Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

"On water" reaction of deactivated anilines with 4-methoxy-3-buten-2-one, an effective butynone surrogate

Meriam Jebari,^{a,b} Karine Pasturaud,^a Baptiste Picard,^a Jacques Maddaluno,^a Farhat Rezgui,^b Isabelle Chataigner^a and Julien Legros^{*a}

^a Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA, 76000 Rouen, France.

^b Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Organique Structurale LR99ES14, Campus Universitaire, 2092 Tunis, Tunisia.

Table of contents

Kinetics measurements of the reaction between 1 and 2a in various solvents	S2
Experimental section	S4
Copies of NMR spectra	S7

Kinetics measurements of the reaction between 1 and 2a in various solvents

Reactions were performed at 20 °C with butenone 1 (0.5 mmol), aniline 2a (0.6 mmol) and solvent (0.5 mL) under vigorous stirring (1400 rpm).

DCM Time (h)	0	2	8	24		
[methoxybutenone]	1	0,81	0,63	0,24		
1/[methoxybutenone]	1	1,2345679	1,58730159	4,16666667		
EtOU Time (b)	0	0.5	1	2	10 5	24
EtOH Time (n)	0	0,5	1	2	19,5	24
[methoxybutenone]	1	0,92	0,9	0,83	0,49	0,45
1/[methoxybutenone]	1	1,08695652	1,11111111	1,20481928	2,04081633	2,22222222
TFE Time (h)	0	2	8	24		
[methoxybutenone]	1	0,81	0,51	0,17		
1/[methoxybutenone]	1	1,2345679	1,96078431	5,88235294		
HFIP Time (h)	0	2	8	24		
[methoxybutenone]	1	0,69	0,37	0,14		
4 //		4 44007500	0 7007007	7 4 400 5 7 4 4		
1/[methoxybutenone]	1	1,44927536	2,7027027	7,14285714		
H2O Time (h)	0	0.083	0 166	0.5	1	2
[methoxybutenone]	- 1	0.7	0.52	0.25	0.08	0.04
[moulox]satoriono]		0,1	0,02	0,20	0,00	0,01
1/[methoxybutenone]	1	1,42857143	1,92307692	4	12,5	25
neat Time (h)	0	1	2	24		
[methoxybutenone]	10	10	6,5	0,2		
1/[methoxybutenone]	0,1	0,1	0,15384615	5		

Experimental Section

Silica gel used for chromatography was 40 μ m diameter. ¹H and ¹³C spectra were recorded at 300 and 75 MHz, respectively, for solution in CDCl₃. Chemical shift (δ) in ppm are reported using residual chloroform (7.26 for ¹H and 77.16 for ¹³C) as internal reference. Micromass Q-TQF (Quadrupole time-of-flight) instrument with an electrospray source in the EI or ESI mode.

General Procedure for the "on water" reaction between *trans*-4-methoxy-3-buten-2-one 1 and anilines

In a capped vial, water (0.5 mL) was added to *trans*-4-methoxy-3-buten-2-one **1** (0.5 mmol) under vigorous stirring (1400 rpm) followed by aromatic amine **2a-p** (0.6 mmol). The mixture was kept at room temperature or warmed to 60 °C according to Table 2. After completion of the reaction (¹H NMR monitoring), the aqueous phase was extracted with dichloromethane (2x1.5 mL). The combined organic layers were dried over anhydrous MgSO₄, filtered, and the solvent was evaporated under vacuum. The product was isolated in pure form by column chromatography (cyclohexane/AcOEt, 95:05 to 70:30).

(*Z*)-4-((3-Nitrophenyl)amino)-but-3-en-2-one (3a): yellow crystals, 89 mg, (86%), mp (°C): 113; ¹H NMR (CDCl₃, 300 MHz): $\delta = 2.18$ (s, 3 H), 5.41 (d, J = 8.03 Hz, 1 H), 7.19-7.29 (m, 2H), 7.45 (t, J = 8.0 Hz, 1 H), 7.88-7.81 (m, 2H), 11.68 (d, J = 10.5, 1 H) ppm. ¹³C NMR (CDCl₃, 75 MHz) $\delta = 29.9$, 99.5, 109.8, 117.6, 122.1, 130.6, 141.5, 141.8, 149.4, 200.0 ppm; IR (neat) v (cm⁻¹) 1350, 1621; HRMS (ES+) *m/z* [M + H]+ calcd for C₁₀H₁₁N₂O₃ 207.0770; found 207.0771.

(*Z*)-4-((4-Nitrophenyl)amino)-but-3-en-2-one (3b):¹ yellow crystals, 79 mg, (77%), mp (°C): 174; ¹H NMR (300 MHz, CDCl₃): δ = 2.21 (s, 3 H), 5.47 (d, *J* = 8.0 Hz, 1 H), 7.07 (d, *J* = 9 Hz, 2 H), 7.22 (dd, *J* = 11.9, 8.0 Hz, 1 H), 8.20 (d, *J* = 9 Hz, 2 H), 11.72 (d, J = 10.8 Hz, 1 H) ppm. ¹³C NMR (CDCl₃, 75 MHz) δ = 30.2, 100.9, 115.1, 126.2, 140.5, 142.8, 146.1, 200.4 ppm; IR (neat) v (cm⁻¹) 1324.97, 1648.2; HRMS (ES+) *m/z* [M + H]+ calcd for C₁₀H₁₁N₂O₃ 207.0770; found 207.0773.

(Z)-4-((4-(Trifluoromethyl)phenyl)amino)-but-3-en-2-one (3c): white crystals, 113 mg, (98%), mp (°C): 127; ¹H NMR (CDCl₃, 300 MHz): δ = 2.16 (s, 3 H), 5.36 (dd, *J* = 7.5, 1.4 Hz, 1 H), 7.05 (d, *J* = 7.5 Hz, 2 H), 7.14-7.25 (m, 1 H), 7.53 (d, *J* = 7.5, 2 H), 11.60 (d, *J* = 9.7 Hz, 1 H) ppm. ¹³C NMR (CDCl₃, 75 MHz) δ = 29.8, 99.2, 115.6, 124.2 (q, ¹*J*_{C-F} = 270 Hz), 124.9 (q, ²*J*_{C-F} = 32 Hz), 127.09 (q, ³*J*_{C-F} = 3.8 Hz), 141.7, 143.4, 199.8 ppm; IR (neat) v (cm⁻¹) 1648; HRMS (ES+) *m/z* [M + H]+ calcd for C₁₁H₁₁F₃NO 230.0793; found 230.0792.

(*Z*)-4-((3-(Trifluoromethyl)phenyl)amino)-but-3-en-2-one (3d): white crystals, 108 mg, (94%), mp (°C): 73; ¹H NMR (CDCl₃, 300 MHz): δ = 2.18 (s, 3 H), 5.32-5.44 (m, 1 H), 7.11-7.32 (m, 4 H), 7.35-7.49 (m, 1 H), 11.67 (d, *J* = 9.3 Hz, 1 H) ppm. ¹³C NMR (CDCl₃, 75 MHz) δ = 29.6, 98.6, 112.3 (q, ³*J*_C, ^F = 3.8 Hz), 119.1, 119.6, 123.8 (q, ¹*J*_{C-F} = 271 Hz), 130.2, 132.1 (q, ²*J*_{C-F} = 32 Hz), 141.0, 142.0, 199.5 ppm; IR (neat) v (cm⁻¹) 1665.52 (C=C) _{cis}, 3047 (CH₃); HRMS (ES+) *m/z* [M + H]+ calcd for C₁₁H₁₁F₃NO 230.0793; found 230.0801.

(Z)-4-((2-(Trifluoromethyl)phenyl)amino)-but-3-en-2-one (3e): white crystals, 96 mg, (83%), mp (°C): 40; ¹H NMR (CDCl₃, 300 MHz): δ = 2.16 (s, 3 H), 5.39 (d, *J* = 7.8 Hz, 1 H), 7.04-7.26 (m, 3 H), 7.48 (t, *J*= 7.8 Hz, 1 H), 7.57 (d, *J* = 7.8 Hz), 12.07 (d, *J* = 9 Hz, 1 H) ppm. ¹³C NMR (CDCl₃, 75 MHz) δ = 29.6, 99.7, 116.3, 118.6 (q, ²*J*_{C-F} = 31 Hz), 122.7, 124.0 (q, ¹*J*_{C-F} = 273 Hz), 127.0 (q, ³*J*_{C-F} = 5.5 Hz), 133.3, 138.9, 142.4, 199.5 ppm; IR (neat) v (cm⁻¹) (C-F), 1646.61; HRMS (ES+) *m/z* [M + H]+ calcd for C₁₁H₁₁F₃NO 230.0793; found 230.0788.

(Z)-4-((4-Chlorophenyl)amino)-but-3-en-2-one (3f):¹ white crystals, 96 mg, (98%), mp (°C): 113; ¹H NMR (CDCl₃, 300 MHz): δ = 2.17 (s, 3 H), 5.33 (d, *J* = 7.8 Hz, 1 H), 6.95 (d, *J* = 8.4 Hz, 2H), 7.15 (dd, *J* = 12.3, 7.8 Hz, 1H), 7.28 (d, *J* = 8.4 Hz, 2H), 11.59 (d, *J* = 10 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 75 MHz) δ = 29.6, 98.0, 117.2, 128.3, 129.7, 139.0, 142.6, 199.2 ppm; IR (neat) v (cm⁻¹) 1643; HRMS (ES+) *m/z* [M + H]+ calcd for C₁₀H₁₁CINO 196.0529; found 196.0528.

(Z)-4-((3-Chlorophenyl)amino)-but-3-en-2-one (3g): white crystals, 90 mg, (92%), mp (°C): 85; ¹H NMR (CDCl₃, 300 MHz): δ = 2.21 (s, 3 H), 5.38 (d, *J* = 8 Hz), 6.92 (d, *J* = 8 Hz, 1 H), 7.02-7.08 (m, 2 H), 7.16-7.31 (m, 2H), 11.58 (d, *J* = 12 Hz, 1 H) ppm. ¹³C NMR (CDCl₃, 75 MHz) δ = 29.8, 98.5, 114.5, 116.0, 123.3, 130.8, 135.6, 141.8, 142.3, 199.4 ppm; IR (neat) v (cm⁻¹) 1648; HRMS (ES+) *m/z* [M + H]+ calcd for C₁₀H₁₁ClNO 196.0529; found 196.0529.

(Z)-4-((2-Chlorophenyl)amino)-but-3-en-2-one (3h): white crystals, 92 mg, (94%), mp (°C): 70; ¹H NMR (CDCl₃, 300 MHz): δ = 2.22 (s, 3 H), 5.44 (d, *J* = 7.8 Hz, 1 H), 6.98 (t, *J* = 7.8 Hz, 1 H), 7.11-7.33 (m, 3H), 7.40 (d, *J* = 7.8 Hz, 1H), 11.99 (br s, 1 H) ppm. ¹³C NMR (CDCl₃, 75 MHz) δ = 29.6, 99.1, 114.0, 122.4, 123.3, 127.9, 130.1, 137.4, 141.3, 199.2 ppm; IR (neat) v (cm⁻¹) 1644.03; HRMS (ES+) *m/z* [M + H]+ calcd for C₁₀H₁₁ClNO 196.0529; found 196.0527.

(Z)-4-((4-Chloro-2-fluorophenyl)amino)-but-3-en-2-one (3i): white crystals, 99 mg, (93%), mp (°C): 102; ¹H NMR (300 MHz, CDCl₃): δ = 2.11 (s, 3 H), 5.34 (d, *J* = 7.84 Hz, 1 H), 6.95-7.15 (m, 4H), 11.56 (d, *J* = 11.7, 1H) ppm. ¹³C NMR (CDCl₃, 75 MHz) δ = 29.7, 99.2, 115.7, 116.8 (d, ²*J*_{C-F} = 22 Hz), 125.0 (d, ³*J*_{C-F} = 3.8 Hz), 127.5 (d, ³*J*_{C-F} = 9.3 Hz), 128.0 (d, ²*J*_{C-F} = 11 Hz), 141.5, 151.7 (d, ¹*J*_{C-F} = 252 Hz), 199.4 ppm; IR (neat) v (cm⁻¹) 1643; HRMS (ES+) *m/z* [M + H]+ calcd for C₁₀H₁₀CIFNO 214.0435; found 214.0432.

(*Z*)-4-((3-Chloro-4-fluorophenyl)amino)-but-3-en-2-one (3j): brown crystals, 92 mg, (86%), mp (°C): 85; ¹H NMR (CDCl₃, 300 MHz): δ = 2.15 (s, 3 H), 5.31 (d, *J* = 7.8 Hz, 1 H), 6.81-6.88 (m, 1 H), 7.01-7.11 (m, 3 H), 11.53 (d, *J* = 11 Hz, 1 H) ppm. ¹³C NMR (CDCl₃, 75 MHz) δ = 29.7, 98.4, 115.8 (d, ³*J*_{C-F} = 7 Hz), 117.5 (d, ²*J*_{C-F} = 23 Hz), 117.9, 122.1 (d, ²*J*_{C-F} = 20 Hz), 137.5 (d, *J*_{C-F} = 2 Hz), 142.8, 154.4 (d, ¹*J*_{C-F} = 245 Hz), 199.4 ppm; IR (neat) v (cm⁻¹); HRMS (ES+) *m*/*z* [M + H]+ calcd for C₁₀H₁₀ClN₂FNO 214.0435; found 214.0436.

(Z)-4-((2,4-Difluorophenyl)amino)-but-3-en-2-one (3k): white crystals, 82 mg (83%), mp (°C): 95; ¹H NMR (CDCl₃, 300 MHz): δ = 2.14 (s, 3 H), 5.35 (d, *J* = 7.6 Hz, 1 H), 6.77-6.92 (m, 2H), 7.00-7.18 (m, 2H), 11.58 (d, *J* = 10.7 Hz, 1 H) ppm. ¹³C NMR (CDCl₃, 75 MHz) δ = 29.6, 98.7, 104.8 (dd, *J*_{C-F} = 27, 22 Hz), 111.6 (dd, *J*_{C-F} = 23, 3.2 Hz), 116.2 (dd, *J*_{C-F} = 9.4, 2.9 Hz), 125.8 (dd, *J*_{C-F} = 11, 3.4 Hz), 142.6, 152.1 (dd, *J*_{C-F} = 246, 11 Hz), 158.1 (dd, *J*_{C-F} = 246, 11 Hz), 199.3 ppm; IR (neat) v 1635 1733; HRMS (ES+) *m/z* [M + H]+ calcd for C₁₀H₁₀F₂NO 198.0730; found 198.0736.

(Z)-4-((3-Fluorophenyl)amino)-but-3-en-2-one (3l): white crystals, 78 mg (87%), mp (°C): 58; ¹H NMR (CDCl₃, 300 MHz): δ = 2.14 (s, 3 H), 5.31 (d, *J* = 7.8 Hz, 1 H), 6.63-6.84 (m, 3 H), 7.07-7.29 (m, 2 H), 11.52 (d, *J* = 10 Hz, 1 H) ppm. ¹³C NMR (CDCl₃, 75 MHz) δ = 29.7, 98.3, 103.0 (d, ²*J*_{C-F} = 25Hz), 109.9 (d, ²*J*_{C-F} = 20 Hz), 111.8 (d, ⁴*J*_{C-F} = 2.8 Hz), 131.0 (d, ³*J*_{C-F} = 10 Hz), 142.2 (d, ³*J*_{C-F} = 10 Hz), 142.3, 163.7 (d, ¹*J*_{C-F} = 247 Hz), 199.3 ppm; IR (neat) v (cm⁻¹) 1641.6; HRMS (ES+) *m/z* [M + H]+ calcd for C₁₀H₁₁FNO 180.0825; found 183.0577.

(Z)-4-((Phenylamino)-but-3-en-2-one (3m):¹ white crystals, 71 mg, (89%), mp (°C): 85; ¹H NMR (CDCl₃, 300 MHz): $\delta = 2.16$ (s, 3 H), 5.30 (d, J = 7.8 Hz, 1H), 7.00-7.04 (m, 3H), 7.23 (dd, J = 12.5,

7.9 Hz, 1H), 7.32 (t, J = 7.9 Hz, 2H), 11.62 (d, J = 12.5, 1H) ppm. ¹³C NMR (CDCl₃, 75 MHz) $\delta = 29.6$, 97.5, 116.1, 123.4, 129.7, 140.4, 143.0, 199.0 ppm; IR (neat) v (cm⁻¹) 1666, 3231 ; HRMS (ES+) m/z [M + H]+ calcd for C₁₀H₁₂NO 162.0919; found 162.0916.

(*Z*)-4-((4-Methoxyphenyl)amino)-but-3-en-2-one (3n):¹ Brown crystals, 93 mg, (97%), mp (°C): 65; ¹H NMR (CDCl₃, 300 MHz): $\delta = 2.14$ (s, 3 H), 3.78 (s, 3 H), 5.24 (d, J = 7.4 Hz, 1 H), 6.85 (d, J = 9.03 Hz, 2H), 6.97 (dd, J = 9.03 Hz, 2H), 7.13 (dd, J = 11.4, 7.6 Hz, 1 H), 11.61 (d, J = 11.5 Hz, 1 H) ppm. ¹³C NMR (CDCl₃, 75 MHz) $\delta = 29.5$, 55.7, 96.7, 115.0, 117.8, 134.2, 144.1, 156.8, 198.5 ppm; IR (neat) v (cm⁻¹) 1635; HRMS (ES+) *m/z* [M + H]+ calcd for C₁₁H₁₄NO₂ 192.1025; found 192.1024.

(*E*)-4-(Methyl(phenyl)amino)but-3-en-2-one (3o):¹ pink oil, 85 mg, (98%), ¹H NMR (CDCl₃, 300 MHz,): δ = 2.17 (s, 3 H), 3.26 (s, 3 H), 5.40 (d, *J* = 12.9 Hz, 1 H), 7.10-7.17 (m, 3 H), 7.30-7.39 (m, 2 H), 7.88 (d, *J* = 12.9 Hz, 1 H) ppm. ¹³C NMR (CDCl₃, 75 MHz) δ = 28.3, 37.0, 101.9, 120.4, 124.8, 129.6, 146.6, 148.5, 196.4 ppm; IR (neat) v (cm⁻¹) 1611.68; HRMS (ES+) *m/z* [M + H]+ calcd for C₁₁H₁₄NO 176.1075; found 176.1071.

(*E*)-4-((4-Chlorophenyl)(methyl)amino)but-3-en-2-one (3p): brown oil, 87 mg (83%) ¹H NMR (300 MHz, CDCl₃): δ = 2.10 (s, 3 H), 3.16 (s, 3 H), 5.35 (d, *J* = 13 Hz, 1 H), 6.99 (d, *J* = 8.5 Hz, 2 H), 7.23 (d, *J* = 8.5 Hz, 2 H), 7.74 (d, *J* = 13 Hz, 1 H) ppm. ¹³C NMR (CDCl₃, 75 MHz) δ = 28.4, 36.9, 102.2, 121.4, 129.4, 129.9, 145.0, 147.8, 196.3 ppm; IR (neat) v (cm⁻¹) 1610.64 (C=C)_{aromatique}, 1661; HRMS (ES+) *m/z* [M + H]+ calcd for C₁₁H₁₃CINO 210.0686; found 210.0693.

1 D. R. Chisholm, R. Valentine, E. Pohl and A. Whiting, J. Org. Chem., 2016, 81, 7557-7565.

