Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

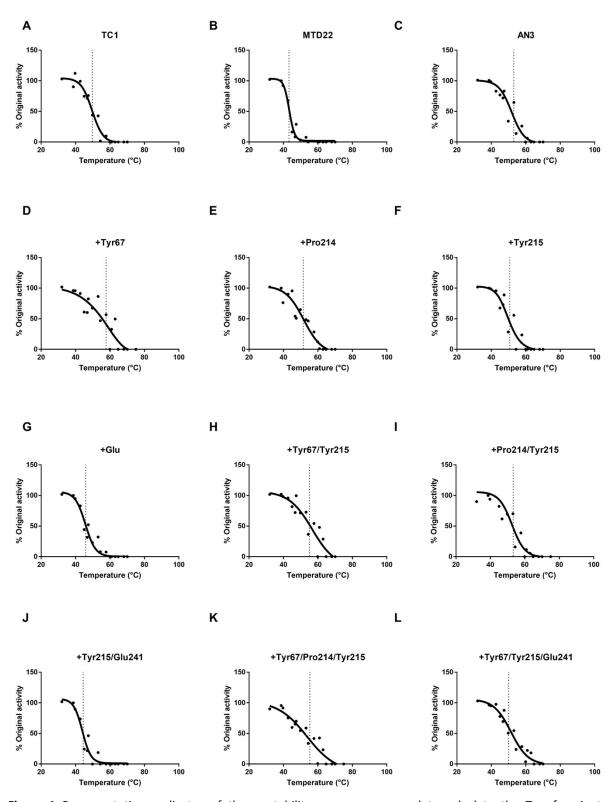
Supporting Information

Constrained evolution of a bispecific enzyme: lessons for biocatalyst design

E. Sugrue,^a Colin Scott,^b C. J. Jackson^{a*}

^aResearch School of Chemistry, Australian National University, Canberra, Australia. E-mail: colin.jackson@anu.edu.au

Table 1 Impact of individual mutations on the thermostability and kinetic parameters of TrzN with atrazine and ametryn when compared to the *Nocardioides* sp. strain AN3 background.


	Autation Background			Fold-change ^a		
Mutation				Atrazine hydrolysis	Ametryn hydrolysis ^b	Absolute change in T _m (°C)
Tyr67	-	-	-	-2	N/A ^c	4.7
	Pro214	-	-		†	
	-	Tyr215		-1	N/A	4.4
	-	-	Glu241		†	
	Pro214	Tyr215	-	-1	N/A	2.1
	Pro214	-	Glu241		†	
	-	Tyr215	Glu241	-3	0	5.6
	Pro214	Tyr215	Glu241	-5	0	6.5
Pro214	-	-	-	-2	N/A	-1.6
	Tyr67	-	-		+	
	-	Tyr215	-	0	N/A	1.7
	-	-	Glu241		+	
	Tyr67	Tyr215	-	0	N/A	0.2
	Tyr67	-	Glu241		+	
	-	Tyr215	Glu241	1	2	-1.2
	Tyr67	Tyr215	Glu241	0	2	-0.3
Tyr215	-	-	-	-2	N/A	-2.3
	Tyr67	-	-	0	N/A	-2.6
	-	Pro214	-	0	N/A	2.6
	-	-	Glu241	-6	2	-1.5
	Tyr67	Pro214	-		†	
	Tyr67	-	Glu241		+	
	-	Pro214	Glu241		+	
	Tyr67	Pro214	Glu241		+	
Glu241	-	-	-	7	38000	-7.1
	Tyr67	-	-		†	
	-	Pro214	-		+	
	-	-	Tyr215	3	57000	-6.3
	Tyr67	Pro214	-		†	
	Tyr67	-	Tyr215	1	53000	-5.1
	-	Pro214	Tyr215	5	89000	-10.0
	Tyr67	Pro214	Tyr215	1	91000	-5.6

[†]One of the proteins does not express

^aFold-change when compared to the *Nocardioides* sp. strain AN3 background. Grey indicates negative change, yellow neutral, and green positive.

^bFold-change in activity when compared to the assay detection limit

^cNot applicable

Figure 1 Representative replicates of thermostability assay curves used to calculate the T_m of variants. *Arthrobacter aurescens* strain TC1 TrzN, *Nocardioides* sp. strains MTD22 TrzN, and AN3 TrzN are shown from A-C, the remainder of soluble variants from D-L. The T_m (°C) calculated from three independent replicates is indicated with a dotted line.

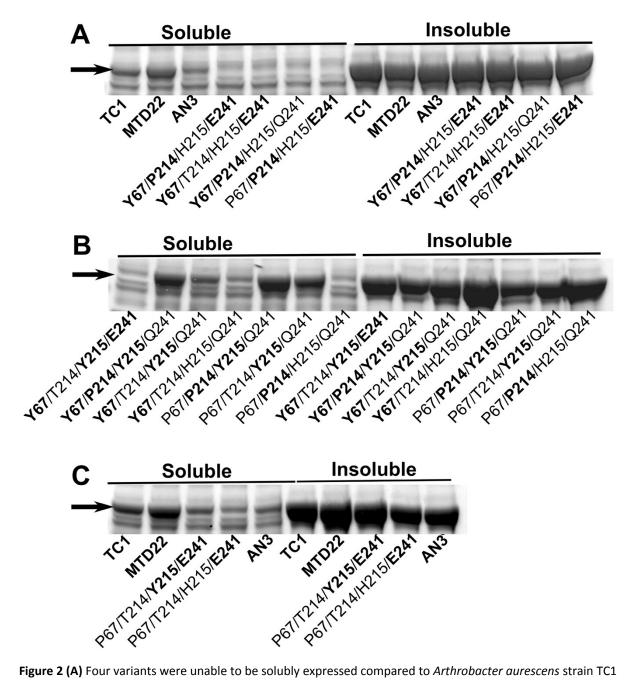
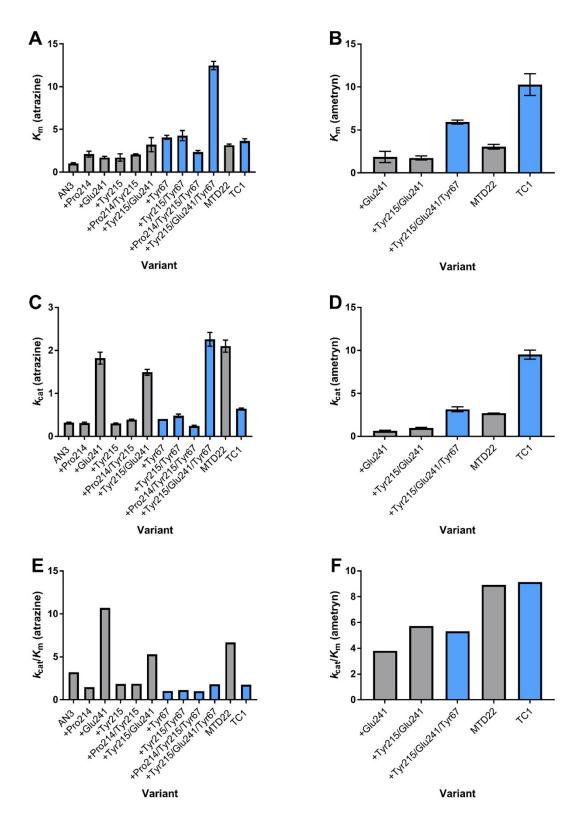



Figure 2 (A) Four variants were unable to be solubly expressed compared to *Arthrobacter aurescens* strain TC1 TrzN, *Nocardioides* sp. strains MTD22 TrzN, and AN3 TrzN, which exhibit soluble expression.

Tyr67/Pro214/His215/Glu241 TrzN, Tyr67/Thr214/His215/Glu241, Tyr67/Pro214/His215/Gln241, and Phe67/Pro214/His215/Glu241 show no soluble expression but substantial insoluble expression. (B) Soluble expression is much higher in the presence of Gln241. (C) Addition of Glu241 is observed to decrease expression.

Figure 3 Modification of Phe67 to Tyr67 is observed to change the kinetic parameters of all TrzN variants. Modification of Phe67 to Tyr67 (blue bars) increases the $K_{\rm m}$ with both atrazine (**A**) and ametryn (**B**) independent of pre-existing mutations. Addition of Tyr67 is also observed to increase the $k_{\rm cat}$ with atrazine (**C**) and ametryn (**D**) in some genetic backgrounds. Overall, the $k_{\rm cat}/K_{\rm m}$ with atrazine is observed to be reduced in Tyr67 containing variants (**E**) whereas the $k_{\rm cat}/K_{\rm m}$ with ametryn is observed to be generally unchanged (**F**)

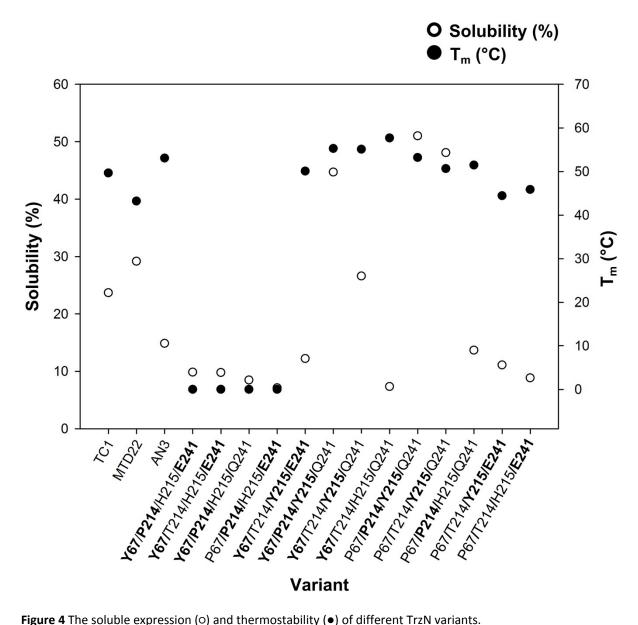


Figure 4 The soluble expression (○) and thermostability (●) of different TrzN variants.