Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting information for

Halogen bonding rotaxanes for nitrate recognition in aqueous media

Sean W. Robinson^a and Paul D. Beer^a*

^aChemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.

TABLE OF CONTENTS

S1.	GENERAL CONSIDERATIONS	2
~~		
52.	EXPERIMENTAL PROCEDURES & CHARACTERISATION DATA	2
S3.	¹ H NMR TITRATION PROTOCOL & DATA	14
S4.	NUCLEAR MAGNETIC RESONANCE (¹ H, ¹³ C, ³¹ P, ¹⁹ F AND 2D ¹ H– ¹ H ROESY) SPECTRA	17
S5.	REFERENCES	38

S1. GENERAL CONSIDERATIONS

All solvents and reagents were purchased from commercial suppliers and used as received unless otherwise stated. Dry solvents were obtained by purging with nitrogen and then passing through an MBraun MPSP-800 column. H₂O was de-ionized and micro filtered using a Milli-Q ® Millipore machine. Column chromatography was carried out on Merck® silica gel 60 under a positive pressure of nitrogen. Routine NMR spectra were recorded on either a Varian Mercury 300, a Bruker AVIII 400 or a Bruker AVIII 500 spectrometer with ¹H NMR titrations recorded on a Bruker AVIII 500 spectrometer. TBA salts were stored in a vacuum desiccator containing phosphorus pentoxide prior to use. Where mixtures of solvents were used, ratios are reported by volume. Chemical shifts are quoted in parts per million relative to the residual solvent peak. Mass spectra were recorded on a Bruker μ TOF spectrometer. Triethylamine was distilled from and stored over potassium hydroxide. Brine refers to a saturated aqueous solution of NaCl, NH₄OH_(aq.) refers to a 28–30% solution of NH₃ in water. Petrol refers to the fraction of petroleum ether boiling between 40 and 60 °C. Column chromatography was carried out on Merck[®] silica gel 60 under a positive pressure of nitrogen, preparative TLC was performed on 20 × 20 cm plates, with a silica layer of thickness 1 mm. Amberlite[®] was "loaded" by washing the resin with NaOH_(aq.) (10%), water, and either NH₄Cl_(aq.) (1 M), NaOTf_(aq.) (1 M) or NH₄PF_{6(aq.)} (0.1 M), followed by further water, and the solvent to be used in the anion exchange.

The following compounds were prepared according to literature procedures: hydroxypropyl-ethynyl bromopyridine $\mathbf{1}^{S1}$, asymmetrically protected diethynyl pyridine $\mathbf{2}^{S1}$, mono-deprotected diethynyl pyridine $\mathbf{3}^{S1}$, asymmetrically protected diethynyl bromopyridine $\mathbf{6}^{S3}$, terphenyl-propyl azide $\mathbf{9}^{S4}$, terphenyl-aryl azide $\mathbf{10}^{S5}$ permethyl- β -cyclodextrin azide $\mathbf{11}^{S6-9}$ 3-azido-1-mesyl-propane $\mathbf{14}^{S10}$ isophthalamide macrocycle $\mathbf{18}^{S11}$ pyridine bis-amide macrocycle precursor $\mathbf{S1}^{S12}$ and the hydrogen bonding [2]rotaxane^{S13} **28·PF**₆ has been previously reported.

Safety note

CAUTION: Low molecular weight organic azides, sodium azide and 1,2,3-triazole and triazolium groups are potentially explosive. While no problems were encountered in the course of this work, they should be handled in small quantities and with appropriate care.

S2. EXPERIMENTAL PROCEDURES & CHARACTERISATION DATA

3-(hydroxypropyl-iodotriazolyl)-5-(TBDMS-ethynyl)pyridine, 5

4 (0.10 g, 1.0 mmol) was dissolved in dry, degassed THF (1.0 mL) and covered in foil. NaI (0.50 g, 3.3 mmol) and Cu(ClO₄)₂·6H₂O (0.62 g, 1.7 mmol) were added and the mixture was stirred for 5 mins under N₂. TBTA (0.006 g, 11 µmol), DBU (0.13 g, 0.83 mmol, 0.5 mL THF) and **3** (0.20 g, 0.84 mmol, 0.5 mL THF) were added and the mixture was stirred under N₂ for 16 h. The reaction was diluted with DCM (80 mL) and washed with NH₄OH (2 × 40 mL) and brine (2 × 40 mL) and dried over MgSO₄. The solvent was removed *in vacuo*. Purification by silica gel column chromatography (5% MeOH in DCM) afforded **5** (0.375 g, 96%). ¹**H NMR** (400 MHz; CDCl₃) δ (ppm): 9.12 (1H, d, ⁴J_{elc} = 2.1 Hz, H_e), 8.69 (1H, d, ⁴J_{dlc} = 1.8 Hz, H_d), 8.31 (1H, t, ⁴J_{cle} = 2.1 Hz, H_c), 4.64 (2H, t, J_{flg} = 6.8 Hz, H_f), 3.73 (2H, q, J_{hlg,i} = 5.6 Hz, H_h), 2.21 (2H, quin, J_{glf,h} = 6.4 Hz, H_g), 1.79 (1H, t, J_{ilh} = 5.3 Hz, H_i), 1.01 (9H, s, H_a), 0.21 (6H, s, H_b). ¹³C{¹H} **NMR** (126 MHz; CDCl₃) δ (ppm): 152.2, 150.5, 146.9, 146.6, 146.1, 137.5, 137.1, 125.9, 120.4, 101.6, 97.5, 58.9, 47.9, 32.1, 26.1, 16.7, 1.0, -4.7. **HRESI-MS** (pos.): 469.09090, calc. for [C₁₈H₂₅IN₄OSi·H]⁺ = 469.09151.

3-(TMS-ethynyl)-5-(hydroxypropyl-ethynyl)pyridine, 7

6 (0.10 g, 0.40 mmol), CuI (0.02 g, 0.09 mmol), PPh₃ (0.02 g, 0.09 mmol) and Pd₂(dba)₃ (0.02 g, 0.02 mmol) were suspended in Et₃N and deoxygenated with N₂. 2-Methylbut-3-yn-2- ol (62 μ L, 0.64 mmol) was added and the mixture was stirred overnight at 75 °C under N₂. The mixture was cooled to room temperature and filtered through Celite[®] and washed with EtOAc (3 × 10 mL). The solvent was removed *in vacuo*. Purification by preparative thin layer chromatography (3% MeOH in DCM) afforded **7** (0.093 g, 91%). ¹**H NMR** (400 MHz; CDCl₃) δ (ppm): 8.56 (2H, br. s., H_{c,d}), 7.77 (1H, s, H_b), 1.61 (6H, s, H_e), 0.25 (9H, s, H_a). ¹³C{¹H} **NMR** (101 MHz; CDCl₃) δ (ppm): 151.1, 150.9, 141.3, 119.9, 119.5, 100.4, 99.2, 98.1, 78.0, 65.4, 31.3, 1.0. **HRESI-MS** (pos.): 258.13110, calc. for [C₁₅H₁₉NOSi·H]⁺ = 258.13087.

3-ethynyl-5-(hydroxypropyl-ethynyl)pyridine, 8

7 (0.48 g, 1.9 mmol) was dissolved in MeOH (2.3 mL) and KOH (0.11 g, 1.9 mmol) was added. The mixture was stirred at room temperature, overnight under N₂. Thereafter, H₂O (10 mL) and HCl (1 M aq., 5 mL) was added and the mixture was extracted with DCM (4 × 20 mL). The combined organics were dried over MgSO₄. The solvent was removed *in vacuo* to afford **8** (0.344 g, quant.). ¹**H** NMR (400 MHz; CDCl₃) δ (ppm): 8.60 (2H, d, ⁴*J*_{c,d|b} = 3.4 Hz, H_{c,d}), 7.80 (1H, t, ⁴*J*_{b|c,d} = 2.0 Hz, H_b), 3.23 (1H, s, H_a), 1.62 (6H, s, H_e). ¹³C{¹H} NMR (101 MHz; CDCl₃) δ (ppm): 151.3, 141.5, 132.0, 128.5, 119.7, 119.0, 98.5, 81.4, 79.4, 77.7, 65.3, 31.3. **HRESI-MS** (pos.): 186.09116, calc. for [C₁₂H₁₁NO·H]⁺ = 186.09134.

3,5-diiodoethynyl pyridine, 12

Previously prepared diethynyl pyridine^{S14} (0.128 g, 1.00 mmol) was dissolved in THF (10 mL). CuI (0.034 g, 0.18 mmol) and *N*-iodomorpholine (0.751 g, 2.20 mmol) were added to this solution and stirred at room temperature for 2 h after which a white precipitate had formed. The suspension was poured onto a pad of neutral alumina. The filtrate was collected under vacuum and the solid phase washed with DCM (4 × 20 mL). The combined organic fractions were washed with saturated Na₂S₂O₃ (40 mL), dried over MgSO₄ and the solvent removed under reduced pressure. The residue was taken up in 10% EtOAc in hexane and the solution poured onto a pad of silica. The filtrate was collected under vacuum and the solid phase washed with 10% EtOAc in hexane (4 × 20 mL). The organic fractions were combined and the solvent removed *in vacuo*. Purification by recrystallisation from hexane yielded **12** as shiny, feathery white crystals. Yield: 0.254 g (65%). ¹H NMR (300 MHz; CDCl₃) δ (ppm): 8.59 (2H, d, ⁴J_{b|a} = 2 Hz, H_b), 7.75 (1H, t, ⁴J_{a|b} = 2 Hz, H_a). ¹³C{¹H} NMR (75 MHz; CDCl₃) δ (ppm): 151.9, 142.3, 120.2, 89.8. HRESI-MS (pos.): 379.8421, calc. for [C₉H₃I₂N·H]⁺ = 379.8428.

3-iodoethynyl-5-(terphenyl-propyl-iodotriazolyl) pyridine, 13

[Cu(MeCN)₄][PF₆] (15 mg, 40 μmol) and TBTA (cat.) were dissolved in dry degassed THF (3 mL). **9** (0.13 g, 0.20 mmol) and **12** (82 mg, 0.20 mmol) were added. The mixture was stirred overnight, at room temperature under N₂. The solvent was removed *in vacuo*. The residue was redissolved in DCM (40 mL) and washed with NH₄OH (2 × 10 mL) and brine (2 × 10 mL). The organics were dried over MgSO₄. The solvent was removed *in vacuo*. Purification by preparative thin layer chromatography (0.5% MeOD in DCM) afforded **13** (66 mg, 34%). ¹**H NMR** (400 MHz; CDCl₃) δ (ppm): 9.16 (1H, s, H_j), 8.68 (1H, s, H_k), 8.36 (1H, s, H_i), 7.17–7.25 (6H, m, H_b), 7.03–7.17 (8H, m, H_{c,d}), 6.77 (2H, d, $J_{e|d} = 8.8$ Hz, H_e), 4.68 (2H, t, $J_{h|g} = 7.0$ Hz, H_h), 4.05 (2H, t, $J_{fig} = 5.6$ Hz, H_f), 2.46 (2H, quin, $J_{g|f,h} = 6.5$ Hz, H_g), 1.30 (27H, s, H_a). ¹³C{¹H} NMR (101 MHz; CDCl₃) δ (ppm): 156.1, 152.5, 148.3, 147.4, 146.3, 144.0, 140.1, 137.6, 132.3, 130.7, 126.0, 124.0, 120.4, 113.0, 90.4, 63.8, 63.0, 53.4, 48.1, 34.3, 31.4, 29.6, 11.9. HRESI-MS (pos.): 989.21199, calc. for [C₄₉H₅₂ON₄I₂·Na]⁺ = 989.21227.

3-azido-1-mesyl-propane, 14^{\$10}

$$a - S - O \xrightarrow{c}_{d} N_{3}$$

4 (1.4 g, 14 mmol) and Et₃N (4.0 mL, 29 mmol) were dissolved in dry degassed THF (150 mL). The solution was cooled to 0 °C. MsCl (1.5 mL, 19 mmol) was added and the mixture was stirred at room temperature, overnight under N₂. The solvent was removed *in vacuo*. The residue was taken up in DCM (100 mL) and washed with H₂O (3 × 100 mL) and NaHCO₃ (5% aq., 3 × 100 mL). The organics were dried over MgSO₄. The solvent was removed *in vacuo* to afford **14** (2.1 g, 87%). ¹H **NMR** (400 MHz; CDCl₃) δ (ppm): 4.32 (2H, t, $J_{d|c} = 6.0$ Hz, H_d), 3.49 (2H, t, $J_{b|c} = 6.4$ Hz, H_b), 3.03 (3H, s, H_a), 2.01 (2H, quin, $J_{c|b,d} = 6.2$ Hz, H_c).

3-(mesyl-propyl-iodotriazolyl)-5-(terphenyl-propyl-iodotriazolyl) pyridine, 15

[Cu(MeCN)₄][PF₆] (14 mg, 40 μmol) and TBTA (cat.) were dissolved in dry degassed THF (6 mL), and the flask was covered in tin foil. **14** (0.22 g, 1.3 mmol) and **13** (0.16 g, 0.16 mmol) were added. The mixture was stirred at room temperature, overnight under N₂. The mixture was diluted with CHCl₃ (60 mL) and washed with NH₄OH (2 × 10 mL) and brine (2 × 10 mL). The organics were dried over MgSO₄. The solvent was removed *in vacuo*. Purification by silica gel column chromatography (0–0.5% MeOH in DCM) afforded **15** (0.165 g, 86%) as a brown solid. **1H NMR** (500 MHz; CDCl₃) δ (ppm): 9.33 (2H, s, H_{j,k}), 9.23 (1H, s, H_i), 7.23 (6H, d, $J_{b|c} = 8.5$ Hz, H_b), 7.02–7.14 (8H, m, H_{c,d}), 6.77 (2H, d, $J_{e|d} = 8.7$ Hz, H_e), 4.71 (2H, t, $J_{1|m} = 6.4$ Hz, H₁), 4.65 (2H, t, $J_{h|g} = 6.4$ Hz, H_h), 4.33 (2H, t, $J_{n|m} = 5.6$ Hz, H_n), 4.06 (2H, t, $J_{f|g} = 5.6$ Hz, H_f), 3.08 (3H, s, H_o), 2.47 (4H, quin, $J_{f,h,l,n|g,m} = 6.3$ Hz, H_{g,m}), 1.29 (27H, s, H_a). ¹³C{¹H} **NMR** (101 MHz; CDCl₃) δ (ppm): 156.2, 148.3, 148.0, 147.9, 147.1, 146.8, 144.0, 140.1, 132.8, 132.3, 130.6, 126.3, 126.1, 124.0, 113.0, 66.0, 63.9, 63.0, 53.4, 48.1, 47.2, 37.5, 34.2, 31.3, 29.6, 29.2. **HRESI-MS** (pos.): 1168.2486, calc. for [C₅₃H₆₁I₂N₇O₄S·Na]⁺ = 1168.2487.

3-(azido-propyl-iodotriazolyl)-5-(terphenyl-propyl-iodotriazolyl) pyridine, 16

15 (0.16 g, 0.14 mmol) and NaN₃ (39 mg, 0.59 mmol) were dissolved in dry degassed DMF (6 mL) and stirred at 85 °C overnight under N₂. Thereafter, the mixture was cooled to room temperature, and partitioned between H₂O (20 mL) and EtOAc (20 mL). The aqueous layer was washed with further EtOAc (2 × 20 mL). The combined organics were washed with brine (3 × 10 mL) and dried over MgSO₄. The solvent was removed *in vacuo* afforded **16** (0.137 g, 87%) as a brown solid. ¹H NMR (400 MHz; CDCl₃) δ (ppm): 9.26 (2H, s, H_{j,k}), 8.87 (1H, s, H_i), 7.23 (6H, d, J_{b|c} = 8.0 Hz, H_b), 7.05–7.14 (8H, m, H_{c,d}), 6.78 (2H, d, J_{e|d} = 8.7

Hz, H_e), 4.70 (2H, t, $J_{l|m} = 6.8$ Hz, H_l), 4.58 (2H, t, $J_{h|g} = 6.8$ Hz, H_h), 4.06 (2H, t, $J_{n|m} = 5.6$ Hz, H_n), 3.47 (2H, t, $J_{f|g} = 6.4$ Hz, H_f), 2.47 (2H, quin, $J_{m|l,n} = 6.4$ Hz, H_m), 2.25 (2H, quin, $J_{g|f,h} = 6.4$ Hz, H_g), 1.30 (27H, s, H_a). ¹³C{¹H} NMR (101 MHz; CDCl₃) δ (ppm): 156.1, 148.3, 148.2, 147.9, 147.8, 147.0, 146.8, 144.0, 140.1, 133.0, 132.4, 132.3, 130.7, 129.0, 128.9, 128.5, 128.2, 126.4, 126.2, 125.3, 124.0, 124.0, 113.0, 63.9, 63.0, 48.2, 48.1, 48.0, 34.3, 31.3, 29.6, 29.0, 21.4. **HRESI-MS** (pos.): 1115.27745, calc. for [C₅₂H₅₈I₂N₁₀O·Na]⁺ = 1115.27766.

3-(azido-propyl-iodotriazolyl)-5-(terphenyl-propyl-iodotriazolyl) pyridinium tetrafluoroborate, 17·BF₄

Initially, **16** (38 mg, 35 µmol) was dissolved in CH₃I (2 mL) and stirred at 35 °C overnight under N₂.The solvent was removed *in vacuo* but afforded an insoluble powder that could not be anion exchanged to a more soluble anion. Consequently, in a second method, **16** (60 mg, 55 µmol) was dissolved in dry DCM (5 mL). [Me₃O][BF₄] (8.8 mg, 60 µmol) was added and the mixture was stirred at room temperature overnight under N₂. Thereafter, the reaction was quenched with MeOH (1 mL) and the solvent was removed *in vacuo*. Purification by preparative thin layer chromatography (3% MeOH in DCM) afforded **17·BF**₄ (30.0 mg, 46%) as a white powder. ¹H NMR (400 MHz; CD₃OD) δ (ppm): 9.75 (1H, s, H_i), 9.30–9.51 (2H, m, H_{j,k}), 7.15–7.25 (6H, m, H_b), 6.99–7.10 (8H, m, H_{c,d}), 6.74 (2H, d, $J_{e|d} = 8.9$ Hz, H_e), 4.73 (2H, t, $J_{o|n} = 6.9$ Hz, H_o), 4.61 (2H, t, $J_{h|g} = 6.6$ Hz, H_h), 4.58 (3H, s, H_i), 4.04 (2H, t, $J_{m|n} = 5.6$ Hz, H_m), 3.45 (2H, t, $J_{f|g} = 6.3$ Hz, H_f), 2.46 (2H, quin, $J_{n|m,o} = 6.1$ Hz, H_n), 2.23 (2H, quin, $J_{g|f,h} = 6.4$ Hz, H_g), 1.26 (27H, s, H_a). ¹³C{¹H} NMR (101 MHz; CD₃OD) δ (ppm): 148.4, 144.1, 140.2, 132.3, 130.6, 124.0, 113.0, 63.9, 63.0, 42.2, 34.2, 31.1, 28.8. ¹⁹F NMR (377 MHz; CD₃OD) δ (ppm): -153.84 (s, BF₄). **HRESI-MS** (pos.): 1107.31149, calc. for [C₅₃H₆₁I₂N₁₀O]⁺ = 1107.31137.

Asymmetric rotaxane: pyridinium/pyridine bis-iodotriazole axle-isophthalamide 5-O-polyether macrocycle, 19·PF₆

18 (13 mg, 20 μ mol), 17·BF₄ (12 mg, 10 μ mol) and TBA·Cl (2.5 mg, 10 μ mol) were dissolved in dry, degassed THF (1 mL), and the flask was covered in tin foil. The mixture was stirred for 30 mins, and thereafter, [Cu(MeCN)₄][PF₆] (cat.), TBTA (cat.) and 13 (10.5 mg, 10 µmol) were added. The mixture was stirred at room temperature, overnight under N2. The mixture was diluted with CHCl3 (20 mL), and washed with NH₄OH (2 \times 10 mL) and brine (2 \times 10 mL). The solvent was removed *in vacuo*. Purification by preparative thin layer chromatography (3% MeOH in DCM) afforded 19.Cl which was anion exchanged to the hexafluorophosphate salt by washing with NH₄PF₆ (0.1 M aq., 8×10 mL) and H₂O (2 × 10 mL). The solvent was removed in vacuo to afford 19·PF₆ (9.0 mg, 32%). ¹H NMR (400 MHz; CDCl₃) δ (ppm): 9.57 (1H, br. s., H_i), 9.33 (1H, br. s., H_k), 9.27 (3H, br. s., H_{p,q,r}), 8.91 (1H, s, H₃), 8.48 (2H, br. s., H₄), 8.40 (1H, s, H_i), 8.35 (2H, d, $J_{2|1} = 7.8$ Hz, H₂), 7.53 (1H, t, $J_{1|2} = 7.8$ Hz, H₁), 7.17–7.24 (12H, m, H_{b,y}), 7.02–7.12 $(16H, m, H_{c,d,w,x}), 6.78 (4H, d, J_{e,v|d,w} = 7.5 \text{ Hz}, H_{e,v}), 6.31 (4H, d, J_{8|7} = 9.0 \text{ Hz}, H_8), 5.79 (4H, d, J_{7|8} = 8.9 \text{ Hz}, H_8)$ H₇), 4.69 (2H, t, J = 6.9 Hz, H_h), 4.59 (3H, s, H_l), 3.46–4.56 (36H, m, H_{f,m,o,s,u,5,6,9,10,11,12}), 2.30–2.53 (6H, m, m, m, m) $H_{g,n,t}$, 1.29 (54H, s, $H_{a,z}$). ¹³C{¹H} NMR (101 MHz; CDCl₃) δ (ppm): 148.4, 132.3, 130.7, 129.1, 128.2, 124.1, 113.1, 69.5, 34.3, 31.4 (several peaks were too weak to be detected). ³¹**P** NMR (162 MHz; CDCl₃) δ (ppm): -144:20 (spt, J = 714.0 Hz, PF_6). ¹⁹F NMR (377 MHz; CDCl₃) δ (ppm): -71:08 (d, J = 714.0 Hz, PF_6). **HRESI-MS** (pos.): 2669.80135, calc. for $[C_{134}H_{151}I_4N_{16}O_{11}] + = 2669.80333$.

Dicationic rotaxane: bis-(3,5-bis-iodotriazole pyridinium) axle-isophthalamide 5-O-polyether macrocycle, $20 \cdot (PF_6)_2$

19·PF₆ (7.6 mg, 2.7 μmol) was dissolved in dry CHCl₃ (1 mL) and CH₃I (10 μL) was added. The mixture was stirred overnight at room temperature under N₂. However, no evidence of product formation was observed by mass spectrometric analysis. A further portion of CH₃I (0.1 mL) was added and the mixture was stirred for 3 days. Thereafter, the solvent was removed *in vacuo* and rotaxane was anion exchanged to the hexafluorophosphate salt by washing a CHCl₃ solution (25 mL) of the crude mixture with NH₄PF₆ (0.1 M, 8 × 10 mL) and H₂O (2 × 10 mL). The solvent was removed *in vacuo* to afford the target rotaxane **20·(PF₆)**₂ (2.9 mg, 36%). ¹**H NMR** (500 MHz; 45:45:10 CDCl₃:CD₃OD:D₂O) δ (ppm): 9.44 (2H, s, H_{j,k}), 9.38 (2H, s, H_{q,r}), 9.19 (1H, br. s., H₃), 8.66 (1H, br. s., H_i), 8.26 (2H, br. s., H_{p,1}), 8.05 (2H, d, H₄), 8.01 (2H, d, H₂), 7.15–7.26 (12H, m, H_{b,2}), 6.98–7.14 (16H, m, H_{c,d,x,y}), 6.74–6.86 (12H, m, H_{e,w,7,8}), 3.56–4.16 (42H, m, H_{f,h,l,m,o,s,t,v,5,6,9,10,11,12}), 2.54 (2H, br. s., H_n), 2.44 (4H, br. s., H_{g,u}), 1.18–1.36 (54H, m, H_{a,aa}). ¹³C{¹H} **NMR** (101 MHz; CDCl3) δ (ppm): 155.6, 148.1, 130.9, 129.6, 124.2, 115.8, 115.6, 95.9, 70.9, 69.9, 60.0, 39.9, 34.4, 31.5, 29.2, 18.3 (several resonances were too weak to detect). ³¹P **NMR** (162 MHz; CDCl₃) δ (ppm): -144:36 (spt, *J* = 714.0 Hz, *PF*₆). ¹⁹F **NMR** (377 MHz; CDCl₃) δ (ppm): -70:82 (d, *J* = 714.0 Hz, *PF*₆). **HRESI-MS** (pos.): 1341.90639, calc. for [C₁₃₅H₁₅₄I₄N₁₆O₁₁]⁺ = 1341.90922.

3-(mesyl-propyl-iodotriazolyl)-5-(iodoethynyl)pyridine, 21

[Cu(MeCN)₄][PF₆] (23 mg, 62 μmol) and TBTA (cat.) were dissolved in dry, degassed THF, and the flask was covered in foil. **14** (56 mg, 0.30 mmol) and **12** (0.12 g, 0.30 mmol) were added, and the mixture was stirred at room temperature, overnight under N₂. Thereafter, the mixture was diluted with CDCl₃ (50 mL), and washed with NH₄OH (2 × 10 mL) and brine (2 × 10 mL). The organics were dried over MgSO₄. The solvent was removed *in vacuo*. Purification by silica gel column chromatography (0.75% MeOH in DCM) afforded **21** (47 mg, 27%). ¹**H** NMR (400 MHz; CDCl₃) δ (ppm): 9.13 (1H, s, H_b), 8.69 (1H, s, H_a), 8.28 (1H, t, ⁴*J*_{c|a,b} = 2.0 Hz, H_c), 4.63 (2H, t, *J*_{d|e} = 6.7 Hz, H_d), 4.32 (2H, t, *J*_{f|e} = 5.7 Hz, H_f), 3.07 (3H, s, H_g), 2.45 (2H, quin, *J*_{e|d,f} = 6.1 Hz, H_e). ¹³C{¹H} NMR (101 MHz; 5:1 CDCl₃:CD₃OD) δ (ppm): 152.4, 151.2, 147.1, 146.8, 138.5, 126.7, 66.7, 47.8, 37.6, 29.6. **HRESI-MS** (pos.): 558.87936, calc. for [C₁₃H₁₂I₂N₄O₃S·H]⁺ = 558.87922.

21 (14 mg, 26 μmol), **11** (43 mg, 29 μmol), [Cu(MeCN)₄][PF₆] (cat.) and TBTA (cat.) were dissolved in dry, degassed THF (1.5 mL), and the flask was covered in foil. The mixture was stirred at room temperature, overnight under N₂. The mixture was diluted with CHCl₃ (20 mL) and washed with NH₄OH (2 × 10 mL) and brine (2 × 10 mL). The organics were dried over MgSO₄. The solvent was removed *in vacuo*. Purification by preparative thin layer chromatography (3% MeOH in DCM) afforded **22** (10.2 mg, 20%). ¹**H NMR** (400 MHz; CDCl₃) δ (ppm): 9.24 (2H, d, ${}^{4}J_{k,lj} = 2.0$ Hz, H_{k,l}), 8.85 (1H, t, ${}^{4}J_{j|k,l} = 2.0$ Hz, H_j), 4.94–5.26 (7H, m, H_a), 4.62 (2H, t, $J_{m|n} = 6.7$ Hz, H_m), 4.32 (2H, t, $J_{o|n} = 5.7$ Hz, H_o), 3.06 (3H, s, H_p), 2.84–4.12 (102H, m, H_{b,c,d,e,f,g,h,i}), 2.45 (2H, quin, $J_{n|m,o} = 6.1$ Hz, H_n). ¹³C{¹H} NMR (126 MHz; CDCl₃) δ (ppm): 148.0, 147.1, 146.2, 132.8, 126.5, 126.2, 124.8, 99.8–98.2, 84.2, 82.3–79.8, 71.4–70.3, 65.9, 61.9–58.4, 51.8, 47.2, 37.6, 29.7, 29.2. HRESI-MS (pos.): 1998.56222, calc. for [C₇₅H₁₂₁O₃₇N₇I₂S·H]⁺ = 1998.56847.

3-(permethyl-\beta-cyclodextrin-iodotriazolyl)-5-(iodoethynyl)pyridine, 23

[Cu(MeCN)₄][PF₆] (10 mg, 27 µmol) and TBTA (cat.) were dissolved in dry degassed THF (1 mL). **11** (0.10 g, 69 µmol) and **12** (26 mg, 69 µmol) were added. The mixture was stirred overnight, at room temperature under N₂. The solvent was removed *in vacuo*. The residue was redissolved in DCM (40 mL) and washed with NH₄OH (2 × 10 mL) and brine (2 × 10 mL). The organics were dried over MgSO₄. The solvent was removed *in vacuo*. Purification by preparative thin layer chromatography (3% MeOH in DCM) afforded **23** (6.4 mg, 5%). ¹**H** NMR (400 MHz; CDCl₃) δ (ppm): 9.17 (1H, d, ⁴J_{klj} = 1.6 Hz, H_k), 8.68 (1H, s, H_l), 8.30 (1H, s, H_l), 4.96–5.29 (7H, m, H_a), 2.80–4.16 (102H, m, H_{bc,de,f,g,h,i}). ¹³C{¹H} NMR (126 MHz; CDCl₃) δ

(ppm): 147.1, 145.6, 137.4, 134.2, 127.3, 126.1, 104.4, 99.8–98.2, 84.1–79.9, 71.5–70.5, 61.8–58.4, 51.9, 29.7. **HRESI-MS** (pos.): 1819.52786, calc. for $[C_{71}H_{112}O_{34}N_4I_2 \cdot H]^+ = 1819.53201$.

3-(azido-propyl-iodotriazolyl)-5-(permethyl-\$\beta\$-cyclodextrin-iodotriazolyl)pyridine, 24

22 (64 mg, 32 µmol) and NaN₃ (11 mg, 0.16 mmol) were dissolved in dry, degassed DMF (2 mL), and the mixture was stirred at 85 °C, overnight under N₂. The mixture was cooled to room temperature and partitioned between H₂O (10 mL) and EtOAc (10 mL). The aqueous layer was washed with EtOAc (2 × 10 mL). The combined organics were washed with brine (3 × 10 mL), and dried over MgSO₄. The solvent was removed *in vacuo* to afford **24** (62 mg, quant.). ¹**H** NMR (400 MHz; CDCl₃) δ (ppm): 9.22 (2H, s, H_{k,l}), 8.85 (1H, s, H_j), 4.90–5.36 (7H, m, H_a), 4.55 (2H, t, $J_{m|n} = 6.8$ Hz, H_m), 3.01–3.97 (104H, m, H_{b,c,d,e,f,g,h,i,o}), 2.22 (1H, quin, $J_{n|m,o} = 6.5$ Hz, H_n). ¹³C{¹H} NMR (101 MHz; CDCl₃) δ (ppm): 147.8, 147.7, 146.8, 146.1, 132.8, 130.8, 128.7, 126.4, 126.3, 99.7–98.7, 84.1, 82.2, 81.9–79.7, 71.3–70.1, 61.7–61.1, 59.1–58.3, 51.8, 48.0, 48.0, 29.6, 29.0. **HRESI-MS** (pos.): 1945.59012, calc. for [C₇₄H₁₁₈O₃₄N₁₀I₂·H]⁺ = 1945.59850.

3-(azido-propyl-iodotriazolyl)-5-(permethyl-β-cyclodextrin-iodotriazolyl)pyridinium chloride, 25·Cl

24 (80 mg, 41 µmol) was dissolved in CHCl₃ (0.2 mL) and CH₃I (0.1 mL 1.0 mmol) was added. The mixture was stirred overnight at 40 °C under N₂. The solvent was removed *in vacuo*. The residue was taken up in CHCl₃ (1.5 mL) and passed through a chloride-loaded Amberlite[®] column to afford the desired product **25**•Cl (56.6 mg, 69%). ¹H NMR (400 MHz; CDCl₃) δ (ppm): 10.17 (1H, s, H_j), 9.40 (2H, s, H_{k,l}), 4.88–5.29

(7H, m, H_a), 4.67 (3H, s, H_m), 2.88–4.49 (106H, m, H_{b,c,d,e,f,g,h,I,n,p}), 2.05 (2H, quin, $J_{o|n,p} = 6.8$ Hz, H_o). ¹³C{¹H} NMR (101 MHz; CDCl₃) δ (ppm): 141.7, 141.1, 140.2, 140.1, 133.3, 133.0, 132.2, 131.9, 130.9, 128.8, 99.1–97.7, 83.0–81.1, 80.5–78.7, 71.3–69.5, 61.9–57.9, 53.7, 50.4, 48.2, 48.1, 31.7, 29.6, 29.2, 28.9. HRESI-MS (pos.): 1959.60753, calc. for $[C_{75}H_{121}O_{34}N_{10}L_2]^+ = 1959.61305$.

Pyridine-bis-amide 5-oxygen-polyether macrocycle, S1^{S12}

Pyridine-3,5-dicarboxylic acid (0.19 g, 1.0 mmol) was suspended in DCM (4 mL), and (COCl)₂ (0.4 mL) was added. The mixture was refluxed overnight under N₂. The solvent was removed *in vacuo*, and the residue was redissolved in dry DCM (20 mL). This was added dropwise to a solution of **S2**^{S12} (0.54 g, 1.0 mmol), **S3·Cl**^{S12} (0.38 g, 1.0 mmol) and Et₃N (3.3 mL, 23 mmol) dissolved in dry DCM (50 mL). The mixture was stirred at room temperature for 1 h under N₂. Thereafter, the mixture was washed with HCl (10% aq., 2 × 50 mL) and H₂O (2 × 50 mL). The organics were dried over MgSO₄. The solvent was removed *in vacuo*. Purification by silica gel column chromatography (3% MeOH in CHCl₃) afforded **S1** (0.25 g, 43%) as a white powder. ¹H NMR (400 MHz; CD₃OD) δ (ppm): 9.08 (2H, d, ⁴J_{alb} = 2.2 Hz, H_a), 8.39–8.51 (1H, m, H_b), 6.77 (8H, s, H_{f,g}), 4.07 (4H, t, J_{dle} = 4.9 Hz, H_d), 3.97–4.03 (4H, m, H_e), 3.75–3.82 (8H, m, H_{h,i}), 3.62–3.70 (8H, m, H_{j,k}). **LRESI-MS** (pos.): 596.28, calc. for [C₃₁H₃₇N₃O₉·H]⁺ = 596.26.

Water-soluble asymmetric monocationic [2]rotaxane: permethyl-β-cyclodextrin-stoppered pyridinium/pyridine bis-iodotriazole axle with pyridine bis-amide 5-O-polyether macrocycle, S4·Cl

S1^{S12} (8.0 mg, 13 μmol), **25**•**Cl** (7.3 mg, 3.5 μmol) and **23** (6.4 mg, 3.5 μmol) were dissolved in dry, degassed THF (0.1 mL). The flask was covered in foil and the mixture was stirred for 30 mins. Thereafter, a solution of [Cu(MeCN)₄][PF₆] (cat.) and TBTA (cat.) in dry, degassed THF (0.1 mL) was added, and the mixture was stirred overnight at room temperature under N₂. The mixture was then diluted with CHCl₃ (20 mL) and washed with NH₄OH (10 mL) and brine (10 mL). The solvent was removed *in vacuo* and the organics were dried over MgSO₄. Purification by preparative thin layer chromatography (8% MeOH in DCM) afforded the monocationic [2]rotaxane precursor **S4**•**Cl** (1.7 mg, 9%). ¹**H NMR** (400 MHz; CDCl₃) δ (ppm): 9.81 (1H, br. s., H_k), 9.73 (1H, br. s., H₁), 9.50 (2H, d, H_{r,s}), 9.28 (2H, d, H₁), 9.10 (1H, br. s., H_j), 8.94 (1H, br. s., H₂), 8.62 (2H, br. s., H₃), 8.26 (1H, br. s., H_q), 6.27–6.44 (8H, m, H_{6,7}), 4.98–5.33 (14H, m, H_a), 2.79–4.83 (235H, m, H_{b,c,d,e,f,g,h,i,m,p,4,5,8,9,10,11), 2.21–2.47 (2H, m, H_o). **HRESI-MS** (pos.): 2188.20672, calc. for [C₁₇₇H₂₇₀O₇₇₇N₁₇I₄·H]²⁺ = 2188.20236.}

Water-soluble symmetric tricationic [2]rotaxane: permethyl- β -cyclodextrin-stoppered bis-(3,5-bisiodotriazole pyridinium) axle with pyridinium bis-amide 5-O-polyether macrocycle, $27 \cdot (OTf)_3$

The monocationic [2]rotaxane precursor **S4·Cl** (4.0 mg, 0.9 µmol) was dissolved in CHCl₃ (1.5 mL) and CH₃I (0.5 mL) was added. The solution was stirred at room temperature overnight, under N₂. The solvent was removed *in vacuo*. Anion exchange to the triflate (OTf⁻) salt was achieved by passing a solution of the [2]rotaxane through a triflate-loaded Amberlite[®] column to afford **27·(OTf)₃** (4.0 mg, 99%). ¹**H NMR** (500 MHz; CDCl₃) δ (ppm): 9.74–10.33 (6H, m, H_{j,k,l}), 9.24 (2H, br. s., H₂), 8.46 (1H, br. s., H₃), 6.14 (8H, br. s., H_{7,8}), 5.00–5.25 (14H, m, H_a), 2.78–4.99 (241H, m, H_{b,c,d,e,f,g,h,i,m,n,1,5,6,9,10,11,2), 2.25–2.43 (2H, m, H₀). ¹³C{¹H} NMR (126 MHz; CDCl₃) δ (ppm): 167.8, 159.7, 152.0, 137.2, 132.4, 130.9, 130.0, 129.9, 129.7, 128.8, 99.2–98.5, 90.8, 82.0–80.0, 71.2–68.0, 61.6–58.2, 45.9, 38.7–35.9, 32.7, 32.2, 31.9, 31.4, 30.3, 30.3, 30.0, 29.7, 29.7, 29.5, 29.4, 29.2, 28.9, 27.2, 27.1, 26.4, 25.6, 24.8, 24.3, 23.7, 23.4, 23.0, 22.7, 14.1, 14.0, 10.9. ¹⁹F NMR (377 MHz; CDCl₃) δ (ppm): –78:28 (s, CF₃SO₃⁻). **HRESI-MS** (pos.): 1468.47832, calc. for [C₁₇₉H₂₇₆I₄N₁₇O₇₇]³⁺ = 1468.48110.}

S3.¹H NMR TITRATION PROTOCOL & DATA

Organic and aqueous-organic solvents

Spectra for 1H NMR titrations were recorded at 293 K on a Varian Unity Plus 500 spectrometer with 1H operating at 500 MHz. Initial sample volumes were 0.50 mL and concentrations were 1.0 mmol L^{-1} of host. Solutions (50 mmol L^{-1}) of anions as their tetrabutylammonium salts were added in aliquots, the samples thoroughly shaken and spectra recorded. Spectra were recorded at 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, 4.0, 5.0, 7.0 and 10 equivalents of anion. Stability constants were obtained by analysis of the resulting data using the WinEQNMR2^{S15} computer program; In all cases where association constants were calculated, bound and unbound species were found to be in fast exchange on the NMR timescale.

Aqueous titrations

A solution of the tricationic [2]rotaxane $27 \cdot (OTf)_3$ (1 mM) was titrated with anions as the sodium salts (0.5 M) in 9:1 D₂O:acetone- d_6 at 293 K; all spectra were referenced to the acetone- d_6 resonance at 2.10 ppm. The chemical shift of protons b, 2 and 3, as appropriate, were monitored. Spectra were recorded at 0, 1, 2, 3, 5, 7, 10, 15, 20, 25, 30, 40, 50, 60, 80, 100 and 120 equivalents of anion. Stability constants were obtained by analysis of the resulting data using the WinEQNMR2^{S15} computer program; In all cases where association constants were calculated, bound and unbound species were found to be in fast exchange on the NMR timescale.

Binding Isotherms for Anion Association of 19-PF₆

Figure S1: Observed data (solid points) and fitted isotherms^{S15} (lines) for addition of anions as their TBA salts to 19·PF₆ (293 K, 1:1 CDCl₃:CD₃OD, 500 MHz).

Binding Isotherms for Anion Association of 20 · (PF₆)₂

Figure S2: Observed data (solid points) and fitted isotherms^{S15} (lines) for addition of anions as their TBA salts to 20 (PF₆)₂ (293 K, 45:45:10 CDCl₃:CD₃OD:D₂O, 500 MHz).

Figure S3: Observed data (solid points) and fitted isotherms^{S15} (lines) for addition of anions as their sodium salts to $27 \cdot (OTf)_3$ (293 K, 9:1 D₂O:acetone- d_6 , 500 MHz).

Figure S4: Representative ¹H NMR spectra for the titration of $27 \cdot (OTf)_3$ with NO₃ in 9:1 D₂O:acetone- d_6 .

S4. NUCLEAR MAGNETIC RESONANCE (¹H, ¹³C, ³¹P, ¹⁹F AND 2D ¹H–¹H ROESY) SPECTRA

3-(hydroxypropyl-iodotriazolyl)-5-(TBDMS-ethynyl)pyridine, 5

Figure S6: ¹³C NMR spectrum of 3-(hydroxypropyl-iodotriazolyl)-5-(TBDMS-ethynyl)pyridine, 5 (126 MHz, CDCl₃)

3-(TMS-ethynyl)-5-(hydroxypropyl-ethynyl)pyridine, 7

Figure S7: ¹H NMR spectrum of 3-(TMS-ethynyl)-5-(hydroxypropyl-ethynyl)pyridine, 7 (400 MHz, CDCl₃)

Figure S8: ¹³C NMR spectrum of 3-(TMS-ethynyl)-5-(hydroxypropyl-ethynyl)pyridine, 7 (100 MHz, CDCl₃)

3-ethynyl-5-(hydroxypropyl-ethynyl)pyridine, 8

Figure S9: ¹H NMR spectrum of 3-ethynyl-5-(hydroxypropyl-ethynyl)pyridine, 8 (400 MHz, CDCl₃)

Figure S10: ¹³C NMR spectrum of 3-ethynyl-5-(hydroxypropyl-ethynyl)pyridine, 8 (100 MHz, CDCl₃)

Figure S11: ¹H NMR spectrum of 3,5-diiodoethynyl pyridine, 12 (300 MHz, CDCl₃)

Figure S12: ¹³C NMR spectrum of 3,5-diiodoethynyl pyridine, 12 (76 MHz, CDCl₃)

Figure S13: ¹H NMR spectrum of 3-iodoethynyl-5-(terphenyl-propyl-iodotriazolyl) pyridine, 13 (400 MHz, CDCl₃)

Figure S14: ¹³C NMR spectrum of 3-iodoethynyl-5-(terphenyl-propyl-iodotriazolyl) pyridine, 13 (100 MHz, CDCl₃)

3-(mesyl-propyl-iodotriazolyl)-5-(terphenyl-propyl-iodotriazolyl) pyridine, 15

Figure S15: ¹H NMR spectrum of 3-(mesyl-propyl-iodotriazolyl)-5-(terphenyl-propyl-iodotriazolyl) pyridine, 15 (500 MHz, CDCl₃)

Figure S16: ¹³C NMR spectrum of 3-(mesyl-propyl-iodotriazolyl)-5-(terphenyl-propyl-iodotriazolyl) pyridine, 15 (100 MHz, CDCl₃)

3-(azido-propyl-iodotriazolyl)-5-(terphenyl-propyl-iodotriazolyl) pyridine, 16

Figure S17: ¹H NMR spectrum of 3-(azido-propyl-iodotriazolyl)-5-(terphenyl-propyl-iodotriazolyl) pyridine, 16 (400 MHz, CDCl₃)

Figure S18: ¹³C NMR spectrum of 3-(azido-propyl-iodotriazolyl)-5-(terphenyl-propyl-iodotriazolyl) pyridine, 16 (100 MHz, CDCl₃)

3-(azido-propyl-iodotriazolyl)-5-(terphenyl-propyl-iodotriazolyl) pyridinium tetrafluoroborate, $17 \cdot BF_4$

Figure S19: ¹H NMR spectrum of 3-(azido-propyl-iodotriazolyl)-5-(terphenyl-propyl-iodotriazolyl) pyridinium tetrafluoroborate, 17·BF₄ (400 MHz, 3% MeOD:CDCl₃)

Figure S20: ¹³C NMR spectrum of 3-(azido-propyl-iodotriazolyl)-5-(terphenyl-propyl-iodotriazolyl) pyridinium tetrafluoroborate, 17·BF₄ (100 MHz, 3% MeOD:CDCl₃)

Figure S21: ¹⁹F NMR spectrum of 3-(azido-propyl-iodotriazolyl)-5-(terphenyl-propyl-iodotriazolyl) pyridinium tetrafluoroborate, 17·BF₄ (376 MHz, 3% MeOD:CDCl₃)

Asymmetric rotaxane: pyridinium/pyridine bis-iodotriazole axle-isophthalamide 5-O-polyether macrocycle, $19 \cdot PF_6$

Figure S22: ¹H NMR spectrum of Asymmetric rotaxane: pyridinium/pyridine bis-iodotriazole axle–isophthalamide 5-O-polyether macrocycle, 19·PF₆ (400 MHz, CDCl₃)

Figure S23: ¹³C NMR spectrum of Asymmetric rotaxane: pyridinium/pyridine bis-iodotriazole axle–isophthalamide 5-O-polyether macrocycle, 19·PF₆ (100 MHz, CDCl₃)

Figure S24: ³¹P NMR spectrum of Asymmetric rotaxane: pyridinium/pyridine bis-iodotriazole axle–isophthalamide 5-O-polyether macrocycle, 19·PF₆ (162 MHz, CDCl₃)

Figure S25: ¹⁹F NMR spectrum of Asymmetric rotaxane: pyridinium/pyridine bis-iodotriazole axle–isophthalamide 5-O-polyether macrocycle, 19·PF₆ (376 MHz, CDCl₃)

Dicationic rotaxane: bis-(3,5-bis-iodotriazole pyridinium) axle-isophthalamide 5-O-polyether macrocycle, $20 \cdot (PF_6)_2$

Figure S26: ¹H NMR spectrum of Dicationic rotaxane: bis-(3,5-bis-iodotriazole pyridinium) axle–isophthalamide 5-*O*-polyether macrocycle, 20·(PF₆)₂ (500 MHz, 45:45:10 CDCl₃:CD₃OD:D₂O)

Figure S27: ¹³C NMR spectrum of Dicationic rotaxane: bis-(3,5-bis-iodotriazole pyridinium) axle–isophthalamide 5-*O*-polyether macrocycle, 20·(PF₆)₂ (100 MHz, CDCl₃)

Figure S28: ³¹P NMR spectrum of Dicationic rotaxane: bis-(3,5-bis-iodotriazole pyridinium) axle–isophthalamide 5-*O*-polyether macrocycle, 20·(PF₆)₂ (162 MHz, CDCl₃)

Figure S29: ¹⁹F NMR spectrum of Dicationic rotaxane: bis-(3,5-bis-iodotriazole pyridinium) axle–isophthalamide 5-*O*-polyether macrocycle, 20·(PF₆)₂ (376 MHz, CDCl₃)

3-(mesyl-propyl-iodotriazolyl)-5-(iodoethynyl)pyridine, 21

Figure S30: ¹H NMR spectrum of 3-(mesyl-propyl-iodotriazolyl)-5-(iodoethynyl)pyridine, 21 (400 MHz, 1:1 CDCl₃:CD₃OD)

Figure S31: ¹³C NMR spectrum of 3-(mesyl-propyl-iodotriazolyl)-5-(iodoethynyl)pyridine, 21 (100 MHz, 1:1 CDCl₃:CD₃OD)

3-(mesyl-propyl-iodotriazolyl)-5-(permethyl- β -cyclodextrin-iodotriazolyl)pyridine, 22

Figure S32: ¹H NMR spectrum of 3-(mesyl-propyl-iodotriazolyl)-5-(permethyl-β-cyclodextrin-iodotriazolyl)pyridine, 22 (500 MHz, CDCl₃)

Figure S33: ¹³C NMR spectrum of 3-(mesyl-propyl-iodotriazolyl)-5-(permethyl-β-cyclodextrin-iodotriazolyl)pyridine, 22 (126 MHz, CDCl₃)

3-(permethyl-β-cyclodextrin-iodotriazolyl)-5-(iodoethynyl)pyridine, 23

Figure S34: ¹H NMR spectrum of 3-(permethyl-β-cyclodextrin-iodotriazolyl)-5-(iodoethynyl)pyridine, 23 (400 MHz, CDCl₃)

Figure S35: ¹³C NMR spectrum of 3-(permethyl-β-cyclodextrin-iodotriazolyl)-5-(iodoethynyl)pyridine, 23 (100 MHz, CDCl₃)

3-(azido-propyl-iodotriazolyl)-5-(permethyl- β -cyclodextrin-iodotriazolyl)pyridine, 24

Figure S36: ¹H NMR spectrum of 3-(azido-propyl-iodotriazolyl)-5-(permethyl-β-cyclodextrin-iodotriazolyl)pyridine, 24 (400 MHz, CDCl₃)

Figure S37: ¹³C NMR spectrum of 3-(azido-propyl-iodotriazolyl)-5-(permethyl-β-cyclodextrin-iodotriazolyl)pyridine, 24 (100 MHz, CDCl₃)

3-(azido-propyl-iodotriazolyl)-5-(permethyl-β-cyclodextrin-iodotriazolyl)pyridinium chloride, 25·Cl

Figure S38: ¹H NMR spectrum of 3-(azido-propyl-iodotriazolyl)-5-(permethyl-β-cyclodextrin-iodotriazolyl)pyridinium chloride, 25·Cl (400 MHz, CDCl₃)

Figure S39: ¹³C NMR spectrum of 3-(azido-propyl-iodotriazolyl)-5-(permethyl-β-cyclodextrin-iodotriazolyl)pyridinium chloride, 25·Cl (100 MHz, CDCl₃)

Water-soluble asymmetric monocationic [2]rotaxane: permethyl- β -cyclodextrin-stoppered pyridinium/pyridine bis-iodotriazole axle with pyridine bis-amide 5-O-polyether macrocycle, S4·Cl

Figure S40: ¹H NMR spectrum of Water-soluble asymmetric monocationic [2]rotaxane: permethyl-β-cyclodextrin-stoppered pyridinium/pyridine bis-iodotriazole axle with pyridine bis-amide 5-*O*-polyether macrocycle, S4·Cl (400 MHz, CDCl₃)

Water-soluble symmetric tricationic [2]rotaxane: permethyl- β -cyclodextrin-stoppered bis-(3,5-bisiodotriazole pyridinium) axle with pyridinium bis-amide 5-O-polyether macrocycle, $27 \cdot (OTf)_3$

Figure S41: ¹H NMR spectrum of Water-soluble symmetric tricationic [2]rotaxane: permethyl-β-cyclodextrin-stoppered bis-(3,5-bis-iodotriazole pyridinium) axle with pyridinium bis-amide 5-*O*-polyether macrocycle, 27·(OTf)₃ (500 MHz, CDCl₃)

Figure S42: ¹³C NMR spectrum of Water-soluble symmetric tricationic [2]rotaxane: permethyl-β-cyclodextrin-stoppered bis-(3,5-bis-iodotriazole pyridinium) axle with pyridinium bis-amide 5-*O*-polyether macrocycle, 27·(OTf)₃ (125 MHz, CDCl₃)

Figure S43: ¹⁹F NMR spectrum of Water-soluble symmetric tricationic [2]rotaxane: permethyl-β-cyclodextrin-stoppered bis-(3,5bis-iodotriazole pyridinium) axle with pyridinium bis-amide 5-*O*-polyether macrocycle, 27·(OTf)₃ (376 MHz, CDCl₃)

S5. References

- S1. H. Abe, K. Ohtani, D. Suzuki, Y. Chida, Y. Shimada, S. Matsumoto and M. Inouye, *Org. Lett.*, 2014, **16**, 828-831.
- S2. V. Aucagne, K. D. Hänni, D. A. Leigh, P. J. Lusby and D. B. Walker, *J. Am. Chem. Soc.*, 2006, **128**, 2186-2187.
- S3. M. Zurro, S. Asmus, S. Beckendorf, C. Mück-Lichtenfeld and O. G. Mancheño, *J. Am. Chem. Soc.*, 2014, **136**, 13999-14002.
- S4. N. L. Kilah, M. D. Wise, C. J. Serpell, A. L. Thompson, N. G. White, K. E. Christensen and P. D. Beer, *J. Am. Chem. Soc.*, 2010, **132**, 11893-11895.
- S5. N. G. White, A. R. Colaço, I. Marques, V. Félix and P. D. Beer, *Org. Biomol. Chem.*, 2014, **12**, 4924-4931.
- S6. J. A. Faiz, N. Spencer and Z. Pikramenou, Org. Biomol. Chem., 2005, **3**, 4239-4245.
- S7. M. J. Langton, S. W. Robinson, I. Marques, V. Felix and P. D. Beer, *Nature Chem.*, 2014, 6, 1039-1043.
- S8. P. J. Skinner, A. Beeby, R. S. Dickins, D. Parker, S. Aime and M. Botta, J. Chem. Soc., Perkin Trans. 2, 2000, 7, 1329-1338.
- S9. N. Zhong, H. S. Byun and R. Bittman, *Tetrahedron Lett.*, 1998, **39**, 2919-2920.
- S10. Q. H. Sodji, V. Patil, J. R. Kornacki, M. Mrksich and A. K. Oyelere, J. Med. Chem., 2013, 56, 9969-9981.
- S11. S. W. Robinson, C. L. Mustoe, N. G. White, A. Brown, A. L. Thompson, P. Kennepohl and P. D. Beer, J. Am. Chem. Soc., 2015, 137, 499-507.
- S12. L. M. Hancock and P. D. Beer, *Chem. Eur. J.*, 2009, **15**, 42-44.
- S13. M. J. Langton, L. C. Duckworth and P. D. Beer, Chem. Commun. (Cambridge, U. K.), 2013, 49, 8608-8610.
- S14. N. G. White and P. D. Beer, *Chem. Commun. (Cambridge, U. K.)*, 2012, **48**, 8499-8501.
- S15. M. J. Hynes, J. Chem. Soc., Dalton Trans., 1993, 2, 311.