-enoate⁵ (1d)

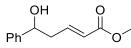


The general procedure for cross-metathesis reaction was applied to 1cyclohexylbut-3-en-1-ol (1.3 mmol, 200 mg). The crude residue was purified by column chromatography with pentane/AcOEt (9:1) to give a brown oil (260 mg, 95%).

¹H NMR (300 MHz, CDCl₃) δ (ppm):

6.29 – 7.91 (m, 1H), 5.92 (d, *J* = 15.7 Hz, 1H), 3.74 (s, 3H), 3.41 – 3.61 (m, 1H), 2.20 – 2.58 (m, 2H), 1.59 - 2.00 (m, 6H), 0.76 - 1.36 (m, 6H).

Methyl (5*R*,6*S*,*E*)-6-(benzyloxy)-5-hydroxyhept-2-enoate⁵ (1e)

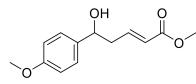


The general procedure for cross-metathesis reaction was applied to (2S,3R)-2-(benzyloxy)hex-5-en-3-ol (0.97 mmol, 200 mg) The crude residue was purified by column chromatography with CH₂Cl₂/AcOEt (9.5:0.5) to give the product as a brown oil (70 mg, 27%). [α]_D^{23.2} = 27.3 (c=0.01 g/mL in CH₃Cl).

¹H NMR (300 MHz, CDCl₃) δ (ppm):

7.20 – 7.49 (m, 5H), 7.09 – 6.92 (m, 1H), 5.93 (d, *J* = 15.6 Hz, 1H), 4.56 (m, 2H), 3.79 – 3.93 (m, 1H), 3.73 (s, 3H), 3.41 – 3.61 (m, 1H), 2.39 (t, *J* = 6.8 Hz, 2H), 2.15 (d, *J* = 4.5 Hz, 1H), 1.22 (d, *J* = 6.4 Hz, 3H).

Methyl (E)-5-hydroxy-5-phenylpent-2-enoate⁵ (1f)

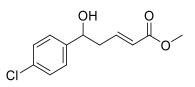

The general procedure for cross-metathesis reaction was applied to 1phenylbut-3-en-1-ol (1.2 mmol, 200 mg). The crude residue was purified by column chromatography with pentane/AcOEt (6:4) to give a brown oil (250

mg, 100%).

¹H NMR (300 MHz, CDCl₃) δ (ppm):

7.23 – 7.48 (m, 5H), 6.97 (dt, *J* = 15.3, 7.3 Hz, 1H), 5.90 (d, *J* = 15.3 Hz, 1H), 4.81 (t, *J* = 5.8 Hz, 1H), 3.71 (s, 3H), 2.61 - 2.70 (m, 2H), 2.31 (bs, 1H).

Methyl (E)-5-hydroxy-5-(4-methoxyphenyl)pent-2-enoate⁷ (1g)

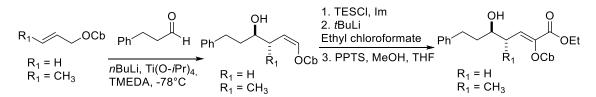


The general procedure for cross-metathesis reaction was applied to 1-(4-methoxyphenyl)but-3-en-1-ol (1.1 mmol, 200 mg) The crude residue was purified by column chromatography with CH_2Cl_2 /cyclohexane (8:2) to give a brown oil (226 mg, 85%)

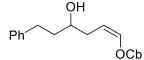
¹H NMR (300 MHz, CDCl₃) δ (ppm):

7.23 – 7.34 (m, 2H), 6.82 - 7.05 (m, 3H), 5.89 (d, *J* = 15.7 Hz, 1H), 4.77 (t, *J* = 6.4 Hz, 1H), 3.81 (s, 3H), 3.71 (s, 3H), 2.54- 2.79 (m, 2H), 2.10 (d, *J* = 8.5 Hz, 1H).

Methyl (E)-5-(4-chlorophenyl)-5-hydroxypent-2-enoate⁷ (1h)



The general procedure for cross-metathesis reaction was applied to 1-(4-chlorophenyl)but-3-en-1-ol (1.1 mmol, 200 mg) The crude residue was purified by column chromatography with CH_2Cl_2 /cyclohexane (8:2) to give a brown oil (239 mg, 91%).


¹H NMR (300 MHz, CDCl₃) δ (ppm)

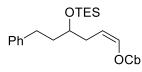
7.31 (q, J = 8.3 Hz, 4H), 6.78 – 6.98 (m, 1H), 5.89 (d, J = 15.7 Hz, 1H), 4.81 (t, J = 6.0 Hz, 1H), 3.71 (s, 3H), 2.61 (m, 2H).

SYNTHESIS OF O-CARBAMATES

(Z)-4-hydroxy-6-phenylhex-1-en-1-yl diisopropylcarbamate

To a solution of allyl carbamate⁸ (2.2 mmol, 400 mg) in dry Et₂O (6 mL) at -78°C was added freshly distilled TMEDA (2.4 mmol, 0.35 mL) dropwise over a period of 2 min, then 1.9 M *n*BuLi in hexane (2.4 mmol, 1.2 mL) was added. After 30 min freshly distilled Ti(*i*OPr)₄ (8.7 mmol, 2.6 mL) was

added dropwise, the resulting mixture became clear red-orange and was stirred for 40 min. Then, a solution of hydrocinnamaldehyde (2.4 mmol, 0.31 mL) in Et₂O was added dropwise and the resulting mixture was stirred at -78°C for 90 min and quenched with 4M aqueous HCl solution until the white solid was totally dissolved. The aqueous phase was extracted 3 times with Et₂O and the combined organic extracts were dried over MgSO₄, filtered and concentrated on *vacuo*. The crude residue was purified by flash chromatography using petroleum ether/Et₂O (7:3) to give as pale yellow oil (320 mg, 56%).


¹H NMR (400 MHz, CDCl₃) δ (ppm):

7.18 – 7.33 (m, 5H), 7.13 (dt, *J* = 6.5, 1.4 Hz, 1H), 4.79 (dd, *J* = 14.1, 7.6 Hz, 1H), 4.07 (bs, 1H), 3.82 (bs, 1H,), 3.66 – 3.74 (m, 1H), 2.86 – 2.77 (m, 1H), 2.66 – 2.72 (m, 1H), 2.32 – 2.43 (m, 2H), 1.74 – 1.94 (m, 2H), 1.61 (d, *J* = 4.5 Hz, 1H), 1.24 (d, *J* = 6.2 Hz, 12H).

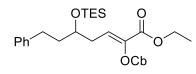
¹³C NMR (101 MHz, CDCl₃) δ (ppm):

153.1, 142.3, 137.8, 128.7, 126.1, 106.5, 70.9, 47.2, 46.1, 38.8, 33.6, 32.3, 21.8, 20.6. **IR:** 3459, 2971, 2931, 1684, 1437, 1370, 1437, 1237, 1132, 1055, 761, 699. **HRMS:** Calculated for $C_{19}H_{29}NNaO_{3:}$ 342.2045; Found: 342.2029.

(Z)-4-((3-ethylpentan-3-yl)oxy)-6-phenylhex-1-en-1-yl diisopropylcarbamate

To a solution of carbamate (1.1 mmol, 350 mg), imidazole (3.3 mmol, 223 mg) and dry CH_2Cl_2 (5.5 mL) was added chlorotriethylsilane (0.3 mL, 1.7 mmol) to 0°C. The reaction mixture was stirred for 2 h and heated to room temperature overnight. The reaction mixture was quenched with MeOH. Water was added and the aqueous phase was extracted three times with

 CH_2Cl_2 . The organic phase was washed with NaCl sat, dried with MgSO₄ and purified with flash chromatography using petroleum ether/Et₂O (9:1). The product was obtained as pale yellow oil (295 mg, 62%).


¹H NMR (400 MHz, CDCl₃) δ (ppm):

7.25 – 7.29 (m, 2H), 7.15 – 7.18 (m, 3H), 7.07 (dt, *J* = 6.5, 1.5 Hz, 1H), 4.78 (m, 1H), 4.02 (brs, 1H), 3.87 (brs, 1H), 3.75 – 3.83 (m, 1H), 2.69 – 2.76 (m, 1H), 2.57 – 2.64 (m, 1H), 2.30 – 2.50 (m, 2H), 1.69 – 1.85 (m, 2H), 1.24 (d, *J* = 6.8 Hz, 12H), 0.97 (t, *J* = 7.9 Hz, 9H), 0.62 (q, *J* = 7.9 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ (ppm):

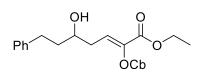
153.0, 142.8, 136.6, 128.6, 126.0, 106.9, 71.8, 46.8, 46.3, 39.1, 33.4, 32.1, 21.8, 20.7, 6.7, 5.4. **IR:** 2956,2875, 1707, 1433, 1369, 1307, 1287, 1210, 1061, 726, 698. **HRMS:** Calculated for C₂₅H₄₃NNaO₃Si: 456.2910; found: 456.2928.

Ethyl (Z)-2-((diisopropylcarbamoyl)oxy)-7-phenyl-5-((triethylsilyl)oxy)hept-2-enoate

To a solution of protected carbamate (0.66 mmol, 290 mg) in 4.1 mL of dry THF at -78°C was slowly added a solution of 0.90 M *t*BuLi in pentane (0.73 mmol, 0.82 mL). After stirring for 1 hour at -78 °C, a solution of ethyl chloroformate (0.73 mmol, 0.70 mL) in THF was added dropwise. The resulting solution was stirred at -78°C for 5 h,

and quenched with NH_4Cl (sat). Water and Et_2O were added. The aqueous phase was extracted with Et_2O . The combined organic phases were dried over $MgSO_4$ concentrated *in vacuo* and purified with flash chromatography using cychlohexane/CH₂Cl₂ (7:3). The product was obtained as pale yellow oil (290 mg, 92%).

¹H NMR (300 MHz, CDCl₃) δ (ppm):


7.06 – 7.32 (m, 5H), 6.57 (t, *J* = 7.8 Hz, 1H), 4.24 (q, *J* = 7.1 Hz, 2H), 4.02 – 4.14 (m, 1H), 3.78 – 3.99 (m, 2H), 2.53 – 2.82 (m, 2H), 2.38 – 2.48 (m, 2H), 1.76- 1.85 (m, 2H), 1.18 – 1.42 (m, 15H), 0.99 (t, *J* = 7.9 Hz, 9H), 0.64 (q, *J* = 7.9 Hz, 6H).

¹³C NMR (75 MHz, CDCl₃) δ (ppm):

162.9, 153.1, 142.5, 139.9, 128.6, 128.6, 126.8, 126.0, 71.0, 61.4, 47.1, 46.5, 39.4, 34.2, 31.9, 21.7, 20.7, 14.4, 7.2, 5.2.

IR: 2954, 2933, 2358, 2341, 1716, 1521, 1456, 1367, 1290, 1087, 1043, 1006, 723. **HRMS:** Calculated for $C_{28}H_{48}NO_5Si$: 506.3302; found: 506.3303.

Ethyl (Z)-2-((diisopropylcarbamoyl)oxy)-5-hydroxy-7-phenylhept-2-enoate (6b)

The protected alcohol (0.25 mmol, 150 mg) was dissolved in MeOH (0.75 mL) and THF (0.19 mL) with pyridinium-*p*-toluensulfanate (PPTS) (15 mg, 0.059 mmol) at 0°C. The reaction mixture was stirred for 2 h, and quenched with NaHCO₃ (sat). Water was added and the product was extracted with AcOEt, dried over MgSO₄,

filtered and concentrated *in vacuo*. The crude product was purified by flash chromatography using pentane/AcOEt (9:1) to give the product as pale yellow oil (91 mg, 78%).

¹H NMR (300 MHz, CDCl₃) δ (ppm):

7.13 – 7.33 (m, 5H), 6.61 (t, J = 7.8 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 3.89 – 4.07 (m, 2H), 3.69 – 3.83 (m, 1H), 2.60 – 2.91 (m, 3H), 2.29 – 2.51 (m, 2H), 1.76 – 1.85 (m, 2H), 1.22 – 1.35 (m, 15H).

¹³C NMR (75 MHz, CDCl₃) δ (ppm):

162.6, 153.7, 142.2, 140.4, 128.7, 128.6, 127.5, 126.1, 69.8, 61.6, 47.2, 46.6, 39.3, 34.4, 32.2, 21.6, 20.6, 14.4.

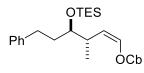
IR: 3398, 2954, 2875, 2357, 1701, 1454, 1261, 1068, 1047, 1002, 740, 734.

HRMS: Calculated for C₂₂H₃₄NO₅: 392.2437; found: 392.2436.

(3R*,4S*,Z)-4-hydroxy-3-methyl-6-phenylhex-1-en-1-yl diisopropylcarbamate

To a solution of crotyl carbamate⁹ (2.0 mmol, 400 mg) in dry Et₂O (5.7 mL) at -78°C was added freshly distilled TMEDA (2.2 mmol, 0.30 mL) dropwise over a period of 2 min, then 1.9 M *n*BuLi in hexane (2.2 mmol, 1.7mL) was added. After 30 min freshly distilled $Ti(iOPr)_4$ (8.0 mmol, 2.4 mL) was added dropwise, the resulting mixture became clear red-orange and was

stirred 40 min. Then, a solution of hydrocinnamaldehyde (2.2 mmol, 0.30 mL) in Et_2O was added dropwise and the resulting mixture was stirred at -78°C for 90 min and quenched with 4N aqueous HCl aqueous solution until the white solid was totally dissolved. The aqueous phase was extracted 3 times with Et_2O and the combined organic extracts were dried over MgSO₄, filtered and concentrated *on vacuo*. The crude residue was purified by flash chromatography using petroleum ether/ Et_2O (7:3) to give as pale yellow oil (340 mg, 51%).


¹H NMR (400 MHz, CDCl₃) δ (ppm):

7.23 – 7.30 (m, 2H), 7.15 – 7.23 (m, 3H), 7.12 (dd, *J* = 6.5, 0.7 Hz, 1H), 4.67 (dd, *J* = 10.0, 6.5 Hz, 1H), 4.08 (bs, 1H), 3.80 (bs, 1H), 3.43 – 4.49 (m, 1H), 2.60 – 2.99 (m, 3H), 1.67 – 1.95 (m, 2H), 1.60 (d, *J* = 3.9 Hz, 1H), 1.24 (d, *J* = 6.7 Hz, 12H), 1.04 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ (ppm):

153.1, 142.6, 136.7, 128.7, 128.7, 126.1, 112.4, 74.9, 47.2, 46.2, 36.8, 36.7, 32.3, 21.9, 20.7, 17.6. **IR:** 3478, 2969, 2934, 1687, 1437,1370, 1259, 1209, 1135, 1209. **HRMS:** Calculated for C₂₀H₃₁NNaO₃: 356.2202; found: 356.2182.

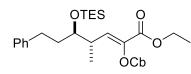
(3R*,4S*,Z)-3-methyl-6-phenyl-4-((triethylsilyl)oxy)hex-1-en-1-yl diisopropylcarbamate

To a solution of carbamate (0.99 mmol, 330 mg), imidazole (2.9 mmol, 202 mg) and dry CH_2Cl_2 (5 mL) was added chlorotriethylsilane (0.25 mL, 1.5 mmol) to 0°C. The reaction mixture was stirred for 2 h and heated to room temperature overnight. The reaction mixture was quenched with MeOH. Water was added and the aqueous phase was extracted three times with

 CH_2Cl_2 . The organic phase was washed with NaCl sat, dried with MgSO₄ and purified with flash chromatography using petroleum ether/Et₂O (9:1). The product was obtained as pale yellow oil (277 mg, 62%).

¹H NMR (400 MHz, CDCl₃) δ (ppm):

7.24 – 7.31 (m, 2H), 7.15 – 7.19 (m, 3H), 7.03 (dd, *J* = 6.5, 0.7 Hz, 1H), 4.75 (dd, *J* = 10, 6.5 Hz, 1H), 4.00 (brs, 1H), 3.92 (brs, 1H), 3.63 – 3.67 (m, 1H), 2.85 – 2.91 (m, 1H), 2.53 – 2.70 (m, 2H), 1.67 – 1.78 (m, 2H), 1.25 (d, *J* = 6.9 Hz, 12H), 1.03 (d, *J* = 6.9 Hz, 3H), 0.97 (t, *J* = 7.9 Hz, 9H), 0.61 (q, *J* = 7.9 Hz, 6H).


¹³C NMR (101 MHz, CDCl₃) δ (ppm):

153.1, 142.9, 135.3, 128.6, 128.6, 126.0, 112.7, 75.5, 46.8, 46.2, 37.0, 35.5, 32.6, 21.7, 20.7, 17.3, 7.3, 5.6.

IR: 2958, 2875, 1708, 1433, 1369, 1306, 1288, 1212, 1135, 1057, 736.

HRMS: Calculated for C₂₆H₄₅NNaO₃Si: 470.3066; Found: 470.3076.

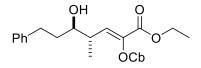
Ethyl (4*R**,5*S**,*Z*)-2-((diisopropylcarbamoyl)oxy)-4-methyl-7-phenyl-5-((triethylsilyl)oxy)hept-2-enoate

To a solution of protected carbamate (0.60 mmol, 280 mg) in 4.1 mL of dry THF at -78°C was slowly added a solution of 0.90 M *t*-BuLi in pentane (0.70 mL, 0.69 mmol). After stirring for 1 hour at -78 °C, a solution of ethyl chloroformate (0.65 mL, 0.69 mmol) in THF was added dropwise. The resulting solution was stirred at -78°C for 5 h,

and quenched with NH_4Cl (sat). Water and Et_2O were added. The aqueous phase was extracted with Et_2O The combined organic phases were dried over $MgSO_4$ concentrated *in vacuo* and purified with flash chromatography using cyclohexene/CH₂Cl₂ (6:4). The product was obtained as pale yellow oil (273 mg, 84%).

¹H NMR (300 MHz, CDCl₃) δ (ppm):

7.11 – 7.37 (m, 5H), 6.45 (d, *J* = 10.2 Hz, 1H), 4.22 (q, *J* = 7.1 Hz, 2H), 3.85 - 4.08 (m, 2H), 3.66 – 3.71 (m, 1H), 2.74 – 2.85 (m, 1H), 2.50 – 2.69 (m, 2H), 1.74 (q, *J* = 8.1 Hz, 2H), 1.24 - 1.31 (m, 15H), 1.07 (d, *J* = 6.9 Hz, 3H), 0.96 (t, *J* = 7.9 Hz, 9H), 0.60 (q, *J* = 7.9 Hz, 6H).


¹³C NMR (75 MHz, CDCl₃) δ (ppm):

163.1, 153.1, 142.7, 138.8, 132.0, 128.6, 126.0, 75.0, 61.4, 47.0, 46.6, 36.9, 36.5, 32.4, 21.7, 20.7, 16.1, 14.4, 7.3, 5.4.

IR: 2962, 2935, 2357, 2320, 1716, 1521, 1506, 1471, 1456, 1435, 1288, 1234, 1288, 1234, 1083, 1031, 1006, 742, 725.

HRMS: Calculated for C₂₉H₅₀NO₅Si: 520.3458; found: 520.3440.

Ethyl (4*R**,5*S**,*Z*)-2-((diisopropylcarbamoyl)oxy)-5-hydroxy-4-methyl-7-phenylhept-2-enoate (6c)

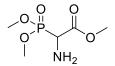
The protected alcohol (0.28 mmol, 150 mg) was dissolved in MeOH (1 mL) and THF (0.27 mL) with PPTS (14 mg, 0.057 mmol) at 0°C. The reaction mixture was stirred for 2 h, and quenched with NaHCO₃ (sat). Water was added and the product was extracted

with AcOEt, dried over MgSO4, filtered and concentrated *in vacuo*. The crude product was purified by flash chromatography using pentane/AcOEt (8:2) to give the product as pale yellow oil (86 mg, 76%).

¹H NMR (300 MHz, CDCl₃) δ (ppm):

7.12 – 7.38 (m, 5H), 6.48 (d, *J* = 10.5 Hz, 1H), 4.22 (q, *J* = 7.1 Hz, 2H), 3.87 - 4.08 (m, 2H), 3.46 – 3.56 (m, 1H), 2.61 – 2.91 (m, 3H), 2.57 (d, *J* = 4.4 Hz, 1H), 1.60 – 1.97 (m, 2H), 1.21 – 1.39 (m, 15H), 1.06 (d, *J* = 6.8 Hz, 3H).

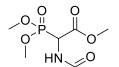
¹³C NMR (75 MHz, CDCl₃) δ (ppm)


162.7, 153.3, 142.5, 139.2, 132.9, 128.8, 128.6, 126.0, 74.2, 61.6, 47.2, 46.6, 37.7, 37.1, 31.9, 21.7, 21.6, 20.7, 20.6, 16.9, 14.4.

IR: 3487, 2970, 1705, 1452, 1436, 1369,1292, 1230, 1126, 1082, 1043, 987, 761. **HRMS:** Calculated for C₂₃H₃₆NO₅: 406.2593; found: 406.2586.

SYNTHESIS OF N-CARBAMATE

Methyl 2-amino-2-(dimethoxyphosphoryl)acetate¹⁰


A mixture of benzyloxycarbonyl- α -phosphonoglycine trimethyl ester (4.5 mmol, 1500 mg) and Pd/C (10% mol, 15 mg) in MeOH (0.1 M) was allowed to stir for 12 hours in hydrogen atmosphere. The mixture reaction was filtered through a short pad of celite and concentrated under reduced pressure. The crude extract

was obtained as pale yellow oil (890 mg, 100%).

¹H NMR (400 MHz, CDCl₃) δ (ppm):

3.96 (d, J = 21.3 Hz, 1H), 3.86 (d, J = 2.6 Hz, 3H), 3.83 (d, J = 2.6 Hz, 6H), 1.78 (bs, 2H).

Methyl 2-(dimethoxyphosphoryl)-2-formamidoacetate¹¹

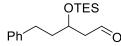
To a solution of free amine (341 mg, 1.5 mmol) in dry dichloromethane (1 mL), a solution of formic acid (0.060 mL, 1.5 mmol) in dicholomethane (1.5 mL) were added at -10° C. Then, the cyclohexylcarbodiimide (342 mg, 1.7 mmol) was added and the mixture reaction was stirred to room temperature overnight. The

precipitated urea was filtered and washed with cool DCM and the filtrate was washed with 1 mL of $KHSO_4 1 N$, and with 1 mL of $NaHCO_3$ (sat), dried with Na_2SO_4 and concentrated *in vaccuo*. To remove traces of urea, the residue was dissolved in DCM (3 mL) the mixture was kept at -10°C overnight and washed with cool DCM. The product was purified with AcOEt to afford white solid (331 mg, 96 %). ¹H NMR (400 MHz, CDCl₃) δ (ppm):

8.26 (s, 1H), 6.75 (bs, 1H), 5.29 (dd, J = 21.8, 9.1 Hz), 3.79 – 3.88 (m, 9H).

Triethyl((1-phenylhex-5-en-3-yl)oxy)silane¹²

To a solution of 1-phenylhex-5-en-3-ol (21 mmol, 4 g), imidazole (68 mmol, 4.6 g) and dry CH₂Cl₂ (60 mL) was added chlorotriethylsilane (34 mmol, 5.7 mL) to 0°C. The reaction mixture was stirred for 2 h and heated to room temperature


overnight. The reaction mixture was quenched with MeOH. Water was added and the aqueous phase was extracted three times with CH_2Cl_2 . The organic phase was washed with brine, dried with anhydrous MgSO₄ and purified with flash chromatography using cyclohexane/CH₂Cl₂ (9:1). The product was obtained as yellow oil (646 mg, 98 %).

¹H NMR (300 MHz, CDCl₃) δ (ppm):

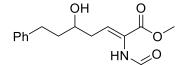
OTES

7.11 – 7.36 (m, 5H), 5.83 (m, 1H), 5.01 (m, 2H), 3.71 – 3.84 (m, 1H), 2.60 - 2.72 (m, 2H), 2.23 – 2.34 (m, 2H), 1.67 – 1.87 (m, 2H), 0.95 - 0.99 (t, 7.9 Hz, 9H), 0.58 – 0,64 (q, 7.9 Hz, 6H).

5-phenyl-3-((triethylsilyl)oxy)pentanal

A solution of protected alcohol (15 mmol, 4.4 g) in DCM (180 mL) and MeOH (45 mL) was cooled at -78°C. O₃ was burbled until the solution was turned pale blue, then O₂ was burbled until the coloration disappeared completely. PPh₃ (17 mmol, 4.3 g) was added, and the mixture was stirred at -78°C for 30 min. The reaction mixture was warmed up to room temperature for 3 hours. Then the solvent was evaporated in vacuo. Purification was done by flash chromatography using cyclohexane/CH₂Cl₂ (6:4) to give a pale vellow oil (4.4 g, 100%).

¹H NMR (400 MHz, CDCl₃) δ (ppm):


9.82 (t, J = 2.4 Hz, 1H), 6.95 - 7.45 (m, 5H), 4.24 - 4.30 (m, 1H), 2.43 - 2.80 (m, 4H), 1.84 - 1.89 (m, 2H), 0.96 (t, J=7.9, 9H), 0.61 (q, J=7.9, 6H).

¹³C NMR (101 MHz, CDCl₃) δ (ppm):

201.8, 141.6, 128.4, 128.2, 125.9, 67.6, 50.9, 39.6, 31.5, 6.8, 4.9. **IR:** 1954, 2876, 1711, 1456, 1413, 1101, 1005, 744, 698.

HRMS: Calculated, C₁₇H₂₈OSiNa: 315.1756; found: 315.1766.

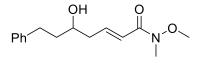
Methyl (Z)-2-formamido-5-hydroxy-7-phenylhept-2-enoate (6d)

methyl 2-(dimethoxyphosphoryl)-2-То а solution of formamidoacetate (2.1 mmol, 466 mg) in dry DCM (5.5 mL) was added DBU (1.9 mmol, 0.29 mL) at 0°C. After 30 minutes of stirring a solution of 5-phenyl-3-((triethylsilyl)oxy)pentanal (1.9 mmol, 550 mg)

in dry DCM was added dropwise at 0°C. The reaction was stirred to room temperature overnight. Then, a solution 1M of H₂SO₄ (10 mL) was added to mixture reaction. This mixture reaction was stirred by 4 hours, the aqueous layer was extracted with ethyl acetate and dried over MgSO₄, filtered and concentered in vaccuo. The crude mixture was purified by column chromatography using $CH_2Cl_2/AcOEt$ (8:2) to obtain the product as yellow oil (410 mg, 79%).

¹H NMR (400 MHz, CDCl₃) δ (ppm):

The presence of two rotamers was observed in NMR spectra in a 0,73 (M):0,27 (m) ratio.


8.26 (m) (d, J = 10.5 Hz, 1H), 8.21 (M) (s, 1H), 7.76 (m) (d, J = 10.5 Hz, 1H), 7.48 (M) (s, 1H), 7.14 -7.33 (m, 5H), 6.82 (M) (t, J = 7.6 Hz, 1H), 6.68 (m) (t, J = 7.6 Hz, 1H), 3.81 – 3.91 (m, 1H), 3.80 (m) (s, 3H) 3.78 (M) (s, 3H), 3.12 (s, 1H), 2.60 – 2.87 (m, 2H), 2.36- 2.45 (m, 2H), 1.79 – 1.86 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm):

164.4 (M), 164.4 (m), 159.5, 141.7, 134.8 (M), 130.8 (m), 128.5, 128.3, 128.3, 126.0, 125.8, 125.2,

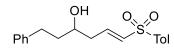
70.5 (m), 69.7 (M), 52.6 (m), 52.5 (M), 39.4 (M), 38.8 (m), 36.6 (M), 35.3 (m), 31.9.

IR: 3380, 2929, 2859, 1721, 1779, 1652, 1495, 1436, 1394, 1282, 1278, 1207, 1057, 911, 748, 966. HRMS: Calculated for: C₁₅H₁₉NNaO₄: 300.1212; found: 300.1206.

(E)-5-hydroxy-N-methoxy-N-methyl-7-phenylhept-2-enamide (8)

To a solution of methyl (E)-5-hydroxy-7-phenylhept-2-enoate 1a (0.85 mmol, 200 mg), imidazole (2.5 mmol, 174 mg) and dry CH_2Cl_2 (2 mL) was added chlorotriethylsilane (1.27 mmol,0.20 mL,) to 0°C. The reaction mixture was stirred for 2 h and heated to room

temperature overnight. The reaction was guenched with MeOH. Water was added and the agueous phase was extracted three times with CH₂Cl₂. The organic phase was washed with brine, dried with anhydrous MgSO₄. The crude protected alcohol was dissolved with dry THF (4 mL) and Me(OMe)NH.HCl (0.86 mmol, 84 mg) at -10 °C, the mixture was treated with LiHMDS (1.7 mL, 1.0 M in THF) 3 min. After stirring for 15 min at -10 °C, the mixture was warmed to rt and stirred for 6 h. The mixture was diluted with Et₂O, washed with saturated NH₄Cl and brine, dried (MgSO₄) and concentrated *in vaccuo*. The crude protected alcohol was dissolved in MeOH/THF (4:1) and a catalytic amount of pyridinium p-toluenesulfonate was added and after stirring over night the reaction mixture was quenched with NaHCO₃. Water was added and the product was extracted with AcOEt, washed with brine and dried over MgSO₄, filtered and concentrated *in vacuo*. The crude product was purified by flash chromatography using AcOEt/CH₂Cl₂ to afford the corresponding weinreb amide as pale yellow oil (60 mg, 27%)


¹H NMR (400 MHz, CDCl₃) δ (ppm):

7.14 – 7.38 (m, 5H), 6.93 – 7.00 (m, 1H), 6.49 (d, *J* = 15.4 Hz, 1H), 3.76 – 3.85 (m, 1H), 3.70 (s, 3H), 3.24 (s, 3H), 2.64 – 2.76 (m, 2H), 2.33 – 2.50 (m, 2H), 1.69 – 2.00 (m, 1H).

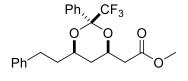
¹³C NMR (101 MHz, CDCl₃) δ (ppm):

166.9, 143.5, 142.1, 128.8, 128.7, 126.2, 122.1, 70.2, 62.0, 41.0, 39.0, 23.2, 32.3. **HRMS:** Calculated for C₁₅H₂₂NO₃: 438.1892; Found: 438.1884

(E)-1-phenyl-6-tosylhex-5-en-3-ol¹³ (10)

To a solution of 1-phenylhex-5-en-3-ol (1.7 mmol, 300 mg) in 3.4 mL of acetonitrile at room temperature was added a solution of freshly prepared tosyl iodide (3.4 mmol, 605 mg) in acetonitrile. The resulting

solution was stirred for 1 h 30 min at room temperature until completion of the reaction and then concentrated to a brown oil. The crude mixture of β -iodosulfones was treated with a solution of DBU (2.0 mmol, 305 mg) in 4 mL of 3:1 toluene/THF at room temperature. The mixture was stirred for 1 h 30 min at room temperature and quenched by the addition of 3 mL of a saturated aqueous NH₄Cl solution. The aqueous phase was extracted 3 times with 5 mL of ether and the combined organic layers were washed with brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. The crude mixture was purified by flash chromatography using CH₂Cl₂ /cyclohexane (8:2) to give the sulfone as white solid (170 mg, 30%).


¹H NMR (400 MHz, CDCl₃) δ (ppm):

7.66 – 7.89 (m, 2H), 7.24 – 7.37 (m, 5H), 7.06 – 7.21 (m, 2H), 6.93 – 7.01 (m, 1H), 6.39 (dt, *J* = 15.1, 1.4 Hz, 1H), 3.77 – 3.81 (m, 1H), 2.65 – 2.81 (m, 2H), 2.43 (s, 3H), 2.36 – 2.42 (m, 2H), 1.67 – 1.87 (m, 2H).

SYNTHESIS OF TRIFLUOROMETHYLATED 1,3 DIOXANES

To a solution of homoallylic alcohol (1 equiv) in THF (0.1 M) at 0°C was added trifluoroacetophenone (1.1 equiv) followed by tBuOK (0.1 equiv) and the resulting mixture was stirred for 15 min at 0°C. A second portion of trifluoroacetophenone and tBuOK was added, after 15 min a third addition was made. The reaction was then stirred at 0°C for 4 hours and quenched with a saturated aqueous NH₄Cl solution. The aqueous phase was extracted 3 times with AcOEt and the combined organic layers were dried over anhydrous MgSO₄, filtered and concentrated *in vaccuo*. The crude residue was then purified by column chromatography.

Methyl 2-((2R*,4R*,6R*)-6-phenethyl-2-phenyl-2-(trifluoromethyl)-1,3-dioxan-4-yl)acetate (2a)

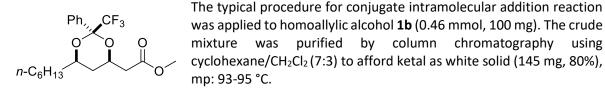
The typical procedure for conjugate intramolecular addition reaction was applied to homoallylic alcohol 1a (0.59 mmol, 140 mg). The crude mixture was purified by column chromatography using cyclohexane/ CH_2Cl_2 (7:3) to afford ketal as white solid (193mg, 79%), mp: 99-101 °C.

using

¹H NMR (300 MHz, CDCl₃) δ (ppm):

7.36 - 7.64 (m, 5H), 7.18 - 7.37 (m, 5H), 4.23 - 4.32 (m, 1H), 3.80 - 3.88 (m, 1H), 3.77 (s, 3H), 2.92 -3.06 (m, 1H), 2.70 – 2.83 (m, 1H), 2.78 (dd, J = 16.1, 8.1 Hz, 1H), 2.51 (dd, J = 16.1, 4.9 Hz, 1H), 1.94 - 2.14 (m, 1H), 1.93 - 1.78 (m, 1H), 1.50 - 1.64 (m, 1H).

¹³C NMR (75 MHz, CDCl₃) δ (ppm):


171.1, 141.7, 132.3, 130.1, 129.3, 129.0, 128.7, 128.6, 126.3, 121.8 (q, J_{C-F} = 284.6 Hz), 98.9 (q, J_{C-F} = 32.0 Hz), 70.4, 67.8, 52.1, 40.7, 37.4, 36.1, 31.4.

¹⁹F NMR (376 MHz, CDCl₃) δ (ppm):

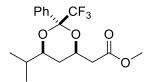
-85.51

IR: 2949, 1738, 1497, 1484, 1398, 1358, 1337, 1217, 1188, 1177, 1109, 1092, 1061, 1032. **HRMS:** Calculated for C₂₂H₂₄F₃O₄: 409.4254; Found: 409.4267.

Methyl 2-((2R*,4R*,6R*)-6-hexyl-2-phenyl-2-(trifluoromethyl)-1,3-dioxan-4-yl)acetate (2b)

¹H NMR (300 MHz, CDCl₃) δ (ppm):

7.37 – 7.65 (m, 5H), 4.15 – 4.36 (m, 1H), 3.61 – 3.78 (m, 1H), 3.74 (s, 3H), 2.74 (dd, J = 16.1, 8.1 Hz, 1H), 2.48 (dd, J = 16.1, 4.9 Hz, 1H), 1.25 – 1.82 (m, 12H), 0.90 (t, J = 6.3 Hz, 1H).

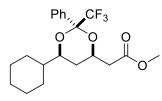

¹³C NMR (75 MHz, CDCl₃) δ (ppm):

171.2, 132.5, 130.0, 129.4, 128.9, 121.78 (q, J_{C-F} = 284.5 Hz), 98.79 (q, J_{C-F} = 31.8 Hz), 71.0, 67.8, 52.1, 40.7, 36.1, 36.0, 32.1, 29.5, 25.1, 22.9, 14.4.

¹⁹F NMR (376 MHz, CDCl₃) δ (ppm):

IR: 2953, 2926, 2856m 2360, 1740, 1330, 1174, 1107, 977, 856, 725. **HRMS:** Calculated for C₂₀H₃₁F₃NO₄: 406.2205; Found: 406.2204.

Methyl 2-((2R*,4S*,6R*)-6-isopropyl-2-phenyl-2-(trifluoromethyl)-1,3-dioxan-4-yl)acetate (2c)


The typical procedure for conjugate intramolecular addition reaction was applied to homoallylic alcohol 1c (0.31 mmol, 53 mg). The crude mixture was purified by column chromatography using petroleum ether/AcOEt (9:1) to afford ketal as white solid (86 mg, 81%)

¹H NMR (400 MHz, CDCl₃) δ (ppm):

7.50 (m, 2H), 7.37 (m, 3H), 4.16 (m, 1H), 3.68 (s, 3H), 3.40 (m, 1H), 2.68 (dd, *J* = 16.1, 8.0 Hz, 1H), 2.42 (dd, *J* = 16.1, 4.9 Hz, 1H), 1.72 (sp, *J* = 6.8 Hz, 1H), 1.44 (m, 2H), 0.99 (d, *J* = 6.8 Hz, 3H), 0.85 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ (ppm): (quaternary carbons were not detected)
170.9, 132.3, 129.7, 129.1, 128.7, 75.4, 67.6, 51.8, 40.6, 32.8, 18.0, 17.8.
MS (Cl): 347.4 (M + H⁺, 68%).
IR: 2893, 1744, 1443, 1380, 1327, 1240, 1185, 1103, 1057.

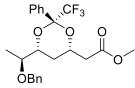
Methyl 2-((2R*,4S*,6R*)-6-cyclohexyl-2-phenyl-2-(trifluoromethyl)-1,3-dioxan-4-yl)acetate (2d)

The typical procedure for conjugate intramolecular addition reaction was applied to homoallylic alcohol **1d** (0.66 mmol, 140 mg). The crude mixture was purified by column chromatography using pentane/AcOEt (9:1) to afford ketal as white solid (210 mg, 82%), mp: 94-96 °C.

¹H NMR (300 MHz, CDCl₃) δ (ppm):

7.37 – 7.75 (m, 5H), 4.17 – 4.33 (m, 1H), 3.76 (s, 3H), 3.49 – 3.56 (m, 1H,), 2.78 (dd, *J* = 16.1, 8.1 Hz, 1H), 2.51 (dd, *J* = 16.1, 4.8 Hz, 1H), 0.95 - 1.88 (m, 11H).

¹³C NMR (75 MHz, CDCl₃) δ (ppm):


171.1, 132.5, 130.0, 129.4, 128.9, 121.8 (q, *J*_{C-F} = 284.7 Hz), 98.7 (q, *J*_{C-F} = 31.8 Hz), 75.0, 67.9, 52.0, 42.6, 40.8, 33.2, 28.7, 28.2, 26.6, 26.2, 26.0.

¹⁹F NMR (376 MHz, CDCl₃) δ (ppm):

-85.59.

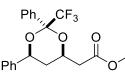
IR: 2926, 2368, 1743, 1327, 1176, 1114, 1062, 979, 729 **HRMS:** Calculated for C₂₀H₂₅F₃NaO₄: 409.1603; Found: 409.1618.

Methyl 2-((2*R*,4*S*,6*R*)-6-((S)-1-(benzyloxy)ethyl)-2-phenyl-2-(trifluoromethyl)-1,3-dioxan-4yl)acetate. (2e)

The typical procedure for conjugate intramolecular addition reaction was applied to homoallylic alcohol **1e** (0.24 mmol, 65 mg). The crude mixture was purified by column chromatography using cyclohexane/CH₂Cl₂ (1:9) to afford ketal as pale yellow oil (75 mg, 70%). [α] $_{\rm D}$ ^{24.3} = -6.5 (c=0.01 g/mL in CHCl₃).

¹H NMR (300 MHz, CDCl₃) δ (ppm):

7.24 – 7.69 (m, 10H), 4.61 – 4.72(m, 2H), 4.26 – 4.34 (m, 1H), 3.78 (s, 3H), 3.53 – 3.75 (m, 2H), 2.80 (dd, J = 16.2, 8.1 Hz, 1H), 2.54 (dd, J = 16.2, 4.7 Hz, 1H), 1.59 – 1.82 (m, 2H), 1.33 (d, J = 6.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm):


171.1, 138.7, 131.9, 130.2, 129.4, 129.0, 128.7, 128.0, 127.9, 121.7 (*J*_{C-F} =283. Hz), 98.7 (*J*_{C-F} =32 Hz), 76.5, 74.1, 71.8, 67.8, 52.1, 40.8, 31.6, 16.4.

¹⁹F NMR (376 MHz, CDCl₃) δ (ppm):

-85.52.

IR: 2929, 2357, 1739, 1450, 1436, 1332, 1224, 1188, 1107, 983, 7725. HRMS: Calculated for $C_{23}H_{29}F_3NO_5$: 456.1996; Found: 456.1998.

Methyl 2-((2R*,4S*,6R*)-2,6-diphenyl-2-(trifluoromethyl)-1,3-dioxan-4-yl)acetate (2f)

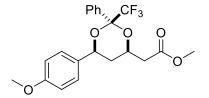
The typical procedure for conjugate intramolecular addition reaction was applied to homoallylic alcohol **1f** (0.67 mmol, 140 mg). The crude mixture was purified by column chromatography using pentane/AcOEt (9:1) to afford ketal as white solid (173 mg, 67%; 80% brsm), mp: 116-118 °C.

¹H NMR (300 MHz, CDCl₃) δ (ppm):

7.27 – 7.74 (m, 5H), 4.81 – 4,86 (m, 1H), 4.38 – 4.52 (m, 1H), 3.74 (s, 3H), 2.80 (dd, *J* = 16.2, 8.1 Hz, 1H), 2.52 (dd, *J* = 16.2, 4.9 Hz, 1H), 1.80 (m, 2H).

¹³C NMR (75 MHz, CDCl₃) δ (ppm):

171.0, 140.5, 132.0, 130.3, 129.4, 129.2, 128.9, 128.5, 126.0, 121.7 (q, *J*_{C-F} = 284.5 Hz), 99.2 (q, *J*_{C-F} = 32.2 Hz), 72.8, 68.0, 52.2, 40.6, 38.1.


¹⁹F NMR (376 MHz, CDCl₃) δ (ppm):

-85.49.

IR: 2924, 1722, 1328, 1190, 1161, 1116, 1051, 719.

HRMS: Calculated for C₂₀H₂₃F₃NO₄: 398.1579; Found: 398.1567.

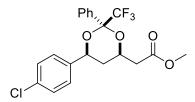
Methyl 2-((2*R**,4*S**,6*R**)-6-(4-methoxyphenyl)-2-phenyl-2-(trifluoromethyl)-1,3-dioxan-4yl)acetate (2g)

The typical procedure for conjugate intramolecular addition reaction was applied to homoallylic alcohol **1g** (0.42 mmol, 100 mg). The crude mixture was purified by column chromatography using cyclohexane/CH₂Cl₂ (7:3) to afford ketal as white solid (125mg, 70%), mp: 81-83°C.

¹H NMR (300 MHz, CDCl₃) δ (ppm):

7.65 (d, *J* = 6.4 Hz, 2H), 7.48 (d, *J* = 6.4 Hz, 3H), 7.32 (d, *J* = 8.6 Hz, 2H), 6.92 (d, *J* = 8.6 Hz, 2H), 4.77 (dd, *J* = 10.9, 2.8 Hz, 1H), 4.39 - 4.45 (m, 1H), 3.81 (s, 3H), 3.74 (s, 3H), 2.80 (dd, *J* = 16.2, 8.0 Hz, 1H), 2.52 (dd, *J* = 16.2, 4.9 Hz, 1H), 1.63 - 1.98 (m, 2H).

¹³C NMR (75 MHz, CDCl₃) δ (ppm):


171.0, 159.8, 132.6, 132.1, 130.2, 129.4, 129.1, 127.5, 114.2, 121.76 (q, *J*_{C-F} =284.6 Hz), 99.2 (q, *J*_{C-F} = 32.1 Hz), 72.6, 68.1, 55.5, 52.1, 40.6, 38.0.

¹⁹F NMR (376 MHz, CDCl₃) δ (ppm):

-85.50.

IR: 2953, 1739, 1614, 1450, 1385, 1263, 1164, 1105, 1031, 979. **HRMS:** Calculated for C₂₁H₂₅F₃NO_{5:} 428.1685; Found: 428.1690.

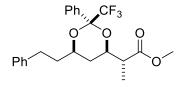
Methyl 2-((2*R**,4*S**,6*R**)-6-(4-chlorophenyl)-2-phenyl-2-(trifluoromethyl)-1,3-dioxan-4-yl)acetate (2h)

The typical procedure for conjugate intramolecular addition reaction was applied to homoallylic alcohol **1h** (0.42 mmol, 100 mg). The crude mixture was purified by column chromatography using cyclohexane/CH₂Cl₂ (7:3) to afford ketal as white solid (110 mg, 63%), mp: 127-129°C.

¹H NMR (300 MHz, CDCl₃) δ (ppm):

7.20 – 7.79 (m, 9H), 4.64 – 4.98 (m, 1H), 4.40 – 4.45 (m, 1H), 3.75 (s, 3H), 2.80 (dd, *J* = 16.3, 7.9 Hz, 1H), 2.56 (dd, *J* = 16.3, 5.0 Hz, 1H), 1.76 (m, 2H).

¹³C NMR (75 MHz, CDCl₃) δ (ppm):


170.8, 139.0, 134.3, 131.9, 130.4, 129.3, 129.2, 129.1, 127.4, 121.4 (q, *J*_{C-F} =283.8 Hz), 99.4 (q, *J*_{C-F} = 32.1 Hz), 72.3, 68.1, 52.1, 40.6, 38.1.

¹⁹F NMR (376 MHz, CDCl₃) δ (ppm):

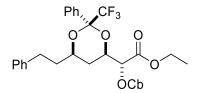
-85.48

IR: 1724, 1490, 1440, 1330, 1226, 1192, 1174, 1161, 1122, 1083, 1014, 985, 829. **HRMS:** Calculated for C₂₀H₂₂ClF₃NO₄: 432.1189; Found: 432.1200.

Methyl $2-((2R^*, 4R^*, 6R^*)-6-phenethyl-2-phenyl-2-(trifluoromethyl)-1, 3-dioxan-4-yl)propanoate (7a)$

To a solution of homoallylic alcohol (0.14 mmol, 36 mg) in THF (1 mL) at 0°C were added trifluoroacetophenone (0.59 mmol, 80 μ L) and *t*BuOK in THF (0.10 mmol, 0.10 mL). The mixture was warmed to room temperature and stirred for 3 days. The mixture was quenched with a saturated aqueous solution of NH₄Cl (2 mL) and diluted with diethyl ether and water. The aqueous phase was then extracted with diethyl

ether. The combined organic extracts were dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. The crude mixture was analysed by ¹H NMR and revealed a mixture of **7d** (50%), the two diastereoisomers **7d**['] and **7d**^{''} (4.5:1, 27% conversion by NMR) the hemiacetal (7.1% by NMR) and the elimination product (15% by NMR). The crude mixture was purified by column chromatography using petroleum ether/AcOEt (9:1) to afford a mixture of two inseparable *syn*-diastereoisomers. ¹H NMR (400 MHz, CDCl₃) δ (ppm):


7.39-7.42 (m, 2H), 7.33-7.37 (m, 3H), 7.20-7.24 (m, 2H), 7.11-7.16 (m, 3H), 3.87 (ddd, *J* = 11.4, 7.2, 2.4 Hz, 1H), 3.68-3.74 (m, 1H), 3.62 (s, 3H), 2.84-2.92 (m, 1H), 2.62-2.69 (m, 1H), 2.57 (dq, *J* = 7.2, 7.1 Hz, 1H), 1.89-1.97 (m, 1H), 1.72-1.80 (m, 1H), 1.42-1.55 (m, 1H), 1.32-1.37 (m, 1H, H-4), 1.30 (d, *J* = 7.1 Hz, 2.45H, **7d**^{''}), 1.05 (d, *J* = 7.1 Hz, 0.55H **7d**[']).

¹³C NMR (101 MHz, CDCl₃) δ (ppm):

174.7, 174.1, 141.42, 132.2, 129.8, 129.1, 129.0, 128.7, 128.5, 128.4, 126.0, 121.5, (q, *J* = 283 Hz), 98.5 (q, *J* = 32 Hz), 72.0, 71.6, 70.2, 70.1, 51.8, 44.9, 37.3, 37.2, 34.1, 33.1, 31.1, 12.8, 12.4. **IR:** 3028, 2990, 2953, 2886, 2361, 2332, 1736, 1497, 1452, 1435, 1387, 1362, 1329, 1263, 1225, 1188, 1123, 1105, 1063.

HRMS (EI): Calculated. for C₂₃H₂₅F₃O₄: 422.4443; Found: 422.4457.

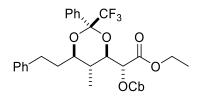
Ethyl (*R**)-2-((diisopropylcarbamoyl)oxy)-2-((2*R**,4*S**,6*R**)-6-phenethyl-2-phenyl-2-(trifluoromethyl)-1,3-dioxan-4-yl) acetate (7b)

The typical procedure for conjugate intramolecular addition reaction was applied to homoallylic alcohol **6a** (0.23 mmol, 90 mg). The crude mixture was purified by column chromatography using cyclohexane: CH_2Cl_2 (9:1) to afford ketal as pale yellow oil (70 mg, 54 %; 80 % brsm).

¹H NMR (300 MHz, CDCl₃) δ (ppm):

7.13 – 7.61 (m, 10H), 5.17 (d, *J* = 3.3 Hz, 1H), 4.09 – 4.34 (m, 4H), 3.67 – 3.95 (m, 2H), 2.89 - 3.12 (m, 1H), 2.69 - 2.79 (m, 1H), 1.78 - 2.18 (m, 2H), 1.16 – 1.47 (m, 17H).

¹³C NMR (75 MHz, CDCl₃) δ (ppm):


168.3, 154.8, 141.5, 131.9, 130.2, 129.2, 129.1, 128.7, 128.6, 126.3, 121.6 (J_{C-F} =283. Hz), 98.8 (J_{C-F} =32.2. Hz) 74.8, 70.9, 70.4, 61.8, 47.3, 45.8, 37.5, 31.8, 31.3, 21.7, 21.6, 14.4.

¹⁹F NMR (376 MHz, CDCl₃) δ (ppm):

-85.34

IR: 2970, 2933, 2356, 2341, 1734, 1697, 1558, 1506, 1436, 1301, 1188, 1120, 1064, 1031, 763, 723 **HRMS:** Calculated for C₃₀H₃₈F₃NO₅: 566.2729; Found: 566.2736.

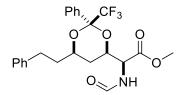
Ethyl (R^*) -2-((diisopropylcarbamoyl)oxy)-2-(($2R^*$, $4R^*$, $5R^*$, $6R^*$)-5-methyl-6-phenethyl-2-phenyl-2-(trifluoromethyl)-1,3-dioxan-4-yl)acetate (7c)

The typical procedure for conjugate intramolecular addition reaction was applied to homoallylic alcohol **6b** (0.19 mmol, 76 mg). The crude mixture was purified by column chromatography using cyclohexane/CH₂Cl₂ (9:1) to afford ketal as pale yellow oil (101 mg, 90 %).

¹H NMR (300 MHz, CDCl₃) δ (ppm):

7.13 – 7.64 (m, 10H), 5.29 (d, *J* = 1.6 Hz, 1H), 4.07 – 4.40 (m, 3H), 3.86 (brs, 1H), 3.84 (dd, *J* = 10.8, 1.6 Hz, 1H), 3.43 (m, 1H), 3.00 – 3.17 (m, 1H), 2.67 – 2.88 (m, 1H), 2.14 – 2.40 (m, 1H), 1.74 – 1.94 (m, 2H), 1.18 – 1.54 (m, 15H), 0.82 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ (ppm):


167.9, 154.9, 141.9, 131.9, 130.2, 129.2, 129.0, 128.8, 128.7, 126.3, 123.2 (*J*_{C-F} =284.7 Hz), 98.3 (*J*_{C-F} =32.1 Hz), 77.1, 75.5, 73.3, 61.7, 47.3, 46.0, 34.6, 34.4, 31.3, 21.8, 21.4, 14.4, 11.9.

¹⁹F NMR (376 MHz, CDCl₃) δ (ppm):

-85.54.

IR: 2970, 2929, 2343, 1734, 1697, 1456, 1436, 1369, 1300, 1190, 1122, 1083, 981, 762, 731. **HRMS:** Calculated for C₃₁H₄₁F₃NO₆: 580.2886; Found: 580.2892.

Methyl (*R**)-2-formamido-2-((2*R**,4*S**,6*S**)-6-phenethyl-2-phenyl-2-(trifluoromethyl)-1,3-dioxan-4-yl)acetate (7d)

To a solution of homoallylic alcohol **6d** (0.29 mmol, 80 mg, 1 equiv) in THF (0.1 M) at 0°C was added trifluoroacetophenone (0.32 mmol, 0.045 mL, 1.1 equiv) followed by *t*BuOK (0.32 mmol, 35 mg, 1.1 equiv) and the resulting mixture was stirred for 15 min at 0°C. A second portion of trifluoroacetophenone (1.1 equiv) and *t*BuOK (0.1 equiv) was added, after 15 min a third portion of trifluoroacetophenone (1.1

equiv) and tBuOK (0.1 equiv) was made. The resulting mixture was then stirred at 0°C for 4 h 30 min and quenched with a saturated aqueous NH_4Cl solution. The aqueous phase was extracted 3 times with AcOEt and the combined organic layers were dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. The crude residue was then purified by column chromatography using CH₂Cl₂/AcOEt (9:1) to give the product as white solid (101 mg, 85%).

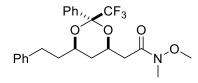
¹H NMR (400 MHz, CDCl₃) δ (ppm):

After purification, the presence of two isomers was observed in the NMR spectra, in a [0.75(M):0.25(m)] ratio.

8.41(M) (s, 1H), 8.28 (m) (s, 1H) 7.11 – 7.51 (m, 10H), 6.71 (m) (d, *J* = 4.2 Hz, 1H), 6.47 (M) (d, *J* = 9.5 Hz, 1H), 4.85 (M) (dd, *J* = 9.5, 2.1 Hz, 1H), 4.74 (m) (dd, *J* = 9.5, 3.1 Hz, 1H), 4.44 (M) (dt, *J* = 10.2, 2.1

Hz, 1H), 4.07 (m) (dt, 1H, 10.2, 2.1 Hz), 3.89 (M) (s, 3H), 3.86 (m) (s, 1H), 3.75 – 3.93 (m, 1H), 2.88 - 2,96 (m, 2H), 1.85 – 2.06 (m, 2H), 1.55 – 1.71 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ (ppm):


169.7 (M), 169.2 (m), 161.6, (M), 160.7 (m), 141.4 (m), 141.3 (M), 131.7 (m), 131.6 (M), 130.1, 128.8, 128.7, 128.6, 128.4, 128.2, 126.0, 121.5 (q, J_{C-F} = 285.4 Hz), 98.8 (q, J = 32.3 Hz), 72.5 (m), 71.2 (M), 70.6, 70.2 (M), 54.8 (m), 53.5 (M), 53.1 (M), 53.1 (m), 37.3 (m), 37.2 (M), 32.8 (m), 82.3 (M), 31.3 (m), 31,2 (M).

¹⁹F NMR (376 MHz, CDCl₃) δ (ppm):

-85.63 (m), -85.90 (M)

IR: 3315, 2953, 3029, 1749, 1666, 1540, 1326, 1192, 1120, 985 HRMS: Calculated for $C_{23}H_{24}F_{3}NO_5Na$: 474.1504; Found: 474.1503.

N-methoxy-*N*-methyl-2-((2R*,4R*,6R*)-6-phenethyl-2-phenyl-2-(trifluoromethyl)-1,3-dioxan-4-yl)acetamide (9)

The typical procedure for conjugate intramolecular addition reaction was applied to (*E*)-5-hydroxy-*N*-methoxy-*N*-methyl-7-phenylhept-2-enamide **8** (0.19 mmol, 50 mg). The crude mixture was purified by column chromatography using pentane/AcOEt (7:3) to afford ketal as pale yellow oil (67 mg, 80 %).

¹H NMR (300 MHz, CDCl₃) δ (ppm):

7.72 – 7.07 (m, 10H), 4.21 – 4.47 (m, 1H), 3.75 – 3.84 (m, 1H), 3.75 (s, 3H), 3.23 (s, 3H), 2.89 - 3.11 (m, 2H), 2.73 (dd, *J* = 15.7, 8.2 Hz, 1H), 2.46 (dd, *J* = 15.7, 5.1 Hz, 1H,), 1.94 – 2.09 (m, 1H), 1.77 – 1.88 (m, 1H), 1.52 – 1.61 (m, 2H).

¹³C NMR (75 MHz, CDCl₃) δ (ppm):

171.2, 141.8, 132.4, 130.0, 129.4, 129.0, 128.7, 128.6, 126.33, 121.9 (q, J_{C-F} = 280.1 Hz), 98.9 (q, J_{C-F} = 31.9 Hz). 70.6, 68.3, 61.7, 38.2, 37.6, 36.5, 32.4, 31.4.

¹⁹F NMR (376 MHz, CDCl₃) δ (ppm):

-88.44.

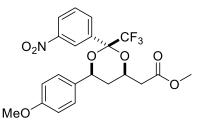
IR: 2939, 1682, 1477, 1464, 1378, 1363, 1337, 1223, 1138, 1116, 1132, 1033, 1001. **HRMS:** Calculated for C₂₃H₂₇F₃NO₄: 438.1892; Found: 438.1884

(2R*,4R*,6R*)-4-phenethyl-2-phenyl-6-(tosylmethyl)-2-(trifluoromethyl)-1,3-dioxane (11)

The typical procedure for conjugate intramolecular addition reaction was applied to (E)-1-phenyl-6-tosylhex-5-en-3-ol **10** (0.15 mmol, 50 mg). The crude mixture was purified by column chromatography using Pentane/AcOEt (9:1) to afford ketal as pale yellow oil (58 mg, 76%).

¹H NMR (300 MHz, CDCl₃) δ (ppm):

7.84 (d, *J* = 8.3 Hz, 2H), 7.11 – 7.57 (m, 12H), 4.36 – 4.43 (m, 1H), 3.76 - 3.82 (m, 1H), 3.59 (dd, *J* = 14.7, 6.8 Hz, 1H), 3.24 (dd, *J* = 14.7, 4.8 Hz, 1H), 2.79 - 3.07 (m, 1H), 2.66 – 2.72 (m, 1H), 2.46 (s, 3H), 1.92 - 2.02 (m, 1H), 1.75 – 1.87 (m, 1H), 1.57 - 1.59 (m, 2H).


¹³C NMR (75 MHz, CDCl₃) δ (ppm):

145.2, 141.5, 137.6, 131.6, 130.2, 129.1, 128.8, 128.6, 128.2, 126.4, 99.0 (q, J_{CF} = 32 Hz), 70.2, 66.3, 61.8, 37.3, 36.3, 31.2, 21.9.

¹⁹F NMR (376 MHz, CDCl₃) δ (ppm):

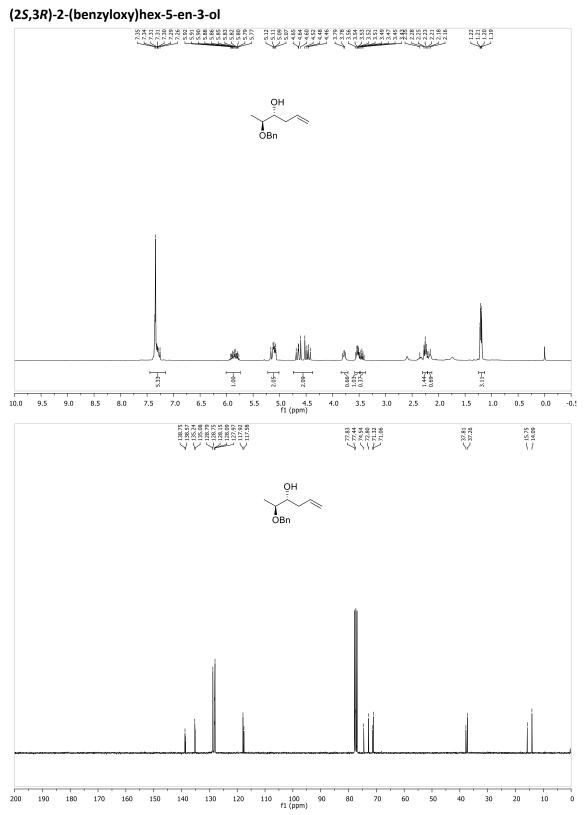
-85.43.

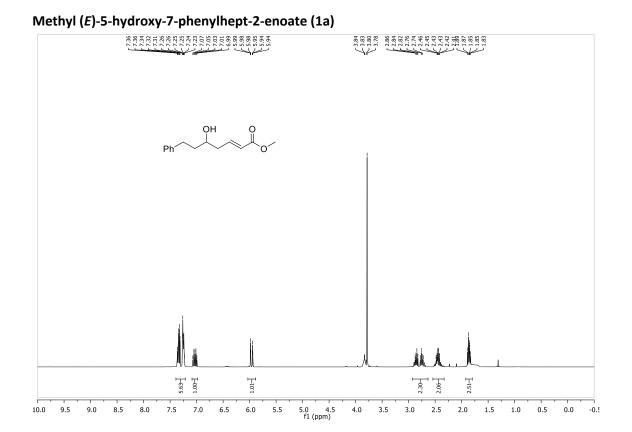
IR: 2933, 1602, 1333, 1358, 1217, 1138, 1177, 1111, 1009, 1022 **HRMS:** Calculated for C₂₇H₃₁F₃NO₄S: 522.1926; found: 522.1927 Methyl 2-((2S*,4R*,6S*)-6-(4-methoxyphenyl)-2-(3-nitrophenyl)-2-(trifluoromethyl)-1,3-dioxan-4-yl)acetate (13)

The typical procedure for conjugate intramolecular addition reaction was applied to homoallylic alcohol **1g** (0.21 mmol, 50 mg) and *m*-nitrotrifluoracetophenone¹⁴. The crude mixture was purified by column chromatography using cyclohexane/CH₂Cl₂ (1:1) to afford ketal as pale yellow oil (57 mg, 60 %).

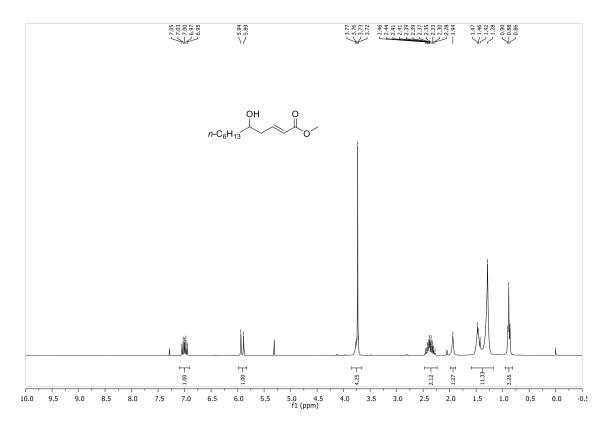
¹H NMR (300 MHz, CDCl₃) δ (ppm):

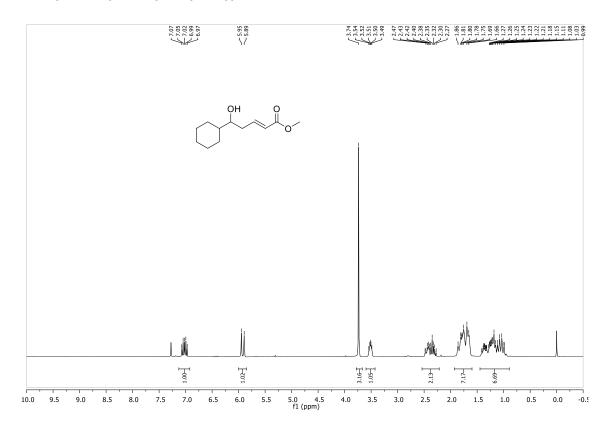
8.53 (s, 1H), 8.35 (d, *J* = 8.1 Hz, 1H), 8.03 (d, *J* = 7.7 Hz, 1H), 7.72 (d, *J* = 8.0 Hz, 1H), 7.31 (d, *J* = 8.6 Hz, 2H), 6.86 - 7.06 (m, 2H), 4.55 - 4.83 (m, 1H), 4.34 - 4.38 (m, 1H), 3.83 (s, 3H), 3.81 (s, 3H), 2.83 (dd, *J* = 16.5, 8.6 Hz), 2.55 (dd, *J* = 16.5, 4.1 Hz, 1H), 1.75 - 1.91 (m, 2H).


¹³C NMR (75 MHz, CDCl₃) δ (ppm):

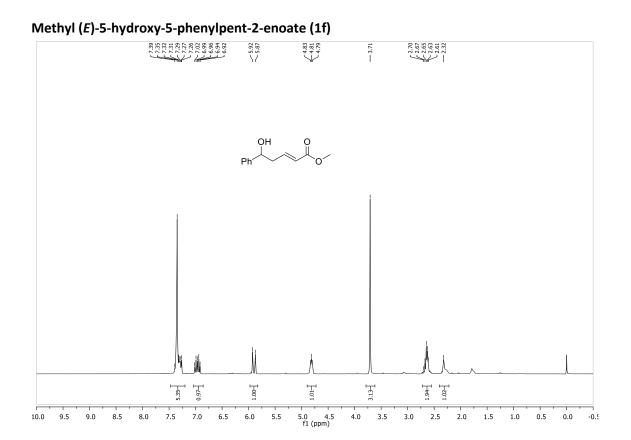

170.7, 160.2, 149.4, 135.6, 135.0, 131.8, 130.4, 127.6, 125.4, 124.7, 121.4 (q, *J*_{C-F}= 284.9 Hz), 114.5, 98.3 (q, *J*_{C-F}= 32.6 Hz), 73.3, 68.6, 55.7, 52.4, 40.6, 37.8.

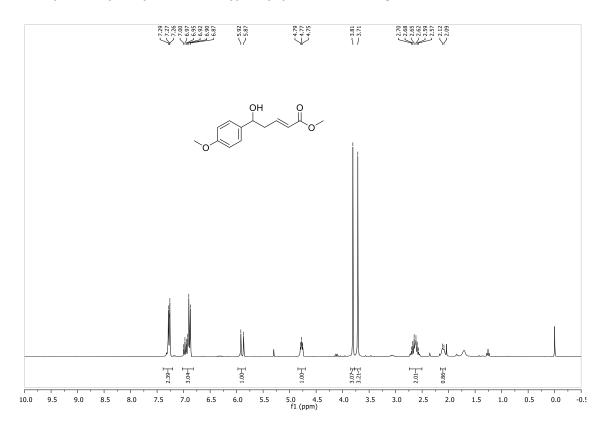
¹⁹F NMR (376 MHz, CDCl₃) δ (ppm):


-85.26.

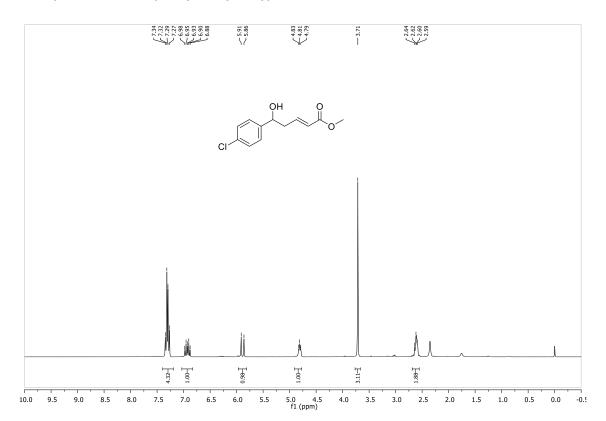

IR: 2960, 1745, 1632, 1618, 1532, 1450, 1355, 1320, 1282, 1142, 1105, 1033, 965. **HRMS:** Calculated for C₂₁H₂₄F₃N₂O₇: 473.1536; Found: 473.1538. **COPY OF NMR SPECTRA**

Methyl (E)-5-hydroxyundec-2-enoate (1b)

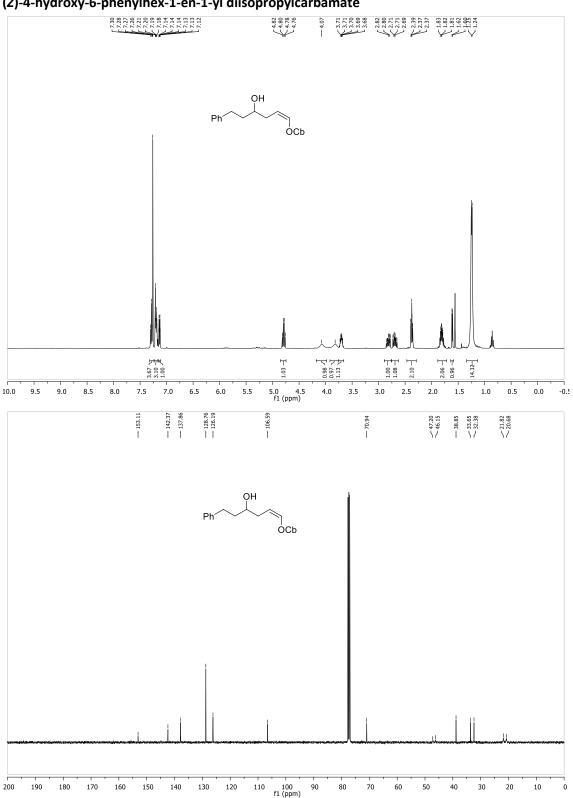




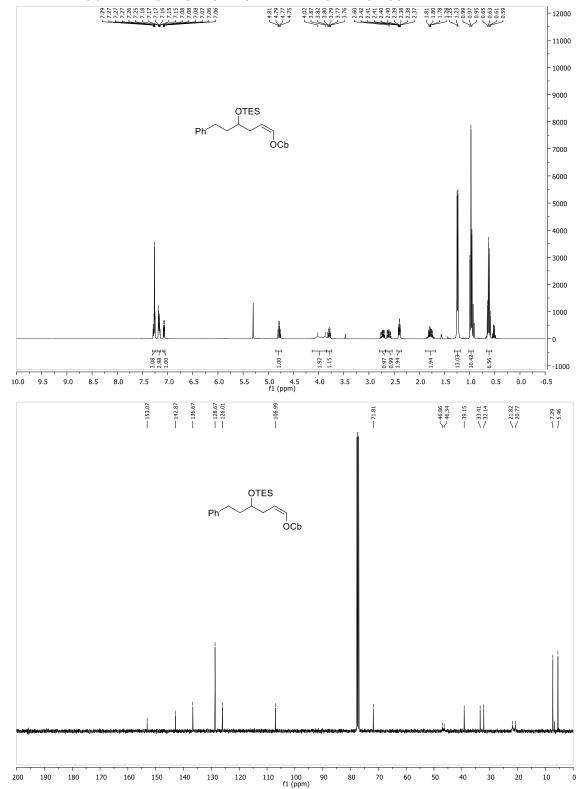
Methyl (E)-5-cyclohexyl-5-hydroxypent-2-enoate (1d)



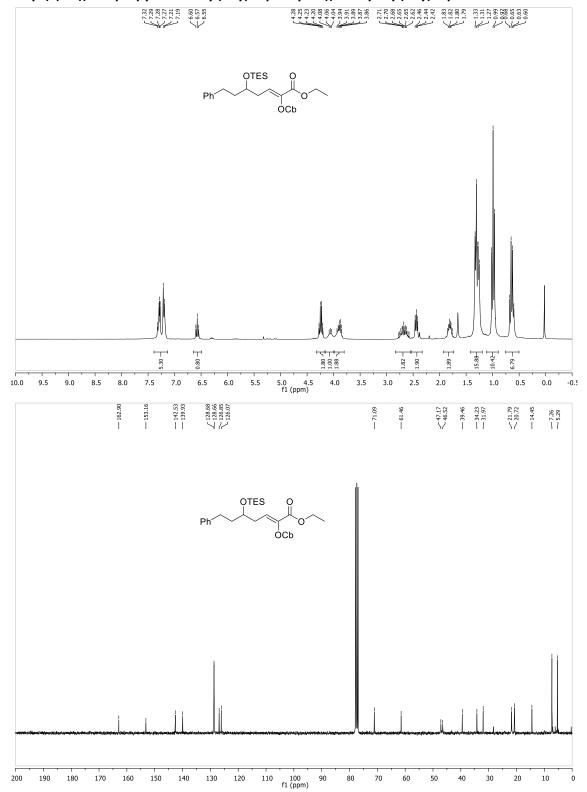
Methyl (5*R*,6*S*,*E*)-6-(benzyloxy)-5-hydroxyhept-2-enoate (1e)

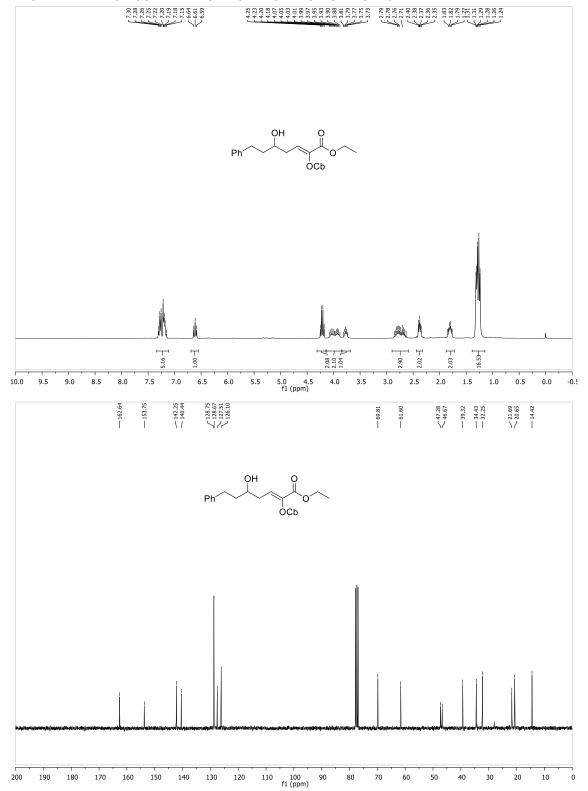


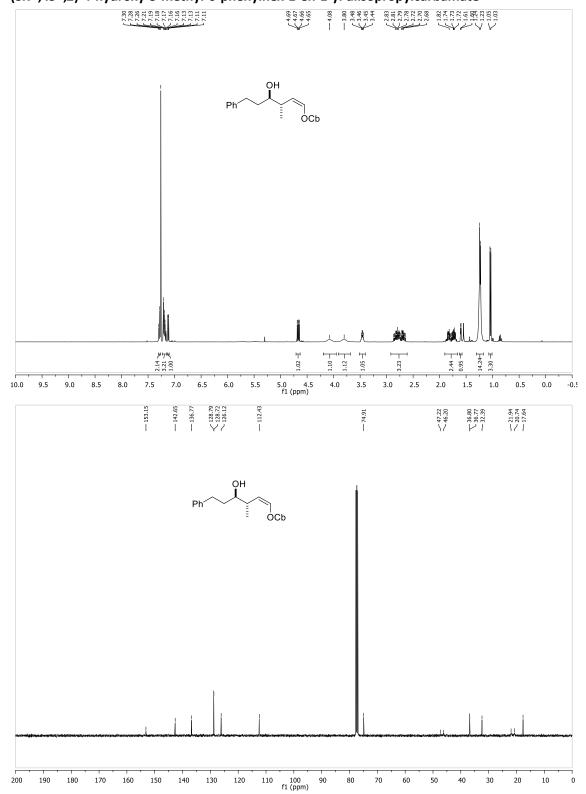
Methyl (E)-5-hydroxy-5-(4-methoxyphenyl)pent-2-enoate (1g)

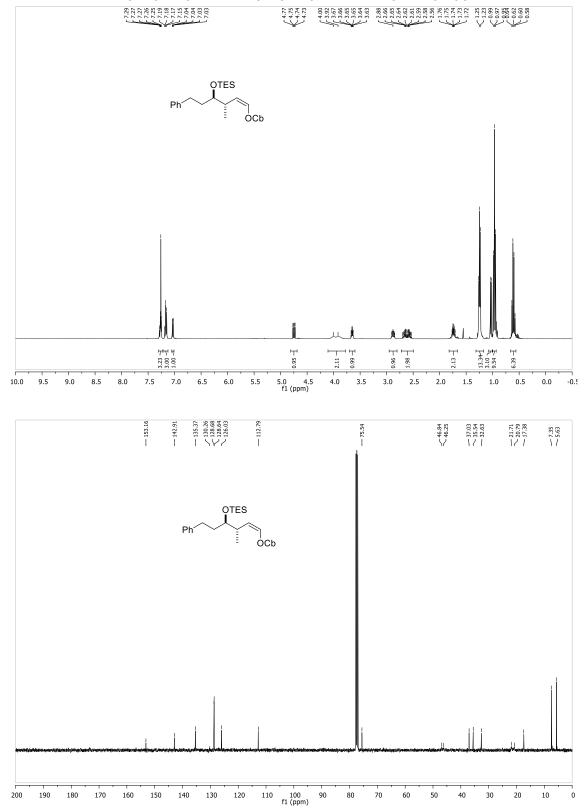


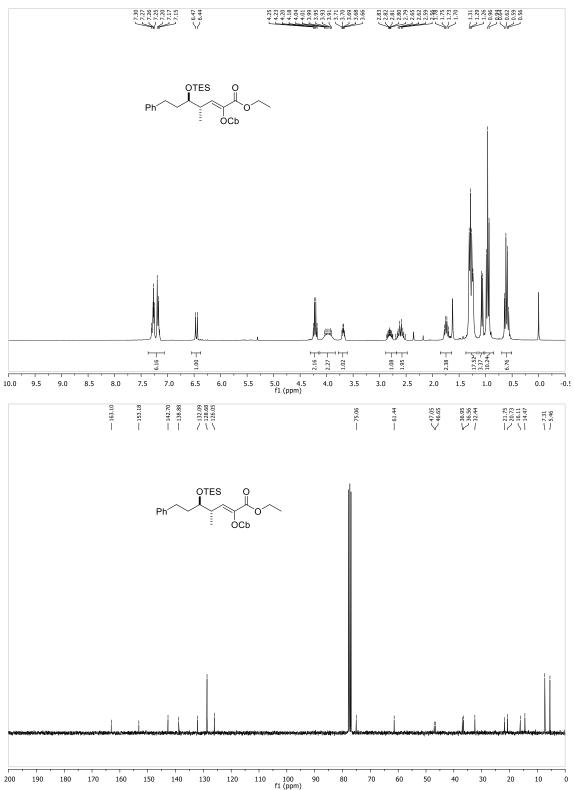
Methyl (E)-5-(4-chlorophenyl)-5-hydroxypent-2-enoate (1h)

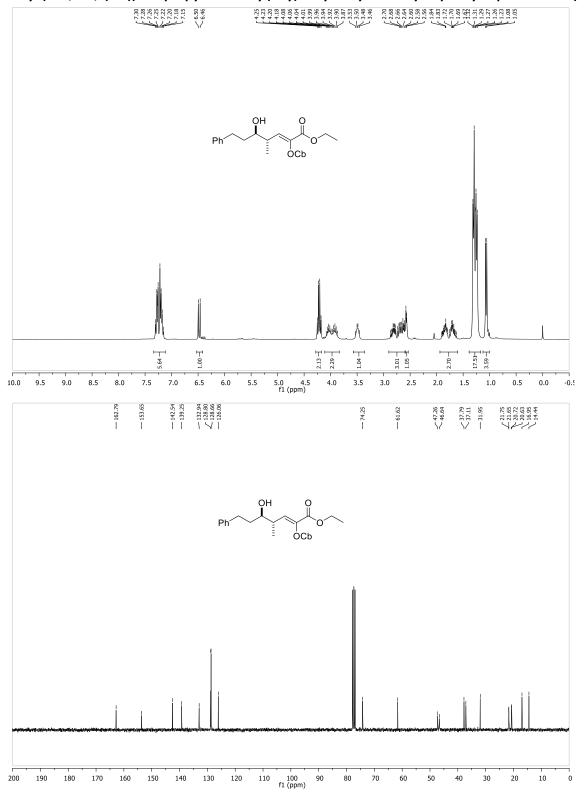

SYNTHESIS OF O-CARBAMATES


(Z)-4-hydroxy-6-phenylhex-1-en-1-yl diisopropylcarbamate

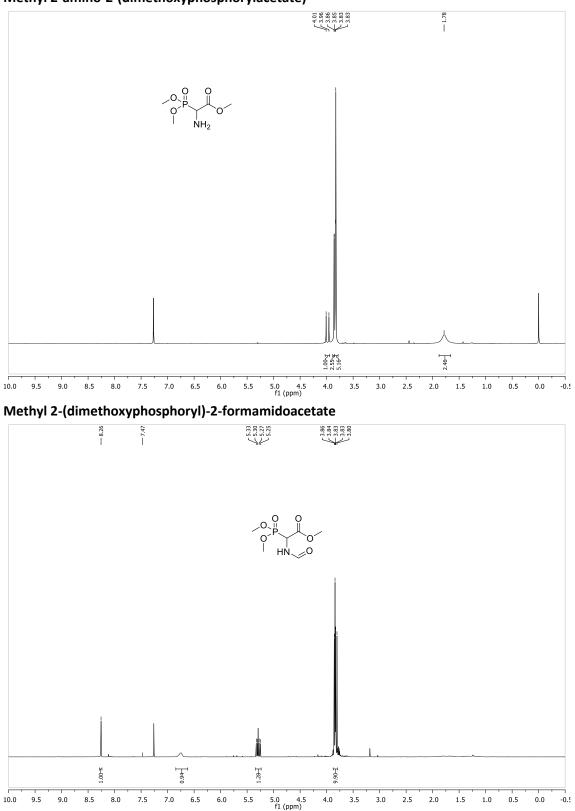

(Z)-4-((3-ethylpentan-3-yl)oxy)-6-phenylhex-1-en-1-yl diisopropylcarbamate


Ethyl (Z)-2-((diisopropylcarbamoyl)oxy)-7-phenyl-5-((triethylsilyl)oxy)hept-2-enoate

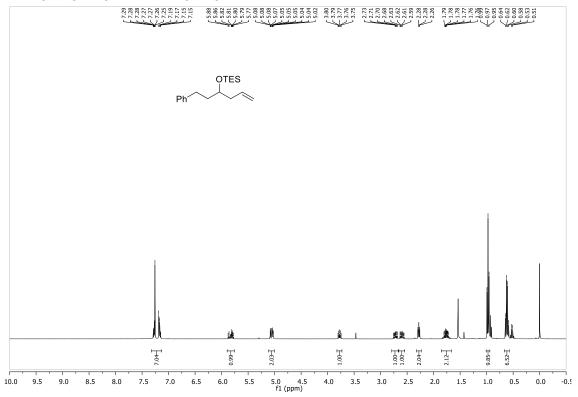

Ethyl (Z)-2-((diisopropylcarbamoyl)oxy)-5-hydroxy-7-phenylhept-2-enoate (6b)


(3R*,4S*,Z)-4-hydroxy-3-methyl-6-phenylhex-1-en-1-yl diisopropylcarbamate

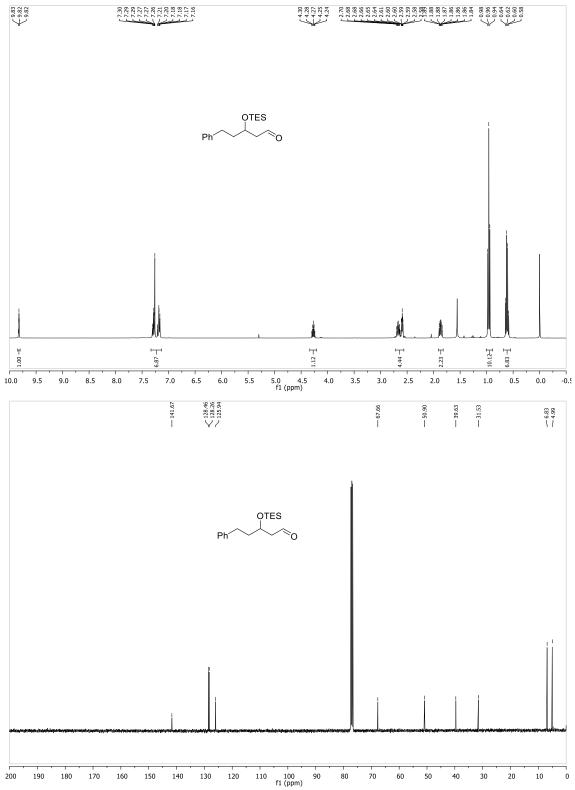
(3R*,4S*,Z)-3-methyl-6-phenyl-4-((triethylsilyl)oxy)hex-1-en-1-yl diisopropylcarbamate

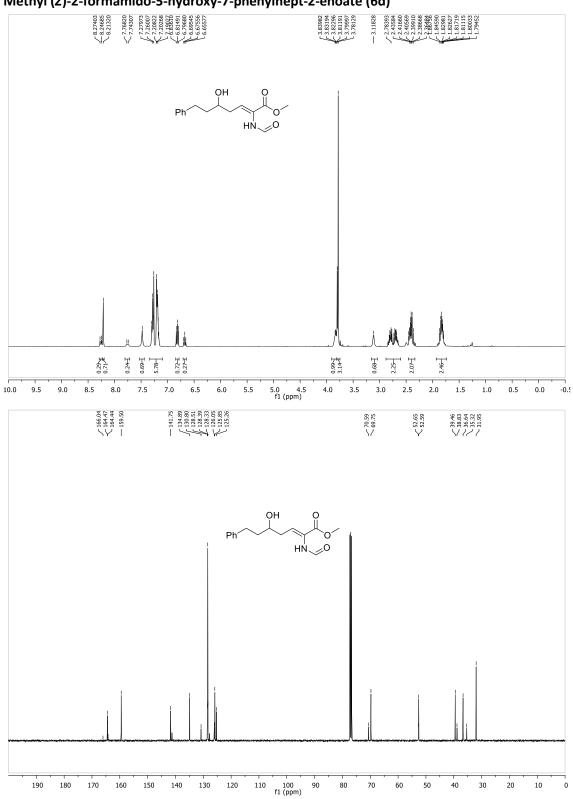


Ethyl (4*R**,5*S**,*Z*)-2-((diisopropylcarbamoyl)oxy)-4-methyl-7-phenyl-5-((triethylsilyl)oxy)hept-2-enoate


Ethyl (4R*,5S*,Z)-2-((diisopropylcarbamoyl)oxy)-5-hydroxy-4-methyl-7-phenylhept-2-enoate (6c)

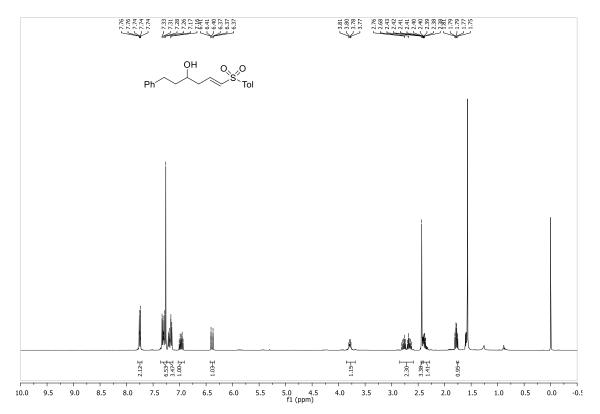
SYNTHESIS OF N-CARBAMATE

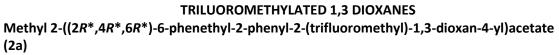


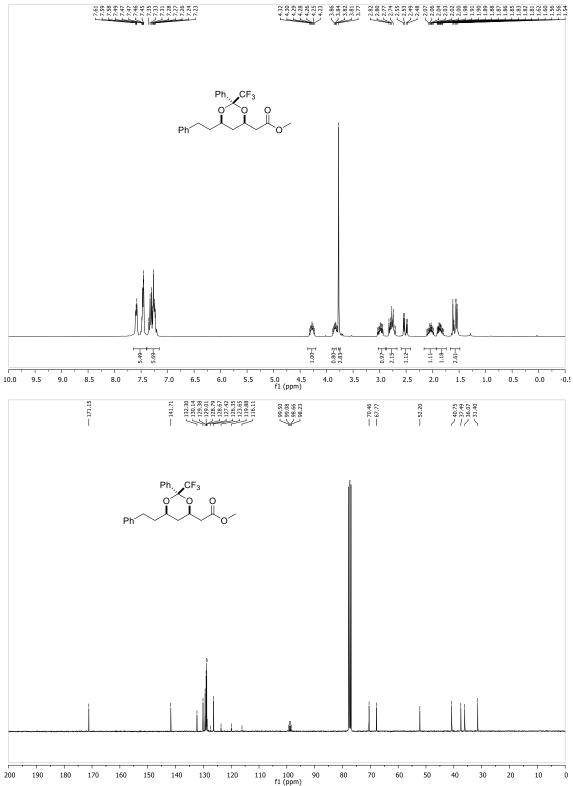


Triethyl((1-phenylhex-5-en-3-yl)oxy)silane

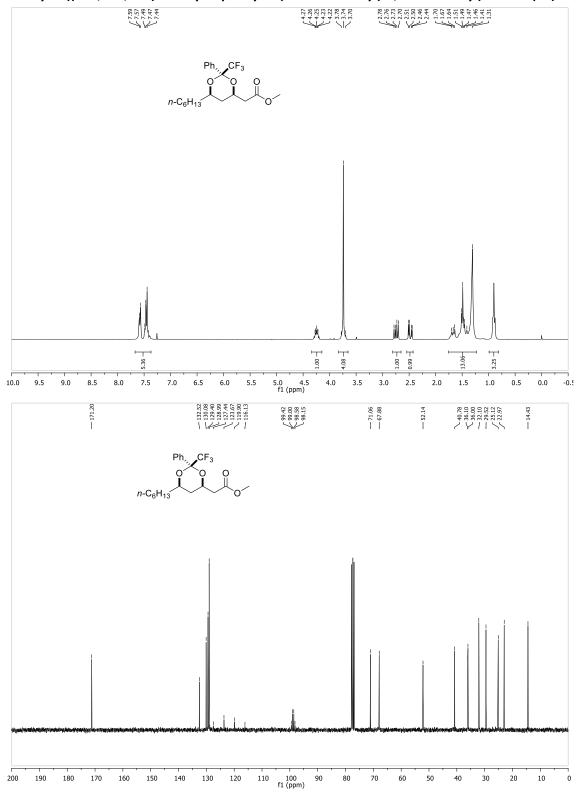
5-Phenyl-3-((triethylsilyl)oxy)pentanal

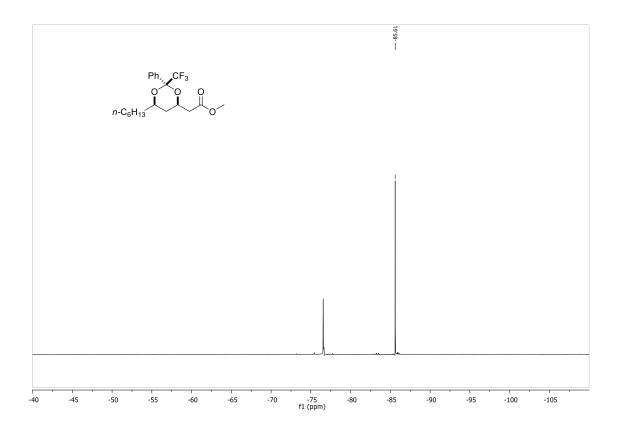


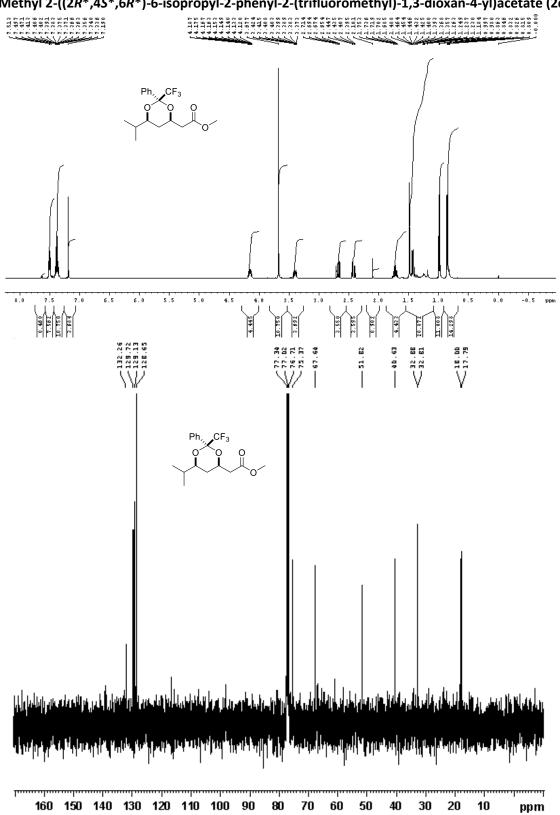

Methyl (Z)-2-formamido-5-hydroxy-7-phenylhept-2-enoate (6d)

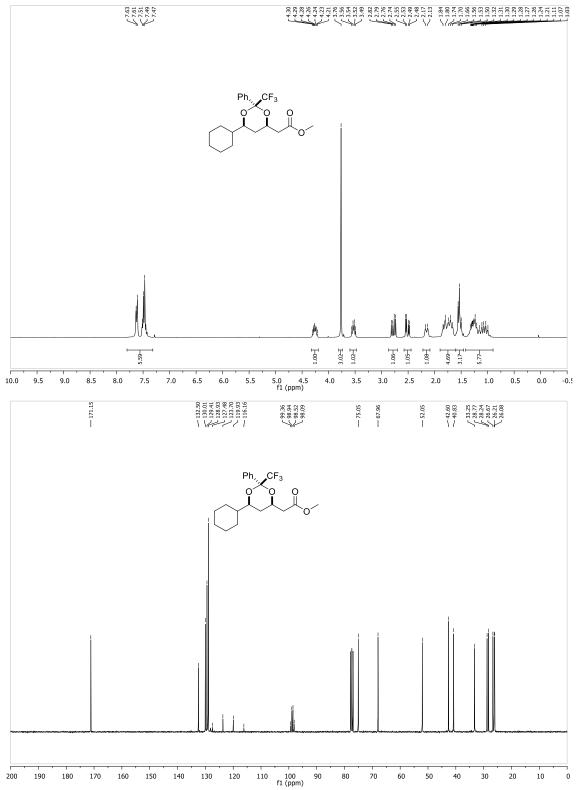



(E)-5-hydroxy-N-methoxy-N-methyl-7-phenylhept-2-enamide (8)

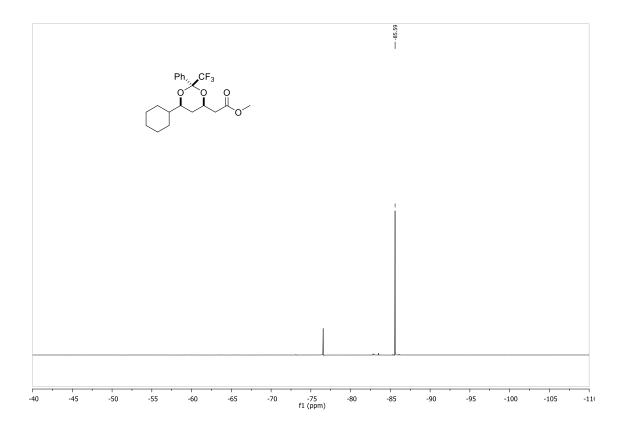

(E)-1-phenyl-6-tosylhex-5-en-3-ol (10)

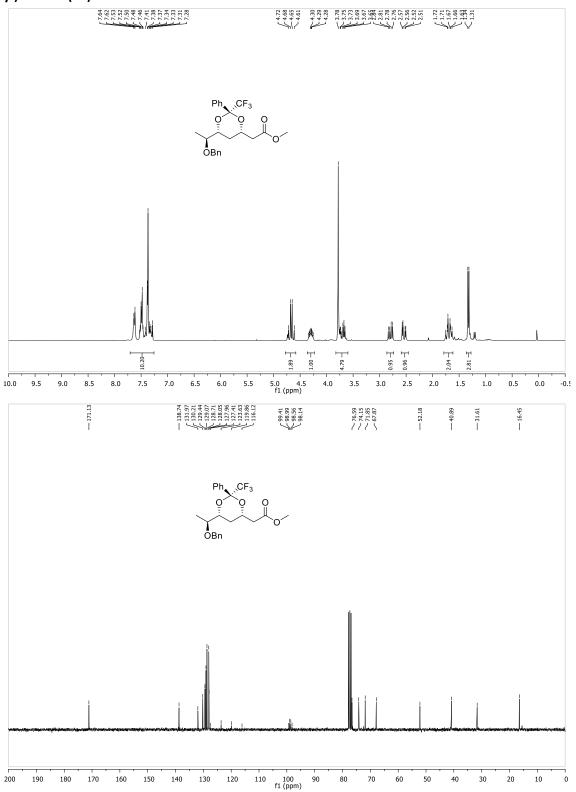




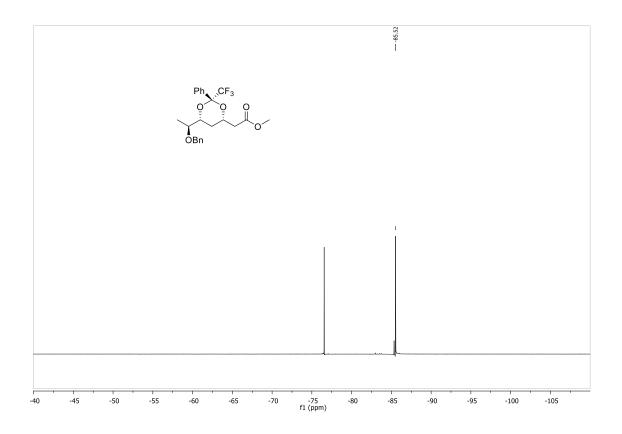


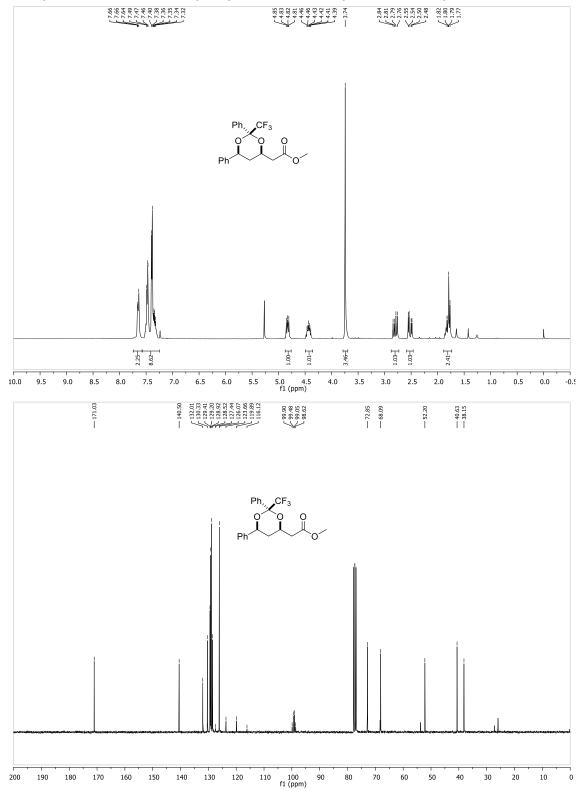
Methyl 2-((2R*,4R*,6R*)-6-hexyl-2-phenyl-2-(trifluoromethyl)-1,3-dioxan-4-yl)acetate (2b)

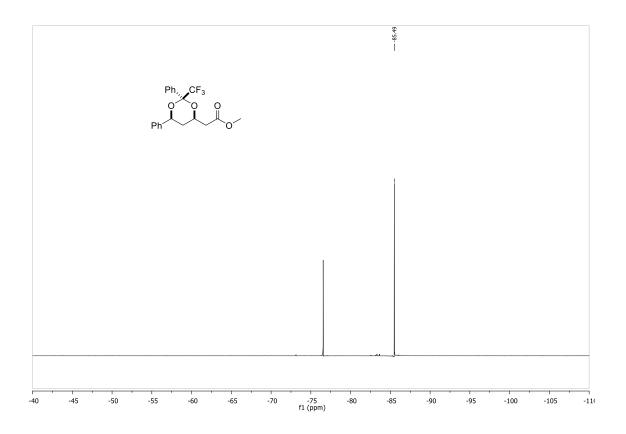


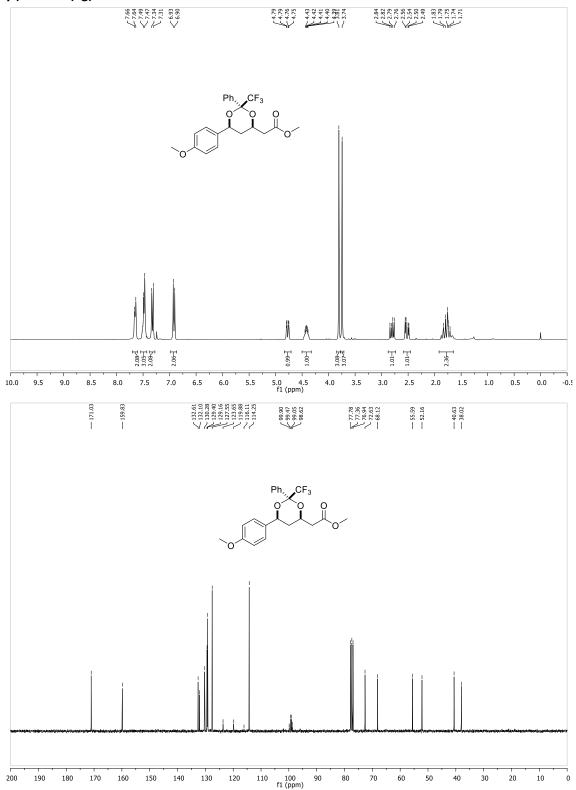


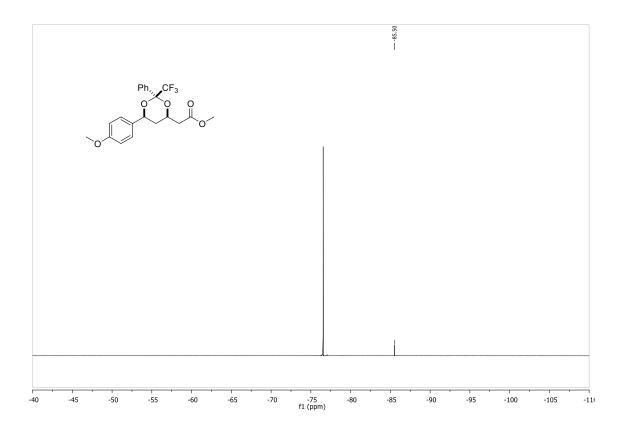
Methyl 2-((2R*,4S*,6R*)-6-isopropyl-2-phenyl-2-(trifluoromethyl)-1,3-dioxan-4-yl)acetate (2c)

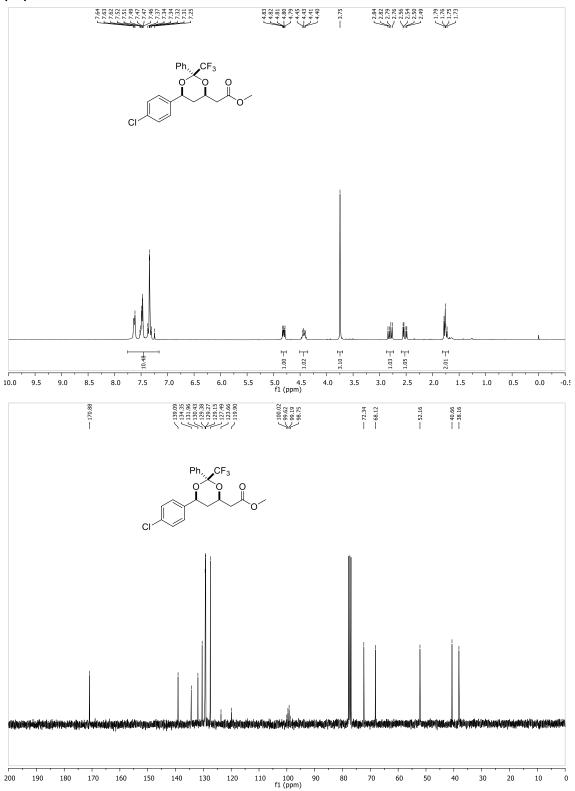


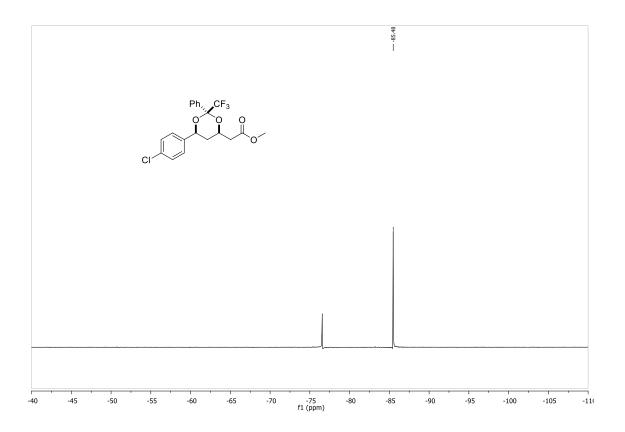

Methyl 2-((2R*,4S*,6R*)-6-cyclohexyl-2-phenyl-2-(trifluoromethyl)-1,3-dioxan-4-yl)acetate (2d)

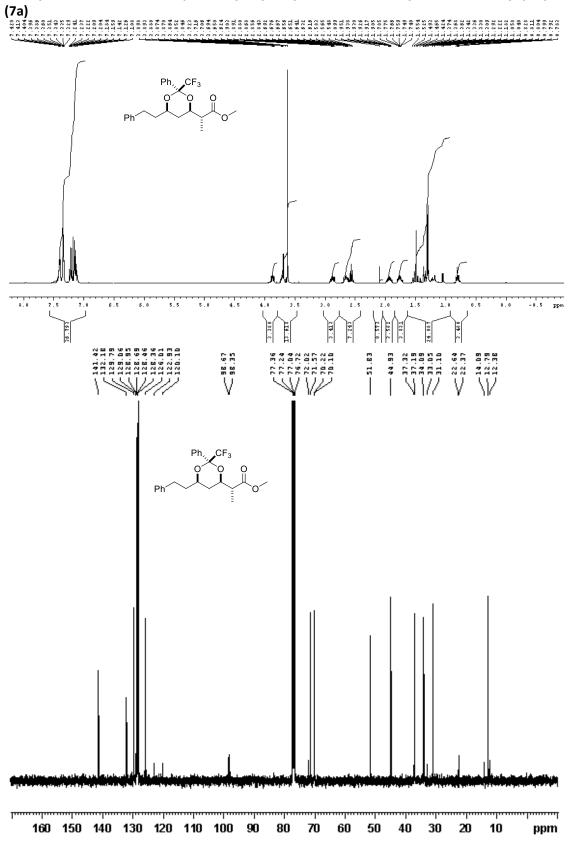


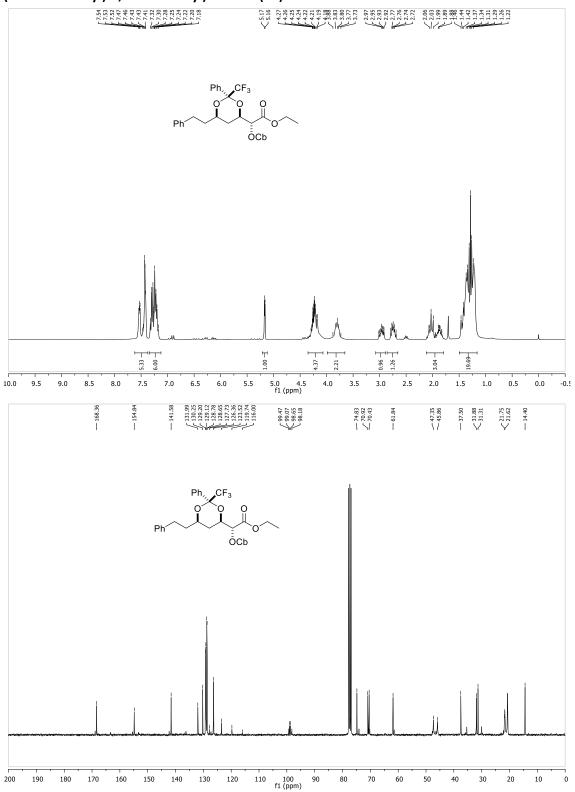

Methyl 2-((2*R*,4*S*,6*R*)-6-((*S*)-1-(benzyloxy)ethyl)-2-phenyl-2-(trifluoromethyl)-1,3-dioxan-4-yl)acetate (2e)



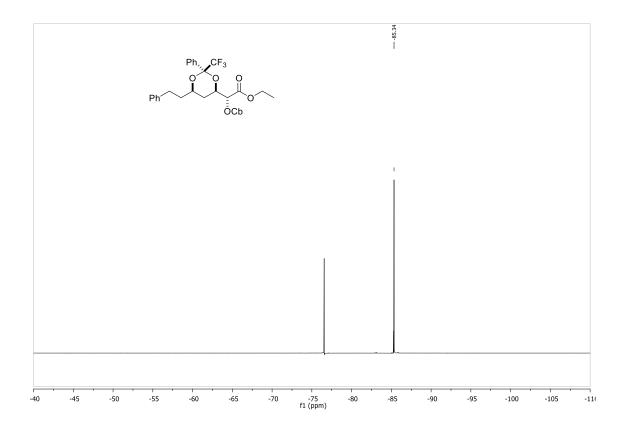

Methyl 2-((2R*,4S*,6R*)-2,6-diphenyl-2-(trifluoromethyl)-1,3-dioxan-4-yl)acetate (2f)

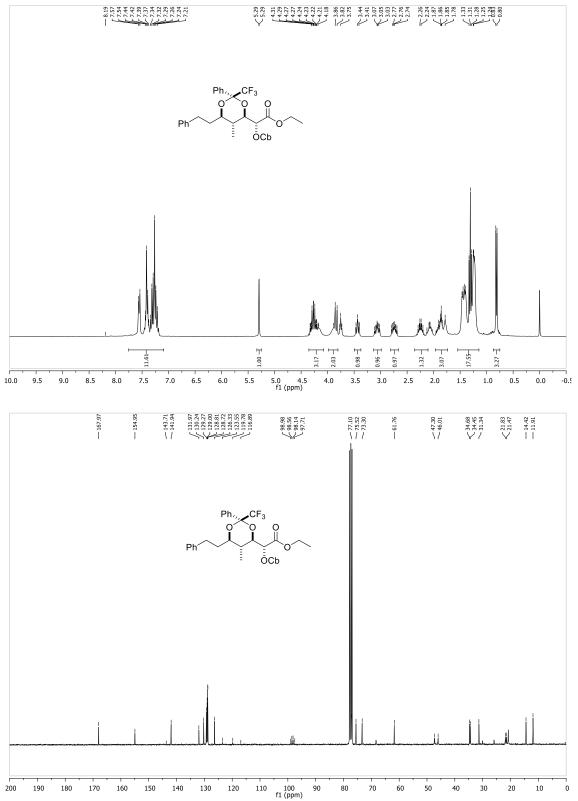



Methyl 2-((2*R**,4*S**,6*R**)-6-(4-methoxyphenyl)-2-phenyl-2-(trifluoromethyl)-1,3-dioxan-4-yl)acetate (2g)

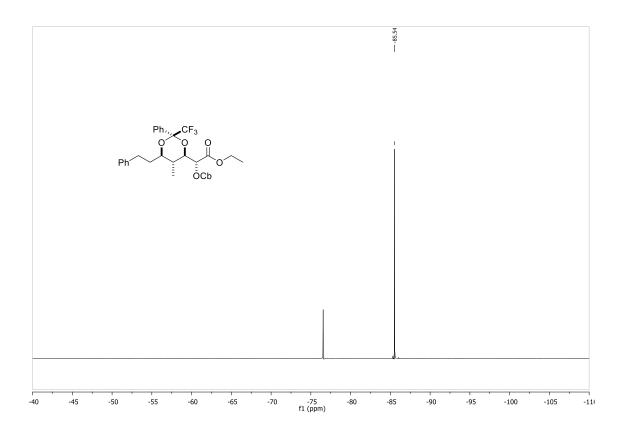


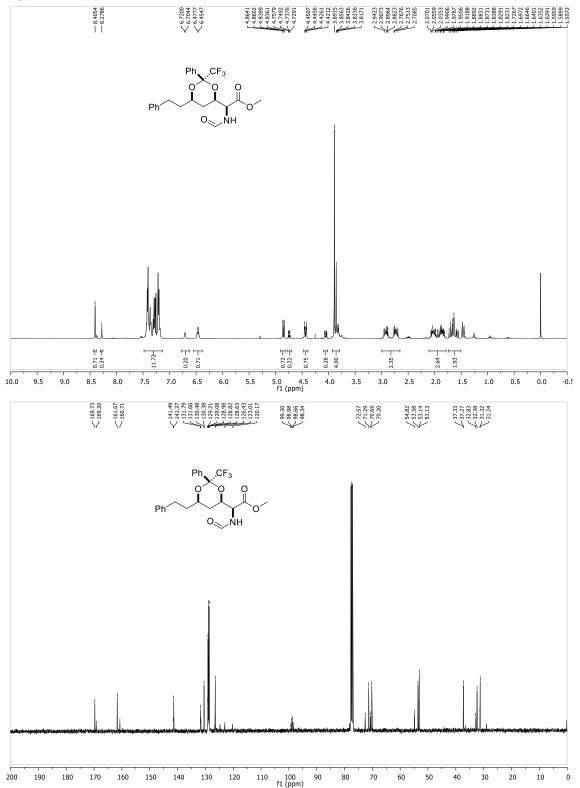
Methyl 2-((2*R**,4*S**,6*R**)-6-(4-chlorophenyl)-2-phenyl-2-(trifluoromethyl)-1,3-dioxan-4-yl)acetate (2h)

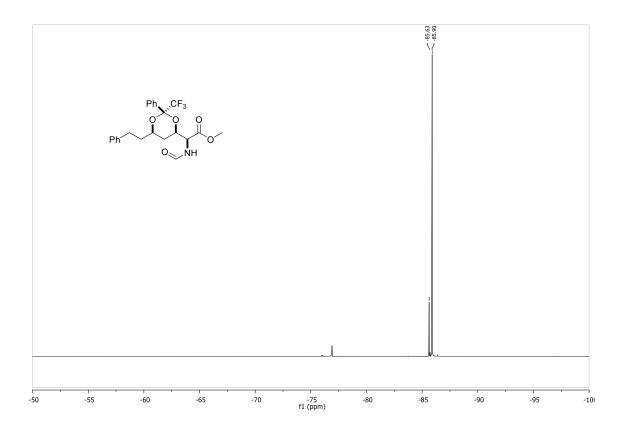


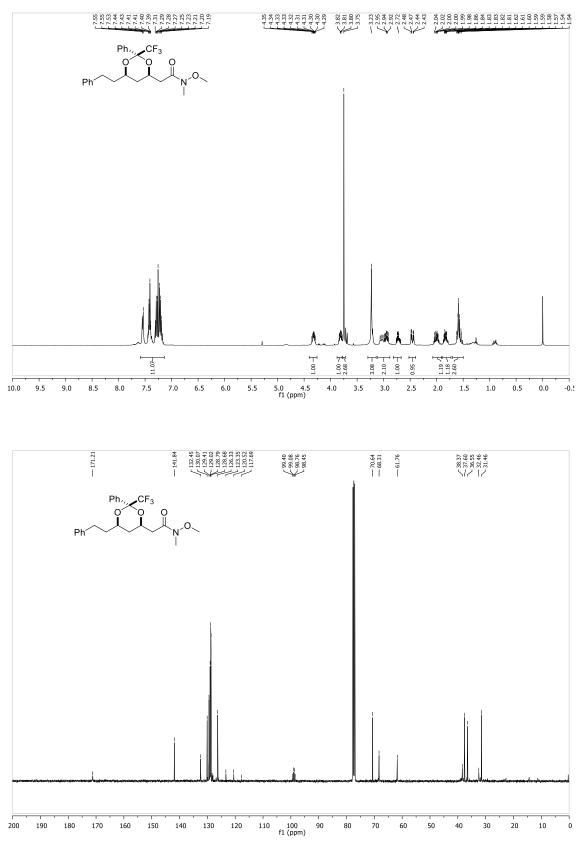


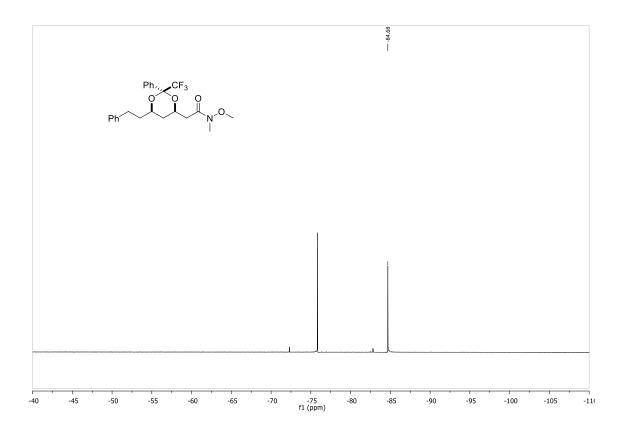
Methyl 2-((2R*,4R*,6R*)-6-phenethyl-2-phenyl-2-(trifluoromethyl)-1,3-dioxan-4-yl)propanoate

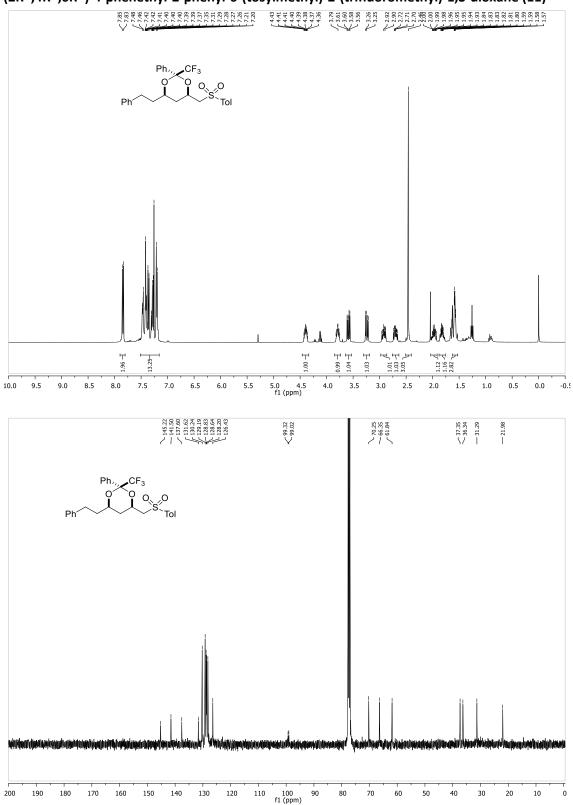


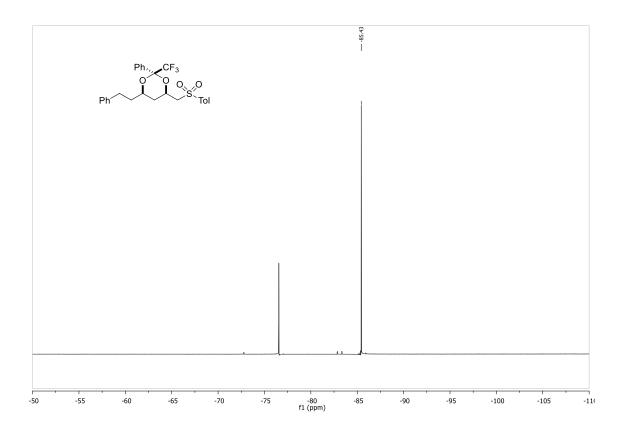

Ethyl (*R**)-2-((diisopropylcarbamoyl)oxy)-2-((2*R**,4*R**,6*R**)-6-phenethyl-2-phenyl-2-(trifluoromethyl)-1,3-dioxan-4-yl) acetate (7b)

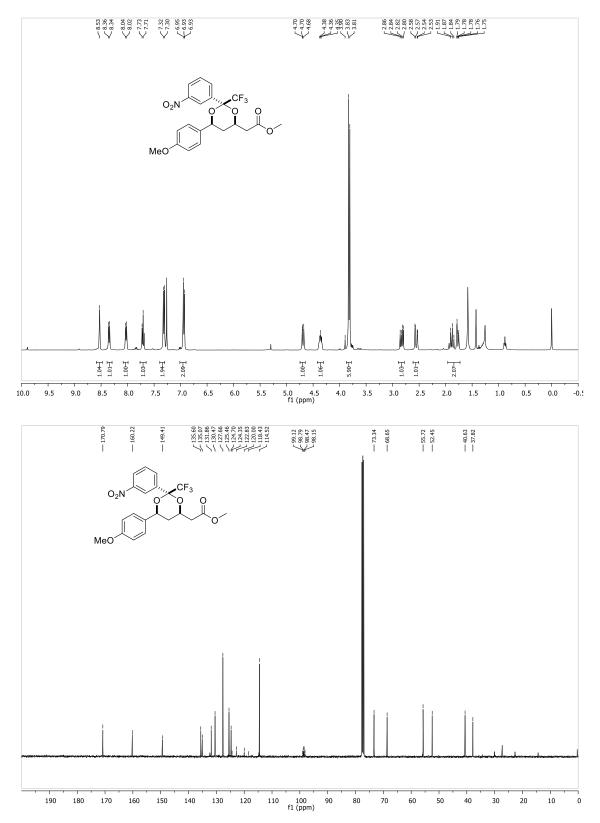


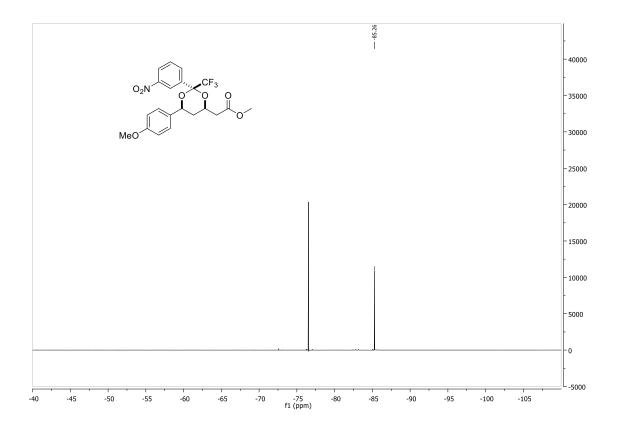

Ethyl (R^*) -2-((diisopropylcarbamoyl)oxy)-2-(($2R^*$, $4R^*$, $5R^*$, $6R^*$)-5-methyl-6-phenethyl-2-phenyl-2-(trifluoromethyl)-1,3-dioxan-4-yl)acetate (7c)



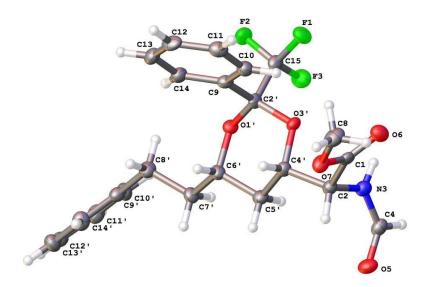

Methyl (*R**)-2-formamido-2-((2*R**,4*S**,6*S**)-6-phenethyl-2-phenyl-2-(trifluoromethyl)-1,3-dioxan-4-yl)acetate (7d)




N-methoxy-*N*-methyl-2-((2R*,4R*,6R*)-6-phenethyl-2-phenyl-2-(trifluoromethyl)-1,3-dioxan-4-yl)acetamide (9)



(2R*,4R*,6R*)-4-phenethyl-2-phenyl-6-(tosylmethyl)-2-(trifluoromethyl)-1,3-dioxane (11)


Methyl 2-((2S*,4R*,6S*)-6-(4-methoxyphenyl)-2-(3-nitrophenyl)-2-(trifluoromethyl)-1,3-dioxan-4-yl)acetate (13)

X-RAY ANALYSIS

X-Ray Analysis for the products: CCDC 1511482 and CCDC 1510756 contains the supplementary crystallographic data for the product. These data can be obtained free of charge from The Cambridge Crystallographic Data.

Methyl (*R**)-2-formamido-2-((2*R**,4*S**,6*S**)-6-phenethyl-2-phenyl-2-(trifluoromethyl)-1,3-dioxan-4-yl)acetate (7d) (CCDC 1511482)

Table 1. Crystal data

Molecular Formula:C ₂₃ H ₂₄ F ₃ NO ₅
Molecular weight: M_r = 451.43
Crystal habit: Tablet, colourless
Crystal system: Monoclinic, $P2_1/c$
Crystal dimensions: $0.42 \times 0.33 \times 0.12$ mm
a = 8.898 (3) Å
b = 26.042 (7) Å
c = 9.427 (2) Å
$\beta = 91.704 \ (6)^{\circ}$
$V = 2183.5 (10) \text{ Å}^3$
Z = 4
<i>F</i> (000) = 944
$D_{\rm x}$ = 1.373 Mg m ⁻³
Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Cell parameters from 2565 reflections

$\theta = 2.3 - 25.2^{\circ}$	
$\mu = 0.11 \text{ mm}^{-1}$	
T = 100 K	

Table 2. Data collection

Bruker APEX-II CCD diffractometer	2472 reflections with / > 2고(/)
ϕ and ω scans	$R_{\rm int} = 0.117$
Absorption correction: multi-scan SADABS2014/5 (Bruker,2014/5) was used for absorption correction. wR2(int) was 0.1485 before and 0.1092 after correction. The Ratio of minimum to maximum transmission is 0.6020. The $\lambda/2$ correction factor is 0.00150.	$\theta_{max} = 25.3^{\circ}, \theta_{min} = 1.6^{\circ}$
$T_{\rm min} = 0.449, T_{\rm max} = 0.745$	$h = -10 \rightarrow 10$
12762 measured reflections	$k = -31 \rightarrow 31$
3903 independent reflections	$l = -10 \rightarrow 11$

Table 3. Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.078$	H-atom parameters constrained
$wR(F^2) = 0.198$	$w = 1/[\sigma^2(F_o^2) + (0.089P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{max} < 0.001$
3903 reflections	$\Delta angle_{max} = 0.45 \text{ e} \text{ Å}^{-3}$
290 parameters	$\Delta angle_{min} = -0.32 \text{ e} \text{ Å}^{-3}$
0 restraints	

Table 4. Fractional atomic coordinates and isotropic or equivalent isotropic displacement
parameters (Ų)

	x	Y	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
F2	0.6276 (3)	0.44084 (8)	0.6640 (2)	0.0298 (6)
F1	0.6004 (3)	0.36064 (8)	0.7041 (2)	0.0297 (6)
F3	0.8081 (3)	0.38874 (9)	0.6278 (2)	0.0331 (6)
03'	0.6440 (3)	0.33565 (9)	0.4342 (2)	0.0203 (6)

01'	0.6814 (3)	0.42287 (9)	0.3876 (2)	0.0211 (6)
07	0.4463 (3)	0.23346 (10)	0.2755 (3)	0.0268 (7)
05	0.9575 (3)	0.24270 (11)	0.1392 (3)	0.0311 (7)
06	0.5963 (3)	0.21087 (10)	0.4580 (3)	0.0296 (7)
N3	0.8348 (4)	0.25951 (12)	0.3422 (3)	0.0248 (8)
НЗ	0.8461	0.2627	0.4327	0.030*
C1	0.5749 (5)	0.23375 (14)	0.3490 (4)	0.0218 (9)
C9	0.4326 (5)	0.39370 (14)	0.4531 (4)	0.0209 (9)
C15	0.6601 (5)	0.39424 (14)	0.6152 (4)	0.0232 (9)
C2'	0.6009 (5)	0.38611 (13)	0.4644 (4)	0.0207 (9)
C9'	0.7719 (5)	0.55260 (14)	0.1168 (4)	0.0241 (9)
C14	0.3720 (5)	0.44111 (15)	0.4212 (4)	0.0252 (9)
H14	0.4352	0.4686	0.4033	0.030*
C10	0.3374 (5)	0.35290 (15)	0.4819 (4)	0.0254 (9)
H10	0.3774	0.3208	0.5037	0.031*
C6'	0.6768 (5)	0.41421 (14)	0.2357 (4)	0.0226 (9)
H6'	0.5721	0.4164	0.2009	0.027*
C7'	0.7655 (5)	0.45696 (14)	0.1694 (4)	0.0245 (9)
H7'A	0.7686	0.4513	0.0678	0.029*
H7'B	0.8680	0.4561	0.2073	0.029*
C5'	0.7348 (5)	0.36100 (14)	0.2075 (4)	0.0227 (9)
H5'A	0.8388	0.3581	0.2402	0.027*
H5'B	0.7294	0.3539	0.1065	0.027*
нз в С2	0.6883 (5)	0.26744 (14)	0.2785 (4)	0.027
H2	0.6917	0.2575	0.1783	0.026*
C4'	0.6389 (5)	0.32332 (13)	0.2857 (4)	0.0216 (9)
H4'	0.5348			
		0.3261	0.2495	0.026*
C12	0.1243 (5)	0.40765 (16)	0.4442 (4)	0.0296 (10)
H12	0.0206	0.4123	0.4408	0.036*
C8'	0.6988 (5)	0.50975 (14)	0.1966 (4)	0.0264 (9)
H8'A	0.5926	0.5090	0.1705	0.032*
H8'B	0.7077	0.5170	0.2974	0.032*
C10'	0.9007 (5)	0.57553 (15)	0.1677 (4)	0.0275 (10)
H10'	0.9450	0.5640	0.2524	0.033*

C12'	0.9024 (5)	0.63281 (14)	-0.0294 (4)	0.0280 (10)
H12'	0.9452	0.6600	-0.0778	0.034*
C4	0.9533 (5)	0.24745 (14)	0.2676 (4)	0.0266 (10)
H4	1.0430	0.2420	0.3186	0.032*
C14'	0.7110 (5)	0.56995 (15)	-0.0105 (4)	0.0293 (10)
H14'	0.6248	0.5544	-0.0485	0.035*
C11'	0.9669 (5)	0.61569 (15)	0.0954 (4)	0.0294 (10)
H11'	1.0546	0.6308	0.1315	0.035*
C13	0.2179 (5)	0.44811 (15)	0.4155 (4)	0.0279 (10)
H13	0.1777	0.4801	0.3924	0.033*
C11	0.1845 (5)	0.35999 (16)	0.4780 (4)	0.0271 (10)
H11	0.1211	0.3327	0.4983	0.032*
C13'	0.7754 (5)	0.60991 (15)	-0.0823 (4)	0.0298 (10)
H13'	0.7318	0.6213	-0.1675	0.036*
C8	0.3299 (5)	0.20227 (16)	0.3345 (5)	0.0354 (11)
H8A	0.2467	0.1998	0.2677	0.053*
H8B	0.2969	0.2177	0.4207	0.053*
H8C	0.3687	0.1685	0.3544	0.053*

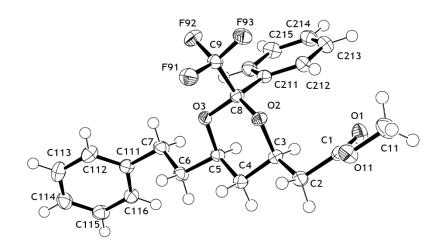
Table 5. Atomic displacement parameters $(Å^2)$

	<i>U</i> ¹¹	U ²²	U ³³	<i>U</i> ¹²	U ¹³	U ²³
F2	0.0399 (16)	0.0191 (11)	0.0306 (13)	0.0004 (11)	0.0044 (10)	-0.0036 (9)
F1	0.0382 (16)	0.0253 (12)	0.0258 (12)	-0.0071 (11)	0.0056 (10)	0.0045 (10)
F3	0.0226 (14)	0.0434 (14)	0.0332 (13)	0.0015 (12)	0.0003 (10)	0.0006 (11)
O3'	0.0221 (16)	0.0158 (13)	0.0232 (14)	0.0032 (11)	0.0058 (11)	-0.0010 (10)
01'	0.0214 (16)	0.0190 (13)	0.0233 (14)	-0.0022 (12)	0.0065 (11)	0.0016 (11)
07	0.0227 (17)	0.0217 (14)	0.0363 (16)	-0.0020 (12)	0.0075 (12)	0.0025 (12)
05	0.0291 (18)	0.0356 (16)	0.0292 (16)	0.0027 (14)	0.0099 (12)	-0.0043 (13)
06	0.0383 (19)	0.0246 (14)	0.0260 (15)	-0.0040 (14)	0.0037 (12)	0.0003 (12)

N3	0.025 (2)	0.0237 (17)	0.0255 (18)	0.0007 (15)	0.0035 (14)	-0.0015
						(14)
C1	0.027 (2)	0.0173 (18)	0.021 (2)	0.0037 (18)	0.0060 (17)	-0.0056 (17)
C9	0.021 (2)	0.0230 (19)	0.019 (2)	-0.0017 (18)	0.0047 (15)	-0.0020 (16)
C15	0.026 (2)	0.0170 (19)	0.027 (2)	-0.0012 (18)	0.0084 (17)	0.0029 (16)
C2'	0.026 (2)	0.0116 (17)	0.025 (2)	-0.0008 (17)	0.0051 (16)	0.0022 (15)
C9'	0.026 (2)	0.0208 (19)	0.026 (2)	0.0005 (18)	0.0074 (17)	-0.0006 (16)
C14	0.028 (3)	0.022 (2)	0.026 (2)	0.0009 (19)	0.0056 (17)	-0.0016 (16)
C10	0.029 (2)	0.025 (2)	0.023 (2)	0.0006 (19)	0.0031 (17)	0.0007 (17)
C6'	0.021 (2)	0.023 (2)	0.024 (2)	0.0004 (17)	0.0049 (16)	0.0039 (16)
C7'	0.028 (2)	0.0210 (19)	0.025 (2)	-0.0008 (18)	0.0051 (17)	0.0052 (16)
C5'	0.022 (2)	0.023 (2)	0.023 (2)	0.0006 (18)	0.0056 (16)	0.0007 (16)
C2	0.023 (2)	0.0196 (19)	0.023 (2)	0.0022 (17)	0.0027 (16)	-0.0008 (16)
C4'	0.024 (2)	0.0189 (19)	0.022 (2)	0.0003 (17)	0.0019 (16)	-0.0006 (16)
C12	0.016 (2)	0.045 (3)	0.028 (2)	0.004 (2)	0.0050 (17)	-0.0044 (19)
C8'	0.024 (2)	0.024 (2)	0.031 (2)	-0.0022 (19)	0.0072 (17)	0.0024 (17)
C10'	0.030 (3)	0.025 (2)	0.027 (2)	0.0021 (19)	0.0000 (18)	0.0059 (17)
C12'	0.035 (3)	0.0193 (19)	0.031 (2)	0.0001 (19)	0.0143 (19)	0.0023 (17)
C4	0.025 (2)	0.022 (2)	0.033 (2)	0.0027 (19)	0.0030 (18)	-0.0034 (18)
C14'	0.029 (3)	0.025 (2)	0.034 (2)	-0.0037 (19)	-0.0017 (18)	0.0002 (18)
C11'	0.025 (3)	0.025 (2)	0.038 (2)	-0.0014 (19)	0.0031 (19)	0.0006 (18)
C13	0.026 (3)	0.028 (2)	0.030 (2)	0.007 (2)	0.0030 (18)	-0.0011 (18)
C11	0.027 (3)	0.030 (2)	0.025 (2)	-0.0070 (19)	0.0044 (17)	-0.0016 (17)

C13'	0.037 (3)	0.026 (2)	0.026 (2)	0.001 (2)	0.0024 (19)	0.0046 (18)
C8	0.027 (3)	0.030 (2)	0.050 (3)	-0.002 (2)	0.013 (2)	-0.004 (2)

Table 6. Geometric parameters (Å, ♀)


F2—C15	1.333 (4)	C7'—H7'A	0.9700
F1—C15	1.333 (4)	С7'—Н7'В	0.9700
F3—C15	1.326 (5)	C7'—C8'	1.522 (5)
O3'—C2'	1.401 (4)	C5'—H5'A	0.9700
O3'—C4'	1.436 (4)	C5'—H5'B	0.9700
01'—C2'	1.409 (4)	C5'—C4'	1.507 (5)
O1'—C6'	1.449 (4)	C2—H2	0.9800
07—C1	1.320 (5)	C2—C4'	1.522 (5)
07—C8	1.440 (5)	C4'—H4'	0.9800
O5—C4	1.218 (5)	C12—H12	0.9300
06—C1	1.198 (4)	C12—C13	1.375 (6)
N3—H3	0.8600	C12—C11	1.385 (6)
N3—C2	1.434 (5)	C8'—H8'A	0.9700
N3—C4	1.322 (5)	C8'—H8'B	0.9700
C1—C2	1.507 (6)	C10'—H10'	0.9300
C9—C2'	1.511 (6)	C10'-C11'	1.389 (6)
C9—C14	1.377 (5)	C12'—H12'	0.9300
C9—C10	1.391 (6)	C12'—C11'	1.368 (6)
C15—C2'	1.515 (5)	C12'—C13'	1.360 (6)
C9'—C8'	1.504 (5)	C4—H4	0.9300
C9'—C10'	1.366 (6)	C14'—H14'	0.9300
C9'—C14'	1.378 (5)	C14'—C13'	1.376 (6)
C14—H14	0.9300	C11'—H11'	0.9300
C14—C13	1.382 (6)	C13—H13	0.9300
C10—H10	0.9300	C11—H11	0.9300
C10-C11	1.373 (6)	C13'—H13'	0.9300
С6'—Н6'	0.9800	C8—H8A	0.9600
C6'—C7'	1.511 (5)	C8—H8B	0.9600
C6'—C5'	1.505 (5)	C8—H8C	0.9600

C2'-O3'-C4'	114.0 (3)	N3-C2-C1	110.1 (3)
C2'—O1'—C6'	113.7 (3)	N3—C2—H2	108.2
C1—07—C8	115.0 (3)	N3-C2-C4'	112.3 (3)
C2—N3—H3	118.6	C1—C2—H2	108.2
C4—N3—H3	118.6	C1-C2-C4'	109.8 (3)
C4—N3—C2	122.7 (3)	C4'—C2—H2	108.2
07—C1—C2	110.7 (3)	O3'—C4'—C5'	109.2 (3)
06—C1—07	124.1 (4)	O3'—C4'—C2	104.9 (3)
O6-C1-C2	125.2 (4)	O3'—C4'—H4'	109.0
C14—C9—C2'	120.9 (3)	C5'—C4'—C2	115.6 (3)
C14—C9—C10	119.4 (4)	C5'—C4'—H4'	109.0
C10—C9—C2'	119.6 (3)	C2-C4'-H4'	109.0
F2—C15—C2'	112.2 (3)	C13—C12—H12	120.0
F1—C15—F2	106.6 (3)	C13—C12—C11	120.0 (4)
F1—C15—C2'	111.4 (3)	C11—C12—H12	120.0
F3—C15—F2	107.0 (3)	C9'—C8'—C7'	114.2 (3)
F3—C15—F1	106.6 (3)	C9'—C8'—H8'A	108.7
F3—C15—C2'	112.6 (3)	С9'—С8'—Н8'В	108.7
03'—C2'—01'	112.8 (3)	C7'—C8'—H8'A	108.7
O3'—C2'—C9	112.6 (3)	С7'—С8'—Н8'В	108.7
O3'—C2'—C15	103.4 (3)	H8'A—C8'—H8'B	107.6
O1'—C2'—C9	113.1 (3)	C9'-C10'-H10'	119.3
01'—C2'—C15	102.7 (3)	C9'-C10'-C11'	121.4 (4)
C9—C2'—C15	111.3 (3)	C11'-C10'-H10'	119.3
C10'—C9'—C8'	121.3 (3)	C11'-C12'-H12'	120.1
C10'-C9'-C14'	117.8 (4)	C13'-C12'-H12'	120.1
C14'—C9'—C8'	120.9 (4)	C13'-C12'-C11'	119.7 (4)
C9—C14—H14	119.7	05-C4-N3	126.9 (4)
C9—C14—C13	120.6 (4)	05—C4—H4	116.5
C13—C14—H14	119.7	N3—C4—H4	116.5
C9—C10—H10	120.0	C9'-C14'-H14'	119.4
С11—С10—С9	120.1 (4)	C13'—C14'—C9'	121.2 (4)
С11—С10—Н10	120.0	C13'-C14'-H14'	119.4
O1'—C6'—H6'	108.7	C10'-C11'-H11'	120.2

	•	•	
O1'—C6'—C7'	107.1 (3)	C12'-C11'-C10'	119.6 (4)
O1'—C6'—C5'	108.6 (3)	C12'-C11'-H11'	120.2
С7'—С6'—Н6'	108.7	C14—C13—H13	120.1
С5'—С6'—Н6'	108.7	C12—C13—C14	119.8 (4)
C5'—C6'—C7'	114.8 (3)	С12—С13—Н13	120.1
С6'—С7'—Н7'А	109.1	C10-C11-C12	120.2 (4)
С6'—С7'—Н7'В	109.1	C10-C11-H11	119.9
C6'—C7'—C8'	112.6 (3)	С12—С11—Н11	119.9
Н7'А—С7'—Н7'В	107.8	C12'—C13'—C14'	120.3 (4)
С8'—С7'—Н7'А	109.1	C12'-C13'-H13'	119.8
С8'—С7'—Н7'В	109.1	C14'-C13'-H13'	119.8
C6'—C5'—H5'A	110.1	07—C8—H8A	109.5
С6'—С5'—Н5'В	110.1	O7—C8—H8B	109.5
C6'—C5'—C4'	108.1 (3)	07—C8—H8C	109.5
Н5'А—С5'—Н5'В	108.4	Н8А—С8—Н8В	109.5
C4'—C5'—H5'A	110.1	Н8А—С8—Н8С	109.5
С4'—С5'—Н5'В	110.1	Н8В—С8—Н8С	109.5
F2-C15-C2'-O3'	-179.2 (3)	C14—C9—C10—C11	0.2 (5)
F2-C15-C2'-01'	63.3 (4)	C10-C9-C2'-O3'	29.9 (5)
F2-C15-C2'-C9	-58.0 (4)	C10-C9-C2'-O1'	159.2 (3)
F1-C15-C2'-O3'	-59.8 (4)	C10-C9-C2'-C15	-85.8 (4)
F1-C15-C2'-01'	-177.2 (3)	C10-C9-C14-C13	-1.0 (5)
F1-C15-C2'-C9	61.5 (4)	C6'-01'-C2'-03'	53.4 (4)
F3-C15-C2'-O3'	60.0 (4)	C6'—O1'—C2'—C9	-75.8 (4)
F3-C15-C2'-01'	-57.5 (4)	C6'-01'-C2'-C15	164.1 (3)
F3-C15-C2'-C9	-178.8 (3)	C6'—C7'—C8'—C9'	-172.5 (3)
01'-C6'-C7'-C8'	-61.5 (4)	C6'-C5'-C4'-O3'	-57.7 (4)
O1'-C6'-C5'-C4'	57.7 (4)	C6'—C5'—C4'—C2	-175.6 (3)
07-C1-C2-N3	-168.4 (3)	C7'—C6'—C5'—C4'	177.5 (3)
07—C1—C2—C4'	67.4 (4)	C5'—C6'—C7'—C8'	177.9 (3)
O6-C1-C2-N3	12.7 (5)	C2-N3-C4-O5	1.9 (6)
O6-C1-C2-C4'	-111.4 (4)	C4'-03'-C2'-01'	-53.2 (4)
N3-C2-C4'-O3'	-57.9 (4)	C4'-03'-C2'-C9	76.3 (4)
· · · · · · · · · · · · · · · · · · ·			

N3-C2-C4'-C5'	62.5 (4)	C4'-03'-C2'-C15	-163.4 (3)
C1-C2-C4'-O3'	65.0 (4)	C8'-C9'-C10'- C11'	-178.9 (4)
C1—C2—C4'—C5'	-174.7 (3)	C8'—C9'—C14'— C13'	178.5 (4)
C9—C14—C13—C12	1.0 (6)	C10'-C9'-C8'-C7'	-83.7 (5)
C9—C10—C11—C12	0.6 (6)	C10'—C9'—C14'— C13'	-1.7 (6)
C2'-03'-C4'-C5'	55.9 (4)	C4-N3-C2-C1	126.1 (4)
C2'-03'-C4'-C2	-179.6 (3)	C4-N3-C2-C4'	-111.2 (4)
C2'-01'-C6'-C7'	179.2 (3)	C14'—C9'—C8'—C7'	96.2 (5)
C2'—O1'—C6'—C5'	-56.4 (4)	C14'—C9'—C10'— C11'	1.3 (6)
C2'—C9—C14—C13	-177.9 (3)	C11'—C12'—C13'— C14'	0.5 (7)
C2'—C9—C10—C11	177.1 (3)	C13-C12-C11- C10	-0.6 (6)
C9'—C10'—C11'— C12'	0.0 (6)	C11—C12—C13— C14	-0.2 (6)
C9'-C14'-C13'- C12'	0.8 (7)	C13'—C12'—C11'— C10'	-0.9 (6)
C14—C9—C2'—O3'	-153.2 (3)	C8-07-C1-06	-1.1 (5)
C14-C9-C2'-O1'	-23.9 (5)	C8-07-C1-C2	-179.9 (3)
C14—C9—C2'—C15	91.1 (4)		

Methyl 2-((2*R**,4*R**,6*R**)-6-phenethyl-2-phenyl-2-(trifluoromethyl)-1,3-dioxan-4-yl)acetate (2a) CCDC 1510756

Table 7: Crystal data

Molecular formula:C ₂₂ H ₂₃ F ₃ O ₄
Molecular weight:408.4
Crystal habit: colourless plate
Crystal dimensions: 0.5 x 0.4 x 0.1 mm
Crystal system: triclinic
Space group: P -1
a (Å): 8.8528(7)
b (Å): 10.3527(8)
c (Å): 14.1556(11)
α (°): 73.562(4)
β (°): 72.631(4)
γ (°): 64.671(4)
V (Å ³) : 1100.90(15)
Z:2
d (g.cm ⁻³) : 1.232
F (000): 428
μ (cm ⁻¹): 0.1
Absorption corrections : multi-scan; 0.689 min, 0.746 max

Diffractometer: APEX-II CCD
X-ray source: MoK\a
λ (Å): 0.71073
Monochromator : graphite
T (K) :100(2)
Scan mode: phi and omega oscillation scans
Maximum θ: 29.955
HKL ranges: -12 12; -14 14; -19 19
Reflections measured: 9912
Unique data: 6433
Rint: 0.0631
Reflections used: 5276
Criterion: >2\s(I)
Refinement type: Fsqd
Hydrogen atoms:constr
Parameters refined: 263
Reflections / parameter: 20
wR2: 0.1087
R1: 0.0411
GoF: 1.08

Table 8: Atomic coordinates and equivalent isotropic displacement parameters

Atom	x (Å)	y (Å)	z (Å)	U(eq) (Ų)
F91	0.41379(8)	0.26721(7)	0.83281(5)	0.02265(15)
F92	0.57746(8)	0.37483(7)	0.73011(5)	0.02175(14)
F93	0.43504(8)	0.44396(7)	0.87190(5)	0.02194(14)
01	0.65405(10)	0.22470(9)	1.18170(6)	0.02340(17)
02	0.59935(9)	0.18037(8)	0.97751(5)	0.01457(14)
03	0.74937(9)	0.10497(8)	0.82322(5)	0.01459(14)

011	0.40774(10)	0.18823(8)	1.24665(6)	0.02087(16)
C1	0.56561(13)	0.15864(11)	1.18948(7)	0.01631(19)
C2	0.61959(14)	0.03224(11)	1.13754(8)	0.01773(19)
H2A	0.5172	0.0182	1.135	0.021
H2B	0.6908	-0.0575	1.1764	0.021
С3	0.72004(12)	0.05913(11)	1.03150(7)	0.01498(18)
H3	0.8133	0.0878	1.0336	0.018
C4	0.79684(13)	-0.06957(11)	0.97736(8)	0.01630(19)
H4A	0.7069	-0.1034	0.9791	0.02
H4B	0.8849	-0.1507	1.0113	0.02
C5	0.87667(12)	-0.02282(10)	0.86859(7)	0.01455(18)
H5	0.9742	0.0024	0.8679	0.017
C6	0.93961(13)	0.13606(11)	- 0.80299(8)	0.01624(19)
H6A	0.8425	-0.159	0.802	0.019
H6B	1.0246	-0.2262	0.8327	0.019
C7	1.02110(14)	-0.08566(11)	0.69455(8)	0.0188(2)
H7A	0.9355	0.0035	0.6644	0.023
H7B	1.117	-0.0611	0.6956	0.023
C8	0.67543(12)	0.22032(10)	0.87678(7)	0.01381(18)
С9	0.52326(12)	0.32768(11)	0.82765(8)	0.01606(19)
C11	0.34646(15)	0.30970(13)	1.29781(9)	0.0257(2)
H11A	0.4207	0.2888	1.344	0.039
H11B	0.2297	0.3251	1.3359	0.039
H11C	0.3476	0.3974	1.2481	0.039
C111	1.08650(13)	-0.19952(11)	0.62960(7)	0.01659(19)
C112	1.00272(14)	-0.18409(13)	0.55552(8)	0.0221(2)
H112	0.9042	-0.0994	0.5446	0.026
C113	1.06083(16)	-0.29057(14)	0.49726(9)	0.0259(2)
H113	1.0006	-0.279	0.4481	0.031
C114	1.20644(16)	-0.41354(13)	0.51080(8)	0.0246(2)

H114	1.2472	-0.4857	0.4704	0.03
C115	1.29230(14)	-0.43036(12)	0.58401(8)	0.0219(2)
H115	1.392	-0.5144	0.5937	0.026
C116	1.23259(13)	-0.32465(11)	0.64296(8)	0.0183(2)
H116	1.2917	-0.3375	0.693	0.022
C211	0.79579(12)	0.29643(10)	0.86756(7)	0.01442(18)
C212	0.76314(13)	0.38069(11)	0.93794(8)	0.01732(19)
H212	0.6713	0.3852	0.9944	0.021
C213	0.86562(14)	0.45847(12)	0.92532(9)	0.0210(2)
H213	0.8431	0.5164	0.9731	0.025
C214	1.00080(14)	0.45131(12)	0.84285(9)	0.0216(2)
H214	1.0703	0.5044	0.8344	0.026
C215	1.03401(13)	0.36680(12)	0.77314(9)	0.0212(2)
H215	1.1268	0.3614	0.7172	0.025
C216	0.93144(13)	0.28957(11)	0.78493(8)	0.01774(19)
H216	0.9539	0.2323	0.7368	0.021

Table 9: Bond lengths (Å)

1.3369(11)	C8 C211	1.5332(13)
1.3410(12)	C8 C9	1.5410(14)
1.3348(12)	C11 H11A	0.98
1.2070(13)	C11 H11B	0.98
1.4104(11)	C11 H11C	0.98
1.4484(12)	C111 C112	1.3940(15)
1.4059(11)	C111 C116	1.4002(14)
1.4520(11)	C112 C113	1.3914(16)
1.3419(12)	C112 H112	0.95
1.4481(13)	C113 C114	1.3872(18)
1.5103(14)	C113 H113	0.95
1.5166(14)	C114 C115	1.3917(17)
0.99	C114 H114	0.95
	1.3410(12) 1.3348(12) 1.2070(13) 1.4104(11) 1.4484(12) 1.4059(11) 1.4520(11) 1.3419(12) 1.4481(13) 1.5103(14) 1.5166(14)	1.3410(12)C8 C91.3348(12)C11 H11A1.2070(13)C11 H11B1.4104(11)C11 H11C1.4484(12)C111 C1121.4059(11)C111 C1161.4520(11)C112 C1131.3419(12)C112 H1121.4481(13)C113 C1141.5103(14)C114 C115

C2 H2B	0.99	C115 C116	1.3900(15)
C3 C4	1.5220(14)	C115 H115	0.95
C3 H3	1	C116 H116	0.95
C4 C5	1.5250(14)	C211 C212	1.3932(14)
C4 H4A	0.99	C211 C216	1.3967(14)
C4 H4B	0.99	C212 C213	1.3965(14)
C5 C6	1.5151(13)	C212 H212	0.95
C5 H5	1	C213 C214	1.3926(16)
C6 C7	1.5352(14)	C213 H213	0.95
C6 H6A	0.99	C214 C215	1.3859(16)
С6 Н6В	0.99	C214 H214	0.95
C7 C111	1.5104(14)	C215 C216	1.3953(15)
С7 Н7А	0.99	C215 H215	0.95
С7 Н7В	0.99	C216 H216	0.95

Table 10: Angles (deg)

C8 O2 C3	112.05(7)	F93 C9 F91	107.12(8)
C8 O3 C5	113.73(7)	F93 C9 F92	107.56(8)
C1 011 C11	115.10(8)	F91 C9 F92	107.46(8)
01 C1 011	123.67(10)	F93 C9 C8	111.67(8)
O1 C1 C2	124.30(9)	F91 C9 C8	112.15(8)
O11 C1 C2	112.03(9)	F92 C9 C8	110.64(8)
C1 C2 C3	110.76(8)	O11 C11 H11A	109.5
C1 C2 H2A	109.5	O11 C11 H11B	109.5
C3 C2 H2A	109.5	H11A C11 H11B	109.5
C1 C2 H2B	109.5	O11 C11 H11C	109.5
C3 C2 H2B	109.5	H11A C11 H11C	109.5
H2A C2 H2B	108.1	H11B C11 H11C	109.5
O2 C3 C2	105.29(8)	C112 C111 C116	118.08(10)
O2 C3 C4	109.44(8)	C112 C111 C7	121.19(9)
C2 C3 C4	114.46(8)	C116 C111 C7	120.72(9)

O2 C3 H3	109.2	C113 C112 C111	121.15(10)
С2 С3 Н3	109.2	C113 C112 H112	119.4
C4 C3 H3	109.2	C111 C112 H112	119.4
C3 C4 C5	108.98(8)	C114 C113 C112	120.16(10)
C3 C4 H4A	109.9	C114 C113 H113	119.9
C5 C4 H4A	109.9	C112 C113 H113	119.9
C3 C4 H4B	109.9	C113 C114 C115	119.46(10)
С5 С4 Н4В	109.9	C113 C114 H114	120.3
Н4А С4 Н4В	108.3	C115 C114 H114	120.3
O3 C5 C6	106.67(7)	C116 C115 C114	120.21(10)
O3 C5 C4	108.91(8)	C116 C115 H115	119.9
C6 C5 C4	114.24(8)	C114 C115 H115	119.9
O3 C5 H5	109	C115 C116 C111	120.92(10)
C6 C5 H5	109	C115 C116 H116	119.5
C4 C5 H5	109	C111 C116 H116	119.5
C5 C6 C7	112.64(8)	C212 C211 C216	119.84(9)
C5 C6 H6A	109.1	C212 C211 C8	120.00(8)
С7 С6 Н6А	109.1	C216 C211 C8	120.02(9)
С5 С6 Н6В	109.1	C211 C212 C213	119.88(9)
С7 С6 Н6В	109.1	C211 C212 H212	120.1
Н6А С6 Н6В	107.8	C213 C212 H212	120.1
C111 C7 C6	112.64(8)	C214 C213 C212	120.11(10)
C111 C7 H7A	109.1	C214 C213 H213	119.9
C6 C7 H7A	109.1	C212 C213 H213	119.9
С111 С7 Н7В	109.1	C215 C214 C213	120.04(10)
С6 С7 Н7В	109.1	C215 C214 H214	120
Н7А С7 Н7В	107.8	C213 C214 H214	120
03 C8 O2	112.60(8)	C214 C215 C216	120.15(10)
O3 C8 C211	113.51(8)	C214 C215 H215	119.9
O2 C8 C211	112.63(8)	C216 C215 H215	119.9
O3 C8 C9	103.80(7)	C215 C216 C211	119.98(10)
O2 C8 C9	104.11(7)	C215 C216 H216	120

C211 C8 C9	109.31(8)	C211 C216 H216	120

Atom	U11	U22	U33	U23	U13	U12
F91	0.0183(3)	0.0203(3)	0.0321(4)	-0.0013(3)	-0.0113(3)	-0.0079(2)
F92	0.0226(3)	0.0227(3)	0.0163(3)	0.0013(2)	-0.0060(2)	-0.0067(3)
F93	0.0194(3)	0.0150(3)	0.0267(3)	-0.0065(2)	-0.0051(2)	-0.0001(2)
01	0.0241(4)	0.0296(4)	0.0229(4)	-0.0103(3)	-0.0013(3)	-0.0147(3)
02	0.0140(3)	0.0145(3)	0.0131(3)	-0.0011(2)	-0.0018(2)	-0.0049(3)
03	0.0156(3)	0.0122(3)	0.0153(3)	-0.0040(2)	-0.0047(2)	-0.0025(3)
011	0.0200(4)	0.0191(4)	0.0232(4)	-0.0063(3)	0.0006(3)	-0.0087(3)
C1	0.0188(4)	0.0168(4)	0.0122(4)	0.0000(3)	-0.0047(3)	-0.0063(4)
C2	0.0222(5)	0.0167(5)	0.0146(4)	-0.0016(4)	-0.0026(4)	-0.0091(4)
С3	0.0164(4)	0.0143(4)	0.0138(4)	-0.0011(3)	-0.0041(3)	-0.0055(3)
C4	0.0182(4)	0.0135(4)	0.0159(4)	-0.0019(3)	-0.0045(3)	-0.0046(3)
C5	0.0142(4)	0.0119(4)	0.0163(4)	-0.0028(3)	-0.0043(3)	-0.0028(3)
C6	0.0168(4)	0.0133(4)	0.0174(4)	-0.0048(3)	-0.0023(3)	-0.0041(3)
C7	0.0214(5)	0.0140(4)	0.0180(4)	-0.0039(4)	-0.0020(4)	-0.0047(4)
C8	0.0139(4)	0.0129(4)	0.0131(4)	-0.0025(3)	-0.0021(3)	-0.0039(3)
С9	0.0160(4)	0.0140(4)	0.0178(4)	-0.0023(3)	-0.0043(3)	-0.0049(3)
C11	0.0245(5)	0.0214(5)	0.0289(6)	-0.0098(4)	0.0017(4)	-0.0078(4)
C111	0.0172(4)	0.0163(5)	0.0144(4)	-0.0031(3)	-0.0004(3)	-0.0063(4)
C112	0.0192(5)	0.0243(5)	0.0188(5)	-0.0028(4)	-0.0047(4)	-0.0046(4)
C113	0.0282(6)	0.0349(6)	0.0180(5)	-0.0067(4)	-0.0061(4)	-0.0128(5)
C114	0.0324(6)	0.0235(5)	0.0183(5)	-0.0086(4)	-0.0002(4)	-0.0111(5)
C115	0.0227(5)	0.0173(5)	0.0202(5)	-0.0043(4)	-0.0012(4)	-0.0041(4)
C116	0.0171(4)	0.0183(5)	0.0181(4)	-0.0035(4)	-0.0036(4)	-0.0054(4)
C211	0.0135(4)	0.0130(4)	0.0159(4)	-0.0014(3)	-0.0035(3)	-0.0046(3)
C212	0.0171(4)	0.0174(5)	0.0176(4)	-0.0045(4)	-0.0010(3)	-0.0074(4)
C213	0.0226(5)	0.0194(5)	0.0246(5)	-0.0070(4)	-0.0041(4)	-0.0096(4)
C214	0.0194(5)	0.0189(5)	0.0286(5)	-0.0036(4)	-0.0043(4)	-0.0100(4)

Table 11: Anisotropic displacement parameters (Å²)

C215	0.0163(4)	0.0207(5)	0.0239(5)	-0.0037(4)	0.0005(4)	-0.0076(4)
C216	0.0175(4)	0.0163(5)	0.0179(4)	-0.0043(4)	-0.0012(4)	-0.0058(4)

REFERENCES

- 1. T. Wang; X.-Q. Hao; J.-J. Huang; J.-L. Niu; J.-F. Gong; M.-P. Song, *J. Org. Chem.*, 2013, **78**, 8712.
- 2. B. Das; D. B. Shinde; B. S. Kanth; A. Kamle; C. G. Kumar, *Eur. J. Med. Chem.*, 2011, 46, 3124.
- 3. D. Goswami; A. Chattopadhyay; A. Sharma; S. Chattopadhyay, J. Org. Chem., 2012, 77, 11064.
- 4. P. Jain; J. C. Antilla, J. Am. Chem. Soc., 2010, **132**, 11884.
- 5. J. A. Gazaille; T. Sammakia, Org. Lett., 2012, 14, 2678.
- 6. R. A. Fernandes; V. P. Chavan, *European J. Org. Chem.*, 2010, **2010**, 4306.
- 7. M. Parra; R. Mestres; D. Aparicio; N. Durana; G. Rubiales, J. Chem. Soc. Perkin 1, 1989, 327.
- 8. J. Tsuji; I. Shimizu; I. Minami; Y. Ohashi; T. Sugiura; K. Takahashi, *J. Org. Chem.*, 1985, **50**, 1523.
- 9. D. Hoppe; R. Hanko; A. Brönneke; F. Lichtenberg; E. van Hülsen, *Chemische Berichte*, 1985, **118**, 2822.
- 10. S. C. Mauldin; W. J. Hornback; J. E. Munroe, J. Chem. Soc. Perkin 1, 2001, 1554.
- 11. M. Daumas; L. Vo-quang; F. L. Goffic, *Synth. Commun.*, 1990, **20**, 3395.
- 12. D. Rotulo-Sims; J. Prunet, Org. Lett., 2002, 4, 4701.
- 13. L. Grimaud; D. Rotulo; R. Ros-Perez; L. Guitry-Azam; J. Prunet, *Tetrahedron lett.,* 2002, **43**, 7477.
- 14. E. E. Smissman; J. P. Li; Z. H. Israili, J. Org. Chem., 1968, **33**, 4231.