Supporting information for

Halogen bonding rotaxanes for nitrate recognition in aqueous media
Sean W. Robinson ${ }^{\text {a }}$ and Paul D. Beer ${ }^{\text {a * }}$
${ }^{\text {a }}$ Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.

TABLE OF CONTENTS

\qquad
S2. EXPERIMENTAL PROCEDURES \& CHARACTERISATION DATA 2
S3. ${ }^{1} \mathrm{H}$ NMR TITRATION PROTOCOL \& DATA. 14
S4. NUCLEAR MAGNETIC RESONANCE (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P},{ }^{19} \mathrm{~F}$ AND $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ ROESY) SPECTRA 17
S5. REFERENCES 38

S1. General Considerations

All solvents and reagents were purchased from commercial suppliers and used as received unless otherwise stated. Dry solvents were obtained by purging with nitrogen and then passing through an MBraun MPSP-800 column. $\mathrm{H}_{2} \mathrm{O}$ was de-ionized and micro filtered using a Milli-Q ${ }^{\circledR}$ Millipore machine. Column chromatography was carried out on Merck® silica gel 60 under a positive pressure of nitrogen. Routine NMR spectra were recorded on either a Varian Mercury 300, a Bruker AVIII 400 or a Bruker AVIII 500 spectrometer with ${ }^{1} \mathrm{H}$ NMR titrations recorded on a Bruker AVIII 500 spectrometer. TBA salts were stored in a vacuum desiccator containing phosphorus pentoxide prior to use. Where mixtures of solvents were used, ratios are reported by volume. Chemical shifts are quoted in parts per million relative to the residual solvent peak. Mass spectra were recorded on a Bruker μ TOF spectrometer. Triethylamine was distilled from and stored over potassium hydroxide. Brine refers to a saturated aqueous solution of $\mathrm{NaCl}, \mathrm{NH}_{4} \mathrm{OH}_{\text {(aq.) }}$ refers to a $28-30 \%$ solution of NH_{3} in water. Petrol refers to the fraction of petroleum ether boiling between 40 and 60 ${ }^{\circ} \mathrm{C}$. Column chromatography was carried out on Merck ${ }^{\circledR}$ silica gel 60 under a positive pressure of nitrogen, preparative TLC was performed on $20 \times 20 \mathrm{~cm}$ plates, with a silica layer of thickness 1 mm . Amberlite ${ }^{\circledR}$ was "loaded" by washing the resin with $\mathrm{NaOH}_{\text {(aq.) }}(10 \%)$, water, and either $\mathrm{NH}_{4} \mathrm{Cl}_{\text {(aq.) }}(1 \mathrm{M}), \mathrm{NaOTf}_{\text {(aq.) }}(1 \mathrm{M})$ or $\mathrm{NH}_{4} \mathrm{PF}_{6(\text { aq. })}(0.1 \mathrm{M})$, followed by further water, and the solvent to be used in the anion exchange.

The following compounds were prepared according to literature procedures: hydroxypropyl-ethynyl bromopyridine $\mathbf{1},{ }^{\mathrm{S} 1}$ asymmetrically protected diethynyl pyridine $\mathbf{2}$, ${ }^{\mathrm{S} 1}$ mono-deprotected diethynyl pyridine $\mathbf{3},{ }^{\mathrm{S} 1}$ 3-azido propan-1-ol 4, ${ }^{\mathrm{S} 2}$ TMS-ethynyl bromopyridine $\mathbf{6},{ }^{\mathrm{S} 3}$ terphenyl-propyl azide $\mathbf{9}$, ${ }^{\mathrm{S} 4}$ terphenyl-aryl azide $\mathbf{1 0},{ }^{\text {S5 }}$ permethyl- β-cyclodextrin azide $\mathbf{1 1},{ }^{\mathrm{S}-9}$ 3-azido-1-mesyl-propane $\mathbf{1 4},{ }^{\text {S10 }}$ isophthalamide macrocycle 18,,$^{\text {S11 }}$ pyridine bis-amide macrocycle precursor $\mathbf{S 1}^{\mathrm{S} 12}$ and the hydrogen bonding [2]rotaxane ${ }^{\mathrm{S} 13}$ $\mathbf{2 8} \cdot \mathbf{P F}_{6}$ has been previously reported.

Safety note

CAUTION: Low molecular weight organic azides, sodium azide and 1,2,3-triazole and triazolium groups are potentially explosive. While no problems were encountered in the course of this work, they should be handled in small quantities and with appropriate care.

S2. Experimental Procedures \& Characterisation Data

3-(hydroxypropyl-iodotriazolyl)-5-(TBDMS-ethynyl)pyridine, 5

$4(0.10 \mathrm{~g}, 1.0 \mathrm{mmol})$ was dissolved in dry, degassed THF (1.0 mL) and covered in foil. $\mathrm{NaI}(0.50 \mathrm{~g}, 3.3$ mmol) and $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.62 \mathrm{~g}, 1.7 \mathrm{mmol})$ were added and the mixture was stirred for 5 mins under N_{2}. TBTA ($0.006 \mathrm{~g}, 11 \mu \mathrm{~mol}$), DBU ($0.13 \mathrm{~g}, 0.83 \mathrm{mmol}, 0.5 \mathrm{~mL}$ THF) and $3(0.20 \mathrm{~g}, 0.84 \mathrm{mmol}, 0.5 \mathrm{~mL}$ THF) were added and the mixture was stirred under N_{2} for 16 h . The reaction was diluted with $\mathrm{DCM}(80 \mathrm{~mL})$ and washed with $\mathrm{NH}_{4} \mathrm{OH}(2 \times 40 \mathrm{~mL})$ and brine $(2 \times 40 \mathrm{~mL})$ and dried over MgSO_{4}. The solvent was removed in vacuo. Purification by silica gel column chromatography ($5 \% \mathrm{MeOH}$ in DCM) afforded $\mathbf{5}(0.375 \mathrm{~g}, 96 \%) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 9.12\left(1 \mathrm{H}, \mathrm{d},{ }^{4} J_{\mathrm{e} \mid \mathrm{c}}=2.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right), 8.69\left(1 \mathrm{H}, \mathrm{d},{ }^{4} J_{\mathrm{d} \mid \mathrm{c}}=1.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{d}}\right), 8.31(1 \mathrm{H}$, $\left.\mathrm{t},{ }^{4} J_{\mathrm{c} \mid \mathrm{e}}=2.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right), 4.64\left(2 \mathrm{H}, \mathrm{t}, J_{\mathrm{f} \mid \mathrm{g}}=6.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{f}}\right), 3.73\left(2 \mathrm{H}, \mathrm{q}, J_{\mathrm{h} \mid \mathrm{g}, \mathrm{i}}=5.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{h}}\right), 2.21\left(2 \mathrm{H}\right.$, quin, $J_{\mathrm{g} \mid f, \mathrm{~h}}=6.4$ $\left.\mathrm{Hz}, \mathrm{H}_{\mathrm{g}}\right), 1.79\left(1 \mathrm{H}, \mathrm{t}, J_{\mathrm{i} \mid \mathrm{h}}=5.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{i}}\right), 1.01\left(9 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{a}}\right), 0.21\left(6 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{b}}\right) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta$ (ppm): 152.2, 150.5, 146.9, 146.6, 146.1, 137.5, 137.1, 125.9, 120.4, 101.6, 97.5, 58.9, 47.9, 32.1, 26.1, 16.7, 1.0, -4.7. HRESI-MS (pos.): 469.09090 , calc. for $\left[\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{IN}_{4} \mathrm{OSi} \cdot \mathrm{H}\right]^{+}=469.09151$.

3-(TMS-ethynyl)-5-(hydroxypropyl-ethynyl)pyridine, 7

$6(0.10 \mathrm{~g}, 0.40 \mathrm{mmol}), \mathrm{CuI}(0.02 \mathrm{~g}, 0.09 \mathrm{mmol}), \mathrm{PPh}_{3}(0.02 \mathrm{~g}, 0.09 \mathrm{mmol})$ and $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.02 \mathrm{~g}, 0.02$ mmol) were suspended in $\mathrm{Et}_{3} \mathrm{~N}$ and deoxygenated with N_{2}. 2-Methylbut-3-yn-2- ol ($62 \mu \mathrm{~L}, 0.64 \mathrm{mmol}$) was added and the mixture was stirred overnight at $75^{\circ} \mathrm{C}$ under N_{2}. The mixture was cooled to room temperature and filtered through Celite ${ }^{\circledR}$ and washed with EtOAc $(3 \times 10 \mathrm{~mL})$. The solvent was removed in vacuo. Purification by preparative thin layer chromatography ($3 \% \mathrm{MeOH}$ in DCM) afforded $7\left(0.093 \mathrm{~g}, 91 \%\right.$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 8.56\left(2 \mathrm{H}\right.$, br. s., $\left.\mathrm{H}_{\mathrm{c}, \mathrm{d}}\right), 7.77\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{b}}\right), 1.61\left(6 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{e}}\right), 0.25\left(9 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{a}}\right)$. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (101 MHz; CDCl_{3}) $\delta(\mathrm{ppm}): 151.1,150.9,141.3,119.9,119.5,100.4,99.2,98.1,78.0,65.4$, 31.3, 1.0. HRESI-MS (pos.): 258.13110 , calc. for $\left[\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NOSi} \cdot \mathrm{H}\right]^{+}=258.13087$.

3-ethynyl-5-(hydroxypropyl-ethynyl)pyridine, 8

$7(0.48 \mathrm{~g}, 1.9 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(2.3 \mathrm{~mL})$ and $\mathrm{KOH}(0.11 \mathrm{~g}, 1.9 \mathrm{mmol})$ was added. The mixture was stirred at room temperature, overnight under N_{2}. Thereafter, $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{HCl}(1 \mathrm{M}$ aq., 5 $\mathrm{mL})$ was added and the mixture was extracted with $\mathrm{DCM}(4 \times 20 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}. The solvent was removed in vacuo to afford $\mathbf{8}\left(0.344 \mathrm{~g}\right.$, quant.). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta$ $(\mathrm{ppm}): 8.60\left(2 \mathrm{H}, \mathrm{d},{ }^{4} J_{\mathrm{c}, \mathrm{d} \mid \mathrm{b}}=3.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}, \mathrm{d}}\right), 7.80\left(1 \mathrm{H}, \mathrm{t},{ }^{4} J_{\mathrm{b} \mid \mathrm{c}, \mathrm{d}}=2.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 3.23\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{a}}\right), 1.62\left(6 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{e}}\right)$. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 151.3,141.5,132.0,128.5,119.7,119.0,98.5,81.4,79.4,77.7$, 65.3, 31.3. HRESI-MS (pos.): 186.09116 , calc. for $\left[\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO} \cdot \mathrm{H}\right]^{+}=186.09134$.

3,5-diiodoethynyl pyridine, 12

Previously prepared diethynyl pyridine ${ }^{514}(0.128 \mathrm{~g}, 1.00 \mathrm{mmol})$ was dissolved in THF (10 mL) . CuI ($0.034 \mathrm{~g}, 0.18 \mathrm{mmol}$) and N -iodomorpholine $(0.751 \mathrm{~g}, 2.20 \mathrm{mmol})$ were added to this solution and stirred at room temperature for 2 h after which a white precipitate had formed. The suspension was poured onto a pad of neutral alumina. The filtrate was collected under vacuum and the solid phase washed with DCM $(4 \times 20$ $\mathrm{mL})$. The combined organic fractions were washed with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(40 \mathrm{~mL})$, dried over MgSO_{4} and the solvent removed under reduced pressure. The residue was taken up in $10 \% \mathrm{EtOAc}$ in hexane and the solution poured onto a pad of silica. The filtrate was collected under vacuum and the solid phase washed with $10 \% \mathrm{EtOAc}$ in hexane $(4 \times 20 \mathrm{~mL})$. The organic fractions were combined and the solvent removed in vacuo. Purification by recrystallisation from hexane yielded $\mathbf{1 2}$ as shiny, feathery white crystals. Yield: 0.254 g (65%). ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 8.59\left(2 \mathrm{H}, \mathrm{d},{ }^{4} J_{\mathrm{b} \mid \mathrm{a}}=2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 7.75\left(1 \mathrm{H}, \mathrm{t},{ }^{4} J_{\mathrm{a} \mid \mathrm{b}}=2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right)$. ${ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($75 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 151.9,142.3,120.2,89.8$. HRESI-MS (pos.): 379.8421, calc. for $\left[\mathrm{C}_{9} \mathrm{H}_{3} \mathrm{I}_{2} \mathrm{~N} \cdot \mathrm{H}\right]^{+}=379.8428$.

3-iodoethynyl-5-(terphenyl-propyl-iodotriazolyl) pyridine, 13

$\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left[\mathrm{PF}_{6}\right](15 \mathrm{mg}, 40 \mu \mathrm{~mol})$ and TBTA (cat.) were dissolved in dry degassed THF (3 mL). 9 $(0.13 \mathrm{~g}, 0.20 \mathrm{mmol})$ and $12(82 \mathrm{mg}, 0.20 \mathrm{mmol})$ were added. The mixture was stirred overnight, at room temperature under N_{2}. The solvent was removed in vacuo. The residue was redissolved in $\mathrm{DCM}(40 \mathrm{~mL})$ and washed with $\mathrm{NH}_{4} \mathrm{OH}(2 \times 10 \mathrm{~mL})$ and brine $(2 \times 10 \mathrm{~mL})$. The organics were dried over MgSO_{4}. The solvent was removed in vacuo. Purification by preparative thin layer chromatography ($0.5 \% \mathrm{MeOD}$ in DCM) afforded $13(66 \mathrm{mg}, 34 \%) .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 9.16\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{j}}\right), 8.68\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{k}}\right), 8.36(1 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{H}_{\mathrm{i}}\right), 7.17-7.25\left(6 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{b}}\right), 7.03-7.17\left(8 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{c}, \mathrm{d}}\right), 6.77\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{e} \mid \mathrm{d}}=8.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right), 4.68\left(2 \mathrm{H}, \mathrm{t}, J_{\mathrm{h} \mid \mathrm{g}}=7.0\right.$ $\left.\mathrm{Hz}, \mathrm{H}_{\mathrm{h}}\right), 4.05\left(2 \mathrm{H}, \mathrm{t}, J_{\mathrm{f} \mid \mathrm{g}}=5.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{f}}\right), 2.46\left(2 \mathrm{H}\right.$, quin, $\left.J_{\mathrm{g} \mid \mathrm{f}, \mathrm{h}}=6.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{g}}\right), 1.30\left(27 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{a}}\right) .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}$ ($101 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 156.1,152.5,148.3,147.4,146.3,144.0,140.1,137.6,132.3,130.7,126.0$, 124.0, 120.4, 113.0, 90.4, 63.8, 63.0, 53.4, 48.1, 34.3, 31.4, 29.6, 11.9. HRESI-MS (pos.): 989.21199, calc. for $\left[\mathrm{C}_{49} \mathrm{H}_{52} \mathrm{ON}_{4} \mathrm{I}_{2} \cdot \mathrm{Na}\right]^{+}=989.21227$.

3-azido-1-mesyl-propane, $14^{\text {S10 }}$

$4(1.4 \mathrm{~g}, 14 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(4.0 \mathrm{~mL}, 29 \mathrm{mmol})$ were dissolved in dry degassed THF $(150 \mathrm{~mL})$. The solution was cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{MsCl}(1.5 \mathrm{~mL}, 19 \mathrm{mmol})$ was added and the mixture was stirred at room temperature, overnight under N_{2}. The solvent was removed in vacuo. The residue was taken up in DCM (100 $\mathrm{mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$ and $\mathrm{NaHCO}_{3}(5 \% \mathrm{aq} ., 3 \times 100 \mathrm{~mL})$. The organics were dried over MgSO_{4}. The solvent was removed in vacuo to afford $14(2.1 \mathrm{~g}, 87 \%)$. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: $4.32\left(2 \mathrm{H}, \mathrm{t}, J_{\mathrm{d} \mid \mathrm{c}}=6.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{d}}\right), 3.49\left(2 \mathrm{H}, \mathrm{t}, J_{\mathrm{b} \mid \mathrm{c}}=6.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 3.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{a}}\right), 2.01\left(2 \mathrm{H}\right.$, quin, $\mathrm{J}_{\mathrm{c} \mid \mathrm{b}, \mathrm{d}}=6.2 \mathrm{~Hz}$, H_{c}).

3-(mesyl-propyl-iodotriazolyl)-5-(terphenyl-propyl-iodotriazolyl) pyridine, 15

$\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left[\mathrm{PF}_{6}\right](14 \mathrm{mg}, 40 \mu \mathrm{~mol})$ and TBTA (cat.) were dissolved in dry degassed THF (6 mL), and the flask was covered in tin foil. $14(0.22 \mathrm{~g}, 1.3 \mathrm{mmol})$ and $\mathbf{1 3}(0.16 \mathrm{~g}, 0.16 \mathrm{mmol})$ were added. The mixture was stirred at room temperature, overnight under N_{2}. The mixture was diluted with $\mathrm{CHCl}_{3}(60 \mathrm{~mL})$ and washed with $\mathrm{NH}_{4} \mathrm{OH}(2 \times 10 \mathrm{~mL})$ and brine $(2 \times 10 \mathrm{~mL})$. The organics were dried over MgSO_{4}. The solvent was removed in vacuo. Purification by silica gel column chromatography ($0-0.5 \% \mathrm{MeOH}$ in DCM) afforded $15(0.165 \mathrm{~g}, 86 \%)$ as a brown solid. 1H NMR ($\left.500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 9.33\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{j}, \mathrm{k}}\right), 9.23(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{H}_{\mathrm{i}}\right), 7.23\left(6 \mathrm{H}, \mathrm{d}, J_{\mathrm{b} \mid \mathrm{c}}=8.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 7.02-7.14\left(8 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{c}, \mathrm{d}}\right), 6.77\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{e} \mid \mathrm{d}}=8.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right), 4.71\left(2 \mathrm{H}, \mathrm{t}, J_{| | \mathrm{m}}=\right.$ $\left.6.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{y}}\right), 4.65\left(2 \mathrm{H}, \mathrm{t}, J_{\mathrm{h} \mid \mathrm{g}}=6.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{h}}\right), 4.33\left(2 \mathrm{H}, \mathrm{t}, J_{\mathrm{n} \mid \mathrm{m}}=5.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{n}}\right), 4.06\left(2 \mathrm{H}, \mathrm{t}, J_{\mathrm{f} \mid \mathrm{g}}=5.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{f}}\right), 3.08$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{o}}\right), 2.47\left(4 \mathrm{H}\right.$, quin, $\left.J_{\mathrm{f}, \mathrm{h}, \mathrm{l}, \mathrm{n} \mid \mathrm{g}, \mathrm{m}}=6.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{g}, \mathrm{m}}\right), 1.29\left(27 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{a}}\right) \cdot{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta$ (ppm): 156.2, 148.3, 148.0, 147.9, 147.1, 146.8, 144.0, 140.1, 132.8, 132.3, 130.6, 126.3, 126.1, 124.0, 113.0, 66.0, 63.9, 63.0, 53.4, 48.1, 47.2, 37.5, 34.2, 31.3, 29.6, 29.2. HRESI-MS (pos.): 1168.2486, calc. for $\left[\mathrm{C}_{53} \mathrm{H}_{61} \mathrm{I}_{2} \mathrm{~N}_{7} \mathrm{O}_{4} \mathrm{~S} \cdot \mathrm{Na}\right]^{+}=1168.2487$.

3-(azido-propyl-iodotriazolyl)-5-(terphenyl-propyl-iodotriazolyl) pyridine, 16

$15(0.16 \mathrm{~g}, 0.14 \mathrm{mmol})$ and $\mathrm{NaN}_{3}(39 \mathrm{mg}, 0.59 \mathrm{mmol})$ were dissolved in dry degassed DMF $(6 \mathrm{~mL})$ and stirred at $85^{\circ} \mathrm{C}$ overnight under N_{2}. Thereafter, the mixture was cooled to room temperature, and partitioned between $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and $\mathrm{EtOAc}(20 \mathrm{~mL})$. The aqueous layer was washed with further $\mathrm{EtOAc}(2 \times 20 \mathrm{~mL})$. The combined organics were washed with brine $(3 \times 10 \mathrm{~mL})$ and dried over MgSO_{4}. The solvent was removed in vacuo afforded $16(0.137 \mathrm{~g}, 87 \%)$ as a brown solid. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 9.26$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{j}, \mathrm{k}}\right), 8.87\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{i}}\right), 7.23\left(6 \mathrm{H}, \mathrm{d}, J_{\mathrm{b} \mid \mathrm{c}}=8.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right), 7.05-7.14\left(8 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{c}, \mathrm{d}}\right), 6.78\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{e} \mid \mathrm{d}}=8.7\right.$
$\left.\mathrm{Hz}, \mathrm{H}_{\mathrm{e}}\right), 4.70\left(2 \mathrm{H}, \mathrm{t}, J_{\mathrm{l} \mid \mathrm{m}}=6.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{l}}\right), 4.58\left(2 \mathrm{H}, \mathrm{t}, J_{\mathrm{h} \mid \mathrm{g}}=6.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{h}}\right), 4.06\left(2 \mathrm{H}, \mathrm{t}, J_{\mathrm{n} \mid \mathrm{m}}=5.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{n}}\right), 3.47$ $\left(2 \mathrm{H}, \mathrm{t}, J_{\mathrm{f} \mid \mathrm{g}}=6.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{f}}\right), 2.47\left(2 \mathrm{H}\right.$, quin, $\left.J_{\mathrm{ml} \mid, \mathrm{n}}=6.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{m}}\right), 2.25\left(2 \mathrm{H}\right.$, quin, $\left.J_{\mathrm{g} \mid \mathrm{f}, \mathrm{h}}=6.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{g}}\right), 1.30(27 \mathrm{H}, \mathrm{s}$, H_{a}). ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 156.1,148.3,148.2,147.9,147.8,147.0,146.8,144.0$, $140.1,133.0,132.4,132.3,130.7,129.0,128.9,128.5,128.2,126.4,126.2,125.3,124.0,124.0,113.0,63.9$, 63.0, 48.2, 48.1, 48.0, 34.3, 31.3, 29.6, 29.0, 21.4. HRESI-MS (pos.): 1115.27745, calc. for $\left[\mathrm{C}_{52} \mathrm{H}_{58} \mathrm{I}_{2} \mathrm{~N}_{10} \mathrm{O} \cdot \mathrm{Na}\right]^{+}=1115.27766$.

3-(azido-propyl-iodotriazolyl)-5-(terphenyl-propyl-iodotriazolyl) pyridinium tetrafluoroborate, 17•BF 4

Initially, $16(38 \mathrm{mg}, 35 \mu \mathrm{~mol})$ was dissolved in $\mathrm{CH}_{3} \mathrm{I}(2 \mathrm{~mL})$ and stirred at $35^{\circ} \mathrm{C}$ overnight under N_{2}. The solvent was removed in vacuo but afforded an insoluble powder that could not be anion exchanged to a more soluble anion. Consequently, in a second method, $\mathbf{1 6}(60 \mathrm{mg}, 55 \mu \mathrm{~mol})$ was dissolved in dry DCM (5 mL). $\left[\mathrm{Me}_{3} \mathrm{O}\right]\left[\mathrm{BF}_{4}\right](8.8 \mathrm{mg}, 60 \mu \mathrm{~mol})$ was added and the mixture was stirred at room temperature overnight under N_{2}. Thereafter, the reaction was quenched with $\mathrm{MeOH}(1 \mathrm{~mL})$ and the solvent was removed in vacuo. Purification by preparative thin layer chromatography ($3 \% \mathrm{MeOH}$ in DCM) afforded $\mathbf{1 7} \cdot \mathbf{B F}_{\mathbf{4}}(30.0 \mathrm{mg}, 46 \%)$ as a white powder. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 9.75\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{i}}\right), 9.30-9.51\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{j}, \mathrm{k}}\right)$, 7.15$7.25\left(6 H, m, H_{b}\right), 6.99-7.10\left(8 H, m, H_{\mathrm{c}, \mathrm{d}}\right), 6.74\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{e} \mid \mathrm{d}}=8.9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}\right), 4.73\left(2 \mathrm{H}, \mathrm{t}, J_{\mathrm{oln}}=6.9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{o}}\right), 4.61$ $\left(2 \mathrm{H}, \mathrm{t}, J_{\mathrm{h} \mid \mathrm{g}}=6.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{h}}\right), 4.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{l}}\right), 4.04\left(2 \mathrm{H}, \mathrm{t}, J_{\mathrm{m} \mid \mathrm{n}}=5.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{m}}\right), 3.45\left(2 \mathrm{H}, \mathrm{t}, J_{\mathrm{f} \mid \mathrm{g}}=6.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{f}}\right), 2.46$ $\left(2 \mathrm{H}\right.$, quin, $\left.J_{\mathrm{n} \mid \mathrm{m}, \mathrm{o}}=6.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{n}}\right), 2.23\left(2 \mathrm{H}\right.$, quin, $\left.J_{\mathrm{g} \mid \mathrm{f}, \mathrm{h}}=6.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{g}}\right), 1.26\left(27 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{a}}\right) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(101$ $\left.\mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 148.4,144.1,140.2,132.3,130.6,124.0,113.0,63.9,63.0,42.2,34.2,31.1,28.8$. ${ }^{19}$ F NMR ($\left.377 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}):-153.84$ ($\mathrm{s}, \mathrm{B} F_{4}$). HRESI-MS (pos.): 1107.31149, calc. for $\left[\mathrm{C}_{53} \mathrm{H}_{61} \mathrm{I}_{2} \mathrm{~N}_{10} \mathrm{O}\right]^{+}=1107.31137$.

Asymmetric rotaxane: pyridinium/pyridine bis-iodotriazole axle-isophthalamide 5-O-polyether macrocycle, 19•PF ${ }_{6}$

$\mathbf{1 8}(13 \mathrm{mg}, 20 \mu \mathrm{~mol}), \mathbf{1 7} \cdot \mathbf{B F}_{4}(12 \mathrm{mg}, 10 \mu \mathrm{~mol})$ and $\mathrm{TBA} \cdot \mathrm{Cl}(2.5 \mathrm{mg}, 10 \mu \mathrm{~mol})$ were dissolved in dry, degassed THF (1 mL), and the flask was covered in tin foil. The mixture was stirred for 30 mins , and thereafter, $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left[\mathrm{PF}_{6}\right]$ (cat.), TBTA (cat.) and $13(10.5 \mathrm{mg}, 10 \mu \mathrm{~mol})$ were added. The mixture was stirred at room temperature, overnight under N_{2}. The mixture was diluted with $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$, and washed with $\mathrm{NH}_{4} \mathrm{OH}(2 \times 10 \mathrm{~mL})$ and brine $(2 \times 10 \mathrm{~mL})$. The solvent was removed in vacuo. Purification by preparative thin layer chromatography $(3 \% \mathrm{MeOH}$ in DCM$)$ afforded $\mathbf{1 9 \cdot} \mathbf{C l}$ which was anion exchanged to the hexafluorophosphate salt by washing with $\mathrm{NH}_{4} \mathrm{PF}_{6}(0.1 \mathrm{M}$ aq., $8 \times 10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The solvent was removed in vacuo to afford $\mathbf{1 9} \cdot \mathbf{P F}_{6}(9.0 \mathrm{mg}, 32 \%) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 9.57$ $\left(1 \mathrm{H}\right.$, br. s., $\left.\mathrm{H}_{\mathrm{j}}\right), 9.33\left(1 \mathrm{H}\right.$, br. s., $\left.\mathrm{H}_{\mathrm{k}}\right), 9.27\left(3 \mathrm{H}\right.$, br. s., $\left.\mathrm{H}_{\mathrm{p}, \mathrm{q}, \mathrm{r}}\right), 8.91\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}\right), 8.48\left(2 \mathrm{H}\right.$, br. s., $\left.\mathrm{H}_{4}\right), 8.40(1 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{H}_{\mathrm{i}}\right), 8.35\left(2 \mathrm{H}, \mathrm{d}, J_{2 \mid 1}=7.8 \mathrm{~Hz}, \mathrm{H}_{2}\right), 7.53\left(1 \mathrm{H}, \mathrm{t}, J_{1 \mid 2}=7.8 \mathrm{~Hz}, \mathrm{H}_{1}\right), 7.17-7.24\left(12 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{b}, \mathrm{y}}\right), 7.02-7.12$ $\left(16 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{c}, \mathrm{d}, \mathrm{w}, \mathrm{x}}\right), 6.78\left(4 \mathrm{H}, \mathrm{d}, J_{\mathrm{e}, \mathrm{vl}, \mathrm{w}}=7.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}, \mathrm{v}}\right), 6.31\left(4 \mathrm{H}, \mathrm{d}, J_{8 \mid 7}=9.0 \mathrm{~Hz}, \mathrm{H}_{8}\right), 5.79\left(4 \mathrm{H}, \mathrm{d}, J_{7 \mid 8}=8.9 \mathrm{~Hz}\right.$, $\left.\mathrm{H}_{7}\right), 4.69\left(2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{h}}\right), 4.59\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{l}}\right), 3.46-4.56\left(36 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{f}, \mathrm{m}, \mathrm{os}, \mathrm{s}, 5,6,9,10,11,12}\right), 2.30-2.53(6 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{\mathrm{g}, \mathrm{n}, \mathrm{t}}\right), 1.29\left(54 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{a}, \mathrm{z}}\right) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 148.4,132.3,130.7,129.1,128.2$, 124.1, 113.1, 69.5, 34.3, 31.4 (several peaks were too weak to be detected). ${ }^{31} \mathbf{P} \mathbf{N M R}\left(162 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta$ (ppm): $-144: 20\left(\mathrm{spt}, J=714.0 \mathrm{~Hz}, P \mathrm{~F}_{6}\right) .{ }^{19}$ F NMR $\left(377 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}):-71: 08(\mathrm{~d}, J=714.0 \mathrm{~Hz}$, PF F_{6}). HRESI-MS (pos.): 2669.80135, calc. for $\left[\mathrm{C}_{134} \mathrm{H}_{151} \mathrm{I}_{4} \mathrm{~N}_{16} \mathrm{O}_{11}\right]+=2669.80333$.

Dicationic rotaxane: bis-(3,5-bis-iodotriazole pyridinium) axle-isophthalamide 5-O-polyether macrocycle, 20 $\cdot\left(\mathrm{PF}_{6}\right)_{2}$

 was stirred overnight at room temperature under N_{2}. However, no evidence of product formation was observed by mass spectrometric analysis. A further portion of $\mathrm{CH}_{3} \mathrm{I}(0.1 \mathrm{~mL})$ was added and the mixture was stirred for 3 days. Thereafter, the solvent was removed in vacuo and rotaxane was anion exchanged to the hexafluorophosphate salt by washing a CHCl_{3} solution (25 mL) of the crude mixture with $\mathrm{NH}_{4} \mathrm{PF}_{6}(0.1 \mathrm{~m}, 8$ $\times 10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The solvent was removed in vacuo to afford the target rotaxane $\mathbf{2 0} \cdot\left(\mathbf{P F}_{6}\right)_{2}$ ($2.9 \mathrm{mg}, 36 \%$). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz} ; 45: 45: 10 \mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}: \mathrm{D}_{2} \mathrm{O}$) $\delta(\mathrm{ppm}): 9.44\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{j}, \mathrm{k}}\right), 9.38(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{H}_{\mathrm{q}, \mathrm{r}}\right), 9.19\left(1 \mathrm{H}\right.$, br. s., $\left.\mathrm{H}_{3}\right), 8.66\left(1 \mathrm{H}\right.$, br. s., $\left.\mathrm{H}_{\mathrm{i}}\right), 8.26\left(2 \mathrm{H}\right.$, br. s., $\left.\mathrm{H}_{\mathrm{p}, 1}\right), 8.05\left(2 \mathrm{H}, \mathrm{d}, \mathrm{H}_{4}\right), 8.01\left(2 \mathrm{H}, \mathrm{d}, \mathrm{H}_{2}\right)$, 7.15-7.26 (12H, m, H $\mathrm{H}_{\mathrm{b}, \mathrm{z}}$), 6.98-7.14 (16H, m, $\left.\mathrm{H}_{\mathrm{c}, \mathrm{d}, \mathrm{x}, \mathrm{y}}\right), 6.74-6.86\left(12 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{e}, \mathrm{w}, 7,8}\right), 3.56-4.16(42 \mathrm{H}, \mathrm{m}$,
 (101 MHz; CDCl3) $\delta(\mathrm{ppm}): 155.6,148.1,130.9,129.6,124.2,115.8,115.6,95.9,70.9,69.9,60.0,39.9$, 34.4, 31.5, 29.2, 18.3 (several resonances were too weak to detect). ${ }^{31} \mathbf{P}$ NMR $\left(162 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: $-144: 36\left(\mathrm{spt}, J=714.0 \mathrm{~Hz}, P \mathrm{~F}_{6}\right) .{ }^{19}$ F NMR ($377 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}):-70: 82\left(\mathrm{~d}, J=714.0 \mathrm{~Hz}, \mathrm{P} F_{6}\right)$. HRESI-MS (pos.): 1341.90639 , calc. for $\left[\mathrm{C}_{135} \mathrm{H}_{154} \mathrm{I}_{4} \mathrm{~N}_{16} \mathrm{O}_{11}\right]^{+}=1341.90922$.

3-(mesyl-propyl-iodotriazolyl)-5-(iodoethynyl)pyridine, 21

$\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left[\mathrm{PF}_{6}\right](23 \mathrm{mg}, 62 \mu \mathrm{~mol})$ and TBTA (cat.) were dissolved in dry, degassed THF, and the flask was covered in foil. $\mathbf{1 4}(56 \mathrm{mg}, 0.30 \mathrm{mmol})$ and $\mathbf{1 2}(0.12 \mathrm{~g}, 0.30 \mathrm{mmol})$ were added, and the mixture was stirred at room temperature, overnight under N_{2}. Thereafter, the mixture was diluted with $\mathrm{CDCl}_{3}(50 \mathrm{~mL})$, and washed with $\mathrm{NH}_{4} \mathrm{OH}(2 \times 10 \mathrm{~mL})$ and brine $(2 \times 10 \mathrm{~mL})$. The organics were dried over MgSO_{4}. The solvent was removed in vacuo. Purification by silica gel column chromatography ($0.75 \% \mathrm{MeOH}$ in DCM) afforded $21(47 \mathrm{mg}, 27 \%) .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 9.13\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{b}}\right), 8.69\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{a}}\right), 8.28$ $\left(1 \mathrm{H}, \mathrm{t},{ }^{4} J_{\mathrm{cla}, \mathrm{b}}=2.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right), 4.63\left(2 \mathrm{H}, \mathrm{t}, J_{\mathrm{d} \mid \mathrm{e}}=6.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{d}}\right), 4.32\left(2 \mathrm{H}, \mathrm{t}, J_{\mathrm{ffe}}=5.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{f}}\right), 3.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{g}}\right), 2.45$ (2 H , quin, $J_{\text {eld, } \mathrm{f}}=6.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{e}}$). ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\left.101 \mathrm{MHz} ; 5: 1 \mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 152.4,151.2,147.1$, 146.8, 138.5, 126.7, 66.7, 47.8, 37.6, 29.6. HRESI-MS (pos.): 558.87936, calc. for $\left[\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{I}_{2} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S} \cdot \mathrm{H}\right]^{+}=$ 558.87922.

3-(mesyl-propyl-iodotriazolyl)-5-(permethyl- β-cyclodextrin-iodotriazolyl)pyridine, 22

$21(14 \mathrm{mg}, 26 \mu \mathrm{~mol}), \mathbf{1 1}(43 \mathrm{mg}, 29 \mu \mathrm{~mol}),\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left[\mathrm{PF}_{6}\right]$ (cat.) and TBTA (cat.) were dissolved in dry, degassed THF (1.5 mL), and the flask was covered in foil. The mixture was stirred at room temperature, overnight under N_{2}. The mixture was diluted with $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ and washed with $\mathrm{NH}_{4} \mathrm{OH}(2 \times 10 \mathrm{~mL})$ and brine $(2 \times 10 \mathrm{~mL})$. The organics were dried over MgSO_{4}. The solvent was removed in vacuo. Purification by preparative thin layer chromatography ($3 \% \mathrm{MeOH}$ in DCM) afforded $22(10.2 \mathrm{mg}, 20 \%) .{ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 9.24\left(2 \mathrm{H}, \mathrm{d},{ }^{4} \mathrm{~J}_{\mathrm{k}, \mathrm{lj}}=2.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{k}, \mathrm{l}}\right), 8.85\left(1 \mathrm{H}, \mathrm{t},{ }^{4} \mathrm{~J}_{\mathrm{j} \mathrm{k}, \mathrm{l}}=2.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{j}}\right), 4.94-5.26(7 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{\mathrm{a}}\right), 4.62\left(2 \mathrm{H}, \mathrm{t}, J_{\mathrm{m} \mid \mathrm{n}}=6.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{m}}\right), 4.32\left(2 \mathrm{H}, \mathrm{t}, J_{\mathrm{o} \mid \mathrm{n}}=5.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{o}}\right), 3.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{p}}\right), 2.84-4.12(102 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{\mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{i}, \mathrm{i}}\right), 2.45\left(2 \mathrm{H}\right.$, quin, $\left.J_{\mathrm{n} \mid \mathrm{m}, \mathrm{o}}=6.1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{n}}\right) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 148.0,147.1$, $146.2,132.8,126.5,126.2,124.8,99.8-98.2,84.2,82.3-79.8,71.4-70.3,65.9,61.9-58.4,51.8,47.2,37.6$, 29.7, 29.2. HRESI-MS (pos.): 1998.56222, calc. for $\left[\mathrm{C}_{75} \mathrm{H}_{121} \mathrm{O}_{37} \mathrm{~N}_{7} \mathrm{I}_{2} \mathrm{~S} \cdot \mathrm{H}\right]^{+}=1998.56847$.

3-(permethyl- β-cyclodextrin-iodotriazolyl)-5-(iodoethynyl)pyridine, 23

$\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left[\mathrm{PF}_{6}\right](10 \mathrm{mg}, 27 \mu \mathrm{~mol})$ and TBTA (cat.) were dissolved in dry degassed THF (1 mL). $\mathbf{1 1}$ $(0.10 \mathrm{~g}, 69 \mu \mathrm{~mol})$ and $\mathbf{1 2}(26 \mathrm{mg}, 69 \mu \mathrm{~mol})$ were added. The mixture was stirred overnight, at room temperature under N_{2}. The solvent was removed in vacuo. The residue was redissolved in DCM (40 mL) and washed with $\mathrm{NH}_{4} \mathrm{OH}(2 \times 10 \mathrm{~mL})$ and brine $(2 \times 10 \mathrm{~mL})$. The organics were dried over MgSO_{4}. The solvent was removed in vacuo. Purification by preparative thin layer chromatography ($3 \% \mathrm{MeOH}$ in DCM) afforded $23(6.4 \mathrm{mg}, 5 \%)$. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 9.17\left(1 \mathrm{H}, \mathrm{d},{ }^{4} \mathrm{~J}_{\mathrm{kjj}}=1.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{k}}\right), 8.68\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{l}}\right), 8.30$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{j}}\right), 4.96-5.29\left(7 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{a}}\right), 2.80-4.16\left(102 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{b}, \mathrm{c}, \mathrm{c}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{i},}\right) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(126 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta$
(ppm): 147.1, 145.6, 137.4, 134.2, 127.3, 126.1, 104.4, 99.8-98.2, 84.1-79.9, 71.5-70.5, 61.8-58.4, 51.9, 29.7. HRESI-MS (pos.): 1819.52786 , calc. for $\left[\mathrm{C}_{71} \mathrm{H}_{112} \mathrm{O}_{34} \mathrm{~N}_{4} \mathrm{I}_{2} \cdot \mathrm{H}\right]^{+}=1819.53201$.

3-(azido-propyl-iodotriazolyl)-5-(permethyl- β-cyclodextrin-iodotriazolyl)pyridine, 24

22 (64 mg, $32 \mu \mathrm{~mol}$) and $\mathrm{NaN}_{3}(11 \mathrm{mg}, 0.16 \mathrm{mmol})$ were dissolved in dry, degassed DMF (2 mL), and the mixture was stirred at $85{ }^{\circ} \mathrm{C}$, overnight under N_{2}. The mixture was cooled to room temperature and partitioned between $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{EtOAc}(10 \mathrm{~mL})$. The aqueous layer was washed with $\mathrm{EtOAc}(2 \times 10$ $\mathrm{mL})$. The combined organics were washed with brine $(3 \times 10 \mathrm{~mL})$, and dried over MgSO_{4}. The solvent was removed in vacuo to afford $24\left(62 \mathrm{mg}\right.$, quant.). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 9.22\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{k}, 1}\right), 8.85$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{j}}\right), 4.90-5.36\left(7 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{a}}\right), 4.55\left(2 \mathrm{H}, \mathrm{t}, J_{\mathrm{m} \mid \mathrm{n}}=6.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{m}}\right), 3.01-3.97\left(104 \mathrm{H}, \mathrm{m}_{\mathrm{b}} \mathrm{H}_{\mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{h}, \mathrm{i}, \mathrm{o}}\right), 2.22$
 $130.8,128.7,126.4,126.3,99.7-98.7,84.1,82.2,81.9-79.7,71.3-70.1,61.7-61.1,59.1-58.3,51.8,48.0$, 48.0, 29.6, 29.0. HRESI-MS (pos.): 1945.59012, calc. for $\left[\mathrm{C}_{74} \mathrm{H}_{118} \mathrm{O}_{34} \mathrm{~N}_{10} \mathrm{I}_{2} \cdot \mathrm{H}\right]^{+}=1945.59850$.

3-(azido-propyl-iodotriazolyl)-5-(permethyl- β-cyclodextrin-iodotriazolyl)pyridinium chloride, 25•Cl

$24(80 \mathrm{mg}, 41 \mu \mathrm{~mol})$ was dissolved in $\mathrm{CHCl}_{3}(0.2 \mathrm{~mL})$ and $\mathrm{CH}_{3} \mathrm{I}(0.1 \mathrm{~mL} 1.0 \mathrm{mmol})$ was added. The mixture was stirred overnight at $40{ }^{\circ} \mathrm{C}$ under N_{2}. The solvent was removed in vacuo. The residue was taken up in $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL})$ and passed through a chloride-loaded Amberlite ${ }^{\circledR}$ column to afford the desired product $\mathbf{2 5 \cdot} \mathbf{C l}(56.6 \mathrm{mg}, 69 \%) .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 10.17\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{j}}\right), 9.40\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{k}, 1}\right), 4.88-5.29$
$\left(7 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{a}}\right), 4.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{m}}\right), 2.88-4.49\left(106 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{l}, \mathrm{n}, \mathrm{p}}\right), 2.05\left(2 \mathrm{H}\right.$, quin, $\left.J_{\mathrm{oln}, \mathrm{p}}=6.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{o}}\right)$. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 141.7,141.1,140.2,140.1,133.3,133.0,132.2,131.9,130.9$, $128.8,99.1-97.7,83.0-81.1,80.5-78.7,71.3-69.5,61.9-57.9,53.7,50.4,48.2,48.1,31.7,29.6,29.2,28.9$. HRESI-MS (pos.): 1959.60753, calc. for $\left[\mathrm{C}_{75} \mathrm{H}_{121} \mathrm{O}_{34} \mathrm{~N}_{10} \mathrm{I}_{2}\right]^{+}=1959.61305$.

Pyridine-bis-amide 5-oxygen-polyether macrocycle, S1 ${ }^{S 12}$

Pyridine-3,5-dicarboxylic acid $(0.19 \mathrm{~g}, 1.0 \mathrm{mmol})$ was suspended in DCM $(4 \mathrm{~mL})$, and $(\mathrm{COCl})_{2}(0.4 \mathrm{~mL})$ was added. The mixture was refluxed overnight under N_{2}. The solvent was removed in vacuo, and the residue was redissolved in dry DCM $(20 \mathrm{~mL})$. This was added dropwise to a solution of $\mathbf{S 2}^{\mathrm{S} 12}(0.54 \mathrm{~g}, 1.0$ $\mathrm{mmol})$, S3•Cl ${ }^{\text {S12 }}(0.38 \mathrm{~g}, 1.0 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(3.3 \mathrm{~mL}, 23 \mathrm{mmol})$ dissolved in dry DCM $(50 \mathrm{~mL})$. The mixture was stirred at room temperature for 1 h under N_{2}. Thereafter, the mixture was washed with HCl (10% aq., $2 \times 50 \mathrm{~mL}$) and $\mathrm{H}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$. The organics were dried over MgSO_{4}. The solvent was removed in vacuo. Purification by silica gel column chromatography ($3 \% \mathrm{MeOH}$ in CHCl_{3}) afforded $\mathbf{S 1}(0.25 \mathrm{~g}, 43 \%)$ as a white powder. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 9.08\left(2 \mathrm{H}, \mathrm{d},{ }^{4} J_{\mathrm{a} \mid \mathrm{b}}=2.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}\right), 8.39-8.51(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}_{\mathrm{b}}\right), 6.77\left(8 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{f}, \mathrm{g}}\right), 4.07\left(4 \mathrm{H}, \mathrm{t}, J_{\mathrm{d} \mid \mathrm{e}}=4.9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{d}}\right), 3.97-4.03\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{e}}\right), 3.75-3.82\left(8 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{h}, \mathrm{i}}\right)$, 3.62-3.70 (8H, m, $\mathrm{H}_{\mathrm{j}, \mathrm{k}}$). LRESI-MS (pos.): 596.28, calc. for $\left[\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{9} \cdot \mathrm{H}\right]^{+}=596.26$.

Water-soluble asymmetric monocationic [2]rotaxane: permethyl- β-cyclodextrin-stoppered pyridinium/pyridine bis-iodotriazole axle with pyridine bis-amide 5-O-polyether macrocycle, $\mathrm{S} 4 \cdot \mathrm{Cl}$

$\mathbf{S 1}^{\mathrm{S} 12}(8.0 \mathrm{mg}, 13 \mu \mathrm{~mol}), \mathbf{2 5} \cdot \mathbf{C l}(7.3 \mathrm{mg}, 3.5 \mu \mathrm{~mol})$ and $\mathbf{2 3}(6.4 \mathrm{mg}, 3.5 \mu \mathrm{~mol})$ were dissolved in dry, degassed THF (0.1 mL). The flask was covered in foil and the mixture was stirred for 30 mins. Thereafter, a solution of $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left[\mathrm{PF}_{6}\right]$ (cat.) and TBTA (cat.) in dry, degassed THF (0.1 mL) was added, and the mixture was stirred overnight at room temperature under N_{2}. The mixture was then diluted with $\mathrm{CHCl}_{3}(20$ $\mathrm{mL})$ and washed with $\mathrm{NH}_{4} \mathrm{OH}(10 \mathrm{~mL})$ and brine (10 mL). The solvent was removed in vacuo and the organics were dried over MgSO_{4}. Purification by preparative thin layer chromatography ($8 \% \mathrm{MeOH}$ in DCM) afforded the monocationic [2]rotaxane precursor $\mathbf{S 4} \cdot \mathbf{C l}(1.7 \mathrm{mg}, 9 \%) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta$ (ppm): $9.81\left(1 \mathrm{H}\right.$, br. s., $\left.\mathrm{H}_{\mathrm{k}}\right), 9.73\left(1 \mathrm{H}\right.$, br. s., $\left.\mathrm{H}_{1}\right), 9.50\left(2 \mathrm{H}, \mathrm{d}, \mathrm{H}_{\mathrm{r}, \mathrm{s}}\right), 9.28\left(2 \mathrm{H}, \mathrm{d}, \mathrm{H}_{1}\right), 9.10\left(1 \mathrm{H}, \mathrm{br} . \mathrm{s}^{2}, \mathrm{H}_{\mathrm{j}}\right), 8.94$ $\left(1 \mathrm{H}\right.$, br. s., $\left.\mathrm{H}_{2}\right), 8.62\left(2 \mathrm{H}\right.$, br. s., $\left.\mathrm{H}_{3}\right), 8.26\left(1 \mathrm{H}\right.$, br. s., $\left.\mathrm{H}_{q}\right), 6.27-6.44\left(8 \mathrm{H}, \mathrm{m}, \mathrm{H}_{6,7}\right), 4.98-5.33\left(14 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{a}}\right)$, 2.79-4.83 (235H, m, H $\mathrm{H}_{\mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{i}, \mathrm{m}, \mathrm{n}, \mathrm{p}, 4,5,8,9,10,11}$), 2.21-2.47 (2H, m, H). HRESI-MS (pos.): 2188.20672, calc. for $\left[\mathrm{C}_{177} \mathrm{H}_{270} \mathrm{O}_{77} \mathrm{~N}_{17} \mathrm{I}_{4} \cdot \mathrm{H}\right]^{2+}=2188.20236$.

Water-soluble symmetric tricationic [2]rotaxane: permethyl- β-cyclodextrin-stoppered bis-(3,5-bisiodotriazole pyridinium) axle with pyridinium bis-amide 5-O-polyether macrocycle, 27•(OTf) $)_{3}$

The monocationic [2]rotaxane precursor $\mathbf{S 4} \cdot \mathbf{C l}(4.0 \mathrm{mg}, 0.9 \mu \mathrm{~mol})$ was dissolved in $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL})$ and $\mathrm{CH}_{3} \mathrm{I}(0.5 \mathrm{~mL})$ was added. The solution was stirred at room temperature overnight, under N_{2}. The solvent was removed in vacuo. Anion exchange to the triflate (OTf^{-}) salt was achieved by passing a solution of the [2]rotaxane through a triflate-loaded Amberlite ${ }^{\circledR}$ column to afford 27•(OTf) $\mathbf{3}_{\mathbf{3}}(4.0 \mathrm{mg}, 99 \%) .{ }^{1} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 9.74-10.33\left(6 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{j}, \mathrm{k}, 1}\right), 9.24\left(2 \mathrm{H}\right.$, br. s., H_{2}), $8.46\left(1 \mathrm{H}\right.$, br. s., $\left.\mathrm{H}_{3}\right), 6.14(8 \mathrm{H}$, br. s., $\left.\mathrm{H}_{7,8}\right), 5.00-5.25\left(14 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{a}}\right), 2.78-4.99\left(241 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{f}, \mathrm{g}, \mathrm{g}, \mathrm{i}, \mathrm{m}, \mathrm{n}, 1,5,5,6,910,11,12}\right), 2.25-2.43\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{o}}\right)$. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($\left.126 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 167.8,159.7,152.0,137.2,132.4,130.9,130.0,129.9,129.7$, 128.8, 99.2-98.5, 90.8, 82.0-80.0, 71.2-68.0, 61.6-58.2, 45.9, 38.7-35.9, 32.7, 32.2, 31.9, 31.4, 30.3, 30.3, $30.0,29.7,29.7,29.5,29.4,29.2,28.9,27.2,27.1,26.4,25.6,24.8,24.3,23.7,23.4,23.0,22.7,14.1,14.0$, 10.9. ${ }^{19}$ F NMR ($377 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}):-78: 28\left(\mathrm{~s}, \mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}\right)$. HRESI-MS (pos.): 1468.47832 , calc. for $\left[\mathrm{C}_{179} \mathrm{H}_{276} \mathrm{I}_{4} \mathrm{~N}_{17} \mathrm{O}_{77}\right]^{3+}=1468.48110$.

S3. ${ }^{1}$ H NMR Titration Protocol \& Data

Organic and aqueous-organic solvents

Spectra for 1H NMR titrations were recorded at 293 K on a Varian Unity Plus 500 spectrometer with 1H operating at 500 MHz . Initial sample volumes were 0.50 mL and concentrations were $1.0 \mathrm{mmol}^{-1}$ of host. Solutions ($50 \mathrm{mmol} \mathrm{L}^{-1}$) of anions as their tetrabutylammonium salts were added in aliquots, the samples thoroughly shaken and spectra recorded. Spectra were recorded at $0,0.2,0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8$, $2.0,2.5,3.0,4.0,5.0,7.0$ and 10 equivalents of anion. Stability constants were obtained by analysis of the resulting data using the WinEQNMR2 ${ }^{\text {S15 }}$ computer program; In all cases where association constants were calculated, bound and unbound species were found to be in fast exchange on the NMR timescale.

Aqueous titrations

A solution of the tricationic [2]rotaxane $27 \cdot(\mathbf{O T f})_{3}(1 \mathrm{mM})$ was titrated with anions as the sodium salts $(0.5 \mathrm{M})$ in $9: 1 \mathrm{D}_{2} \mathrm{O}$:acetone- d_{6} at 293 K ; all spectra were referenced to the acetone- d_{6} resonance at 2.10 ppm . The chemical shift of protons $b, 2$ and 3 , as appropriate, were monitored. Spectra were recorded at $0,1,2,3$, $5,7,10,15,20,25,30,40,50,60,80,100$ and 120 equivalents of anion. Stability constants were obtained by analysis of the resulting data using the WinEQNMR2 ${ }^{\text {S15 }}$ computer program; In all cases where association constants were calculated, bound and unbound species were found to be in fast exchange on the NMR timescale.

Figure S1: Observed data (solid points) and fitted isotherms ${ }^{\text {s15 }}$ (lines) for addition of anions as their TBA salts to 19•PF (293 K, 1:1 $\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}$).

Binding Isotherms for Anion Association of $\mathbf{2 0} \cdot\left(\mathbf{P F}_{6}\right)_{2}$

Figure S2: Observed data (solid points) and fitted isotherms ${ }^{\text {s15 }}$ (lines) for addition of anions as their TBA salts to 20.($\left.\mathrm{PF}_{6}\right)_{2}(\mathbf{2 9 3} \mathrm{~K}$, 45:45:10 $\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}: \mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}$).

Binding Isotherms for Anion Association of $\mathbf{2 7 \cdot (O T f})_{3}$

Figure S3: Observed data (solid points) and fitted isotherms ${ }^{515}$ (lines) for addition of anions as their sodium salts to 27•(OTf) (293 K, 9:1 $\mathrm{D}_{2} \mathrm{O}$:acetone- $d_{6}, 500 \mathrm{MHz}$).

Figure S4: Representative ${ }^{1} \mathrm{H}$ NMR spectra for the titration of $\mathbf{2 7} \cdot(\mathrm{OTf})_{3}$ with $\mathrm{NO}_{3}{ }^{-}$in 9:1 $\mathrm{D}_{2} \mathrm{O}$:acetone- d_{6}.

S4. Nuclear Magnetic Resonance (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P},{ }^{19}$ F and 2D ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ ROESY) Spectra

3-(hydroxypropyl-iodotriazolyl)-5-(TBDMS-ethynyl)pyridine, 5

Figure S5: ${ }^{1} \mathrm{H}$ NMR spectrum of 3-(hydroxypropyl-iodotriazolyl)-5-(TBDMS-ethynyl)pyridine, 5 ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

Figure S6: ${ }^{13} \mathrm{C}$ NMR spectrum of 3-(hydroxypropyl-iodotriazolyl)-5-(TBDMS-ethynyl)pyridine, $\mathbf{5}$ ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3-(TMS-ethynyl)-5-(hydroxypropyl-ethynyl)pyridine, 7

Figure S7: ${ }^{1} \mathrm{H}$ NMR spectrum of 3-(TMS-ethynyl)-5-(hydroxypropyl-ethynyl)pyridine, 7 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Figure S8: ${ }^{13}$ C NMR spectrum of 3-(TMS-ethynyl)-5-(hydroxypropyl-ethynyl)pyridine, 7 ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3-ethynyl-5-(hydroxypropyl-ethynyl)pyridine, 8

Figure S9: ${ }^{1} \mathrm{H}$ NMR spectrum of 3-ethynyl-5-(hydroxypropyl-ethynyl)pyridine, 8 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Figure S10: ${ }^{13} \mathrm{C}$ NMR spectrum of 3-ethynyl-5-(hydroxypropyl-ethynyl)pyridine, 8 ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$)

3,5-diiodoethynyl pyridine, 12

Figure S11: ${ }^{1} \mathrm{H}$ NMR spectrum of 3,5-diiodoethynyl pyridine, $\mathbf{1 2}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

Figure S12: ${ }^{13} \mathrm{C}$ NMR spectrum of 3,5-diiodoethynyl pyridine, $12\left(76 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3-iodoethynyl-5-(terphenyl-propyl-iodotriazolyl) pyridine, 13
(

Figure S13: ${ }^{1} \mathrm{H}$ NMR spectrum of 3-iodoethynyl-5-(terphenyl-propyl-iodotriazolyl) pyridine, 13 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Figure S14: ${ }^{13} \mathrm{C}$ NMR spectrum of 3-iodoethynyl-5-(terphenyl-propyl-iodotriazolyl) pyridine, 13 ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3-(mesyl-propyl-iodotriazolyl)-5-(terphenyl-propyl-iodotriazolyl) pyridine, 15
(

Figure S15: ${ }^{1} \mathrm{H}$ NMR spectrum of 3-(mesyl-propyl-iodotriazolyl)-5-(terphenyl-propyl-iodotriazolyl) pyridine, 15 ($500 \mathrm{MHz} \mathbf{C D C l}_{3}$)

[^0]3-(azido-propyl-iodotriazolyl)-5-(terphenyl-propyl-iodotriazolyl) pyridine, 16
(

Figure S17: ${ }^{1} \mathrm{H}$ NMR spectrum of 3-(azido-propyl-iodotriazolyl)-5-(terphenyl-propyl-iodotriazolyl) pyridine, 16 ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Figure S18: ${ }^{13} \mathrm{C}$ NMR spectrum of 3-(azido-propyl-iodotriazolyl)-5-(terphenyl-propyl-iodotriazolyl) pyridine, 16 (100 $\mathbf{M H z}, \mathrm{CDCl}_{3}$)

3-(azido-propyl-iodotriazolyl)-5-(terphenyl-propyl-iodotriazolyl) pyridinium tetrafluoroborate, 17•BF ${ }_{4}$

Figure S19: ${ }^{1} \mathrm{H}$ NMR spectrum of 3-(azido-propyl-iodotriazolyl)-5-(terphenyl-propyl-iodotriazolyl) pyridinium tetrafluoroborate, $17 \cdot \mathrm{BF}_{4}$ ($400 \mathrm{MHz}, 3 \% \mathrm{MeOD}: \mathrm{CDCl}_{3}$)
(

Figure S20: ${ }^{13}$ C NMR spectrum of 3-(azido-propyl-iodotriazolyl)-5-(terphenyl-propyl-iodotriazolyl) pyridinium tetrafluoroborate, 17•BF $\mathbf{H}^{(100 ~ M H z, ~ 3 \% ~ M e O D: C D C l ~}{ }_{3}$)

Figure S21: ${ }^{19} \mathrm{~F}$ NMR spectrum of 3-(azido-propyl-iodotriazolyl)-5-(terphenyl-propyl-iodotriazolyl) pyridinium tetrafluoroborate, 17•BF ${ }_{4}$ ($\mathbf{3 7 6} \mathrm{MHz}$, 3\% MeOD: CDCl_{3})

Asymmetric rotaxane: pyridinium/pyridine bis-iodotriazole axle-isophthalamide 5-O-polyether macrocycle, 19•PF ${ }_{6}$

Figure S22: ${ }^{1} \mathrm{H}$ NMR spectrum of Asymmetric rotaxane: pyridinium/pyridine bis-iodotriazole axle-isophthalamide 5-0-polyether macrocycle, $19 \cdot \mathrm{PF}_{6}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Figure S23: ${ }^{13} \mathrm{C}$ NMR spectrum of Asymmetric rotaxane: pyridinium/pyridine bis-iodotriazole axle-isophthalamide 5-0-polyether macrocycle, $19 \cdot \mathrm{PF}_{6}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Figure S24: ${ }^{31}$ P NMR spectrum of Asymmetric rotaxane: pyridinium/pyridine bis-iodotriazole axle-isophthalamide 5-0-polyether macrocycle, $19 \cdot \mathrm{PF}_{6}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Figure S25: ${ }^{19}$ F NMR spectrum of Asymmetric rotaxane: pyridinium/pyridine bis-iodotriazole axle-isophthalamide 5-0-polyether macrocycle, $19 \cdot \mathrm{PF}_{6}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Dicationic rotaxane: bis-(3,5-bis-iodotriazole pyridinium) axle-isophthalamide 5-O-polyether macrocycle, $20 \cdot\left(\mathrm{PF}_{6}\right)_{2}$

Figure S26: ${ }^{1} \mathrm{H}$ NMR spectrum of Dicationic rotaxane: bis-(3,5-bis-iodotriazole pyridinium) axle-isophthalamide 5-O-polyether macrocycle, $\mathbf{2 0} \cdot\left(\mathrm{PF}_{6}\right)_{2}\left(500 \mathrm{MHz}\right.$ 45:45:10 $\left.\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}: \mathrm{D}_{2} \mathrm{O}\right)$
(

Figure S27: ${ }^{13} \mathrm{C}$ NMR spectrum of Dicationic rotaxane: bis-(3,5-bis-iodotriazole pyridinium) axle-isophthalamide 5-O-polyether macrocycle, $\mathbf{2 0} \cdot\left(\mathrm{PF}_{6}\right)_{2}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Figure S28: ${ }^{31} \mathrm{P}$ NMR spectrum of Dicationic rotaxane: bis-(3,5-bis-iodotriazole pyridinium) axle-isophthalamide 5 -O-polyether macrocycle, $\mathbf{2 0} \cdot\left(\mathrm{PF}_{6}\right)_{2}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Figure S29: ${ }^{19}$ F NMR spectrum of Dicationic rotaxane: bis-(3,5-bis-iodotriazole pyridinium) axle-isophthalamide 5 -O-polyether macrocycle, $\mathbf{2 0} \cdot\left(\mathrm{PF}_{6}\right)_{2}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

3-(mesyl-propyl-iodotriazolyl)-5-(iodoethynyl)pyridine, 21

Figure S3O: ${ }^{1} \mathrm{H}$ NMR spectrum of 3-(mesyl-propyl-iodotriazolyl)-5-(iodoethynyl)pyridine, $21\left(400 \mathrm{MHz}, 1: 1 \mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}\right)$

Figure S31: ${ }^{13} \mathrm{C}$ NMR spectrum of 3-(mesyl-propyl-iodotriazolyl)-5-(iodoethynyl)pyridine, 21 ($100 \mathrm{MHz}, 1: 1 \mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}$)

3-(mesyl-propyl-iodotriazolyl)-5-(permethyl- β-cyclodextrin-iodotriazolyl)pyridine, 22

Figure S32: ${ }^{1} \mathrm{H}$ NMR spectrum of 3-(mesyl-propyl-iodotriazolyl)-5-(permethyl- β-cyclodextrin-iodotriazolyl)pyridine, 22 (500 MHz CDCl_{3})

Figure S33: ${ }^{13} \mathrm{C}$ NMR spectrum of 3-(mesyl-propyl-iodotriazolyl)-5-(permethyl- β-cyclodextrin-iodotriazolyl)pyridine, 22 (126 MHz, CDCl_{3})

3-(permethyl- β-cyclodextrin-iodotriazolyl)-5-(iodoethynyl)pyridine, 23

Figure S34: ${ }^{1} \mathrm{H}$ NMR spectrum of 3-(permethyl- β-cyclodextrin-iodotriazolyl)-5-(iodoethynyl)pyridine, $\mathbf{2 3}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Figure S35: ${ }^{13}$ C NMR spectrum of 3-(permethyl- β-cyclodextrin-iodotriazolyl)-5-(iodoethynyl)pyridine, $\mathbf{2 3}$ ($100 \mathbf{M H z}, \mathrm{CDCl}_{3}$)

3-(azido-propyl-iodotriazolyl)-5-(permethyl- β-cyclodextrin-iodotriazolyl)pyridine, 24

Figure S36: ${ }^{1} \mathrm{H}$ NMR spectrum of 3-(azido-propyl-iodotriazolyl)-5-(permethyl- β-cyclodextrin-iodotriazolyl)pyridine, $\mathbf{2 4}$ ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl_{3})

Figure S37: ${ }^{13} \mathrm{C}$ NMR spectrum of 3-(azido-propyl-iodotriazolyl)-5-(permethyl- β-cyclodextrin-iodotriazolyl)pyridine, $\mathbf{2 4}(\mathbf{1 0 0} \mathbf{~ M H z}$, CDCl_{3})

3-(azido-propyl-iodotriazolyl)-5-(permethyl- β-cyclodextrin-iodotriazolyl)pyridinium chloride, 25.Cl

Figure S38: ${ }^{1} \mathrm{H}$ NMR spectrum of 3-(azido-propyl-iodotriazolyl)-5-(permethyl- β-cyclodextrin-iodotriazolyl)pyridinium chloride, $\mathbf{2 5} \cdot \mathrm{Cl}\left(\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Figure S39: ${ }^{13} \mathrm{C}$ NMR spectrum of 3-(azido-propyl-iodotriazolyl)-5-(permethyl- β-cyclodextrin-iodotriazolyl)pyridinium chloride, $\mathbf{2 5} \cdot \mathrm{Cl}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Water-soluble asymmetric monocationic [2]rotaxane: permethyl- β-cyclodextrin-stoppered pyridinium/pyridine bis-iodotriazole axle with pyridine bis-amide 5-O-polyether macrocycle, S4•Cl

Figure S40: ${ }^{1} \mathrm{H}$ NMR spectrum of Water-soluble asymmetric monocationic [2]rotaxane: permethyl- β-cyclodextrin-stoppered pyridinium/pyridine bis-iodotriazole axle with pyridine bis-amide 5 -O-polyether macrocycle, $\mathrm{S} 4 \cdot \mathrm{Cl}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Water-soluble symmetric tricationic [2]rotaxane: permethyl- β-cyclodextrin-stoppered bis-(3,5-bisiodotriazole pyridinium) axle with pyridinium bis-amide 5-O-polyether macrocycle, 27•(OTf) ${ }_{3}$

Figure S41: ${ }^{1} \mathrm{H}$ NMR spectrum of Water-soluble symmetric tricationic [2]rotaxane: permethyl- β-cyclodextrin-stoppered bis-(3,5-bis-iodotriazole pyridinium) axle with pyridinium bis-amide 5 - O-polyether macrocycle, $27 \cdot(\mathrm{OTf})_{3}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Figure S42: ${ }^{13} \mathrm{C}$ NMR spectrum of Water-soluble symmetric tricationic [2]rotaxane: permethyl- β-cyclodextrin-stoppered bis-(3,5-bis-iodotriazole pyridinium) axle with pyridinium bis-amide 5-O-polyether macrocycle, 27.(OTf) $)_{3}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Figure S43: ${ }^{19}$ F NMR spectrum of Water-soluble symmetric tricationic [2]rotaxane: permethyl- β-cyclodextrin-stoppered bis-(3,5-bis-iodotriazole pyridinium) axle with pyridinium bis-amide 5 -O-polyether macrocycle, 27•(OTf) $)_{3}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

S5. References

S1. H. Abe, K. Ohtani, D. Suzuki, Y. Chida, Y. Shimada, S. Matsumoto and M. Inouye, Org. Lett., 2014, 16, 828-831.
S2. V. Aucagne, K. D. Hänni, D. A. Leigh, P. J. Lusby and D. B. Walker, J. Am. Chem. Soc., 2006, 128, 2186-2187.
S3. M. Zurro, S. Asmus, S. Beckendorf, C. Mück-Lichtenfeld and O. G. Mancheño, J. Am. Chem. Soc., 2014, 136, 13999-14002.
S4. N. L. Kilah, M. D. Wise, C. J. Serpell, A. L. Thompson, N. G. White, K. E. Christensen and P. D. Beer, J. Am. Chem. Soc., 2010, 132, 11893-11895.
S5. N. G. White, A. R. Colaço, I. Marques, V. Félix and P. D. Beer, Org. Biomol. Chem., 2014, 12, 49244931.

S6. J. A. Faiz, N. Spencer and Z. Pikramenou, Org. Biomol. Chem., 2005, 3, 4239-4245.
S7. M. J. Langton, S. W. Robinson, I. Marques, V. Felix and P. D. Beer, Nature Chem., 2014, 6, 10391043.

S8. P. J. Skinner, A. Beeby, R. S. Dickins, D. Parker, S. Aime and M. Botta, J. Chem. Soc., Perkin Trans. 2, 2000, 7, 1329-1338.
S9. N. Zhong, H. S. Byun and R. Bittman, Tetrahedron Lett., 1998, 39, 2919-2920.
S10. Q. H. Sodji, V. Patil, J. R. Kornacki, M. Mrksich and A. K. Oyelere, J. Med. Chem., 2013, 56, 99699981.

S11. S. W. Robinson, C. L. Mustoe, N. G. White, A. Brown, A. L. Thompson, P. Kennepohl and P. D. Beer, J. Am. Chem. Soc., 2015, 137, 499-507.

S12. L. M. Hancock and P. D. Beer, Chem. Eur. J., 2009, 15, 42-44.
S13. M. J. Langton, L. C. Duckworth and P. D. Beer, Chem. Commun. (Cambridge, U. K.), 2013, 49, 86088610.

S14. N. G. White and P. D. Beer, Chem. Commun. (Cambridge, U. K.), 2012, 48, 8499-8501.
S15. M. J. Hynes, J. Chem. Soc., Dalton Trans., 1993, 2, 311.

[^0]: Figure S16: ${ }^{13}$ C NMR spectrum of 3-(mesyl-propyl-iodotriazolyl)-5-(terphenyl-propyl-iodotriazolyl) pyridine, 15 ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

