Copper-catalyzed synthesis of 2-aminobenzothiazoles from

2-iodophenyl isocyanides, Potassium sulfide and amines

Hao Min, Genhua Xiao, Wenjuan Liu and Yun Liang*

Key Laboratory of the Assembly and Application of Organic Functional Molecules, Hunan Normal University, Changsha, Hunan 410081, China. E-mail: yliang@hunnu.edu.cn; Fax: +86 0731 88872533

Supporting Information

1) General Information	S2
2) Synthesis of Starting Materials Preparation of 1a-1j3) Typical Procedures	
5) References	
6) Scanned ¹ H NMR and ¹³ C NMR Spectra of All New Compounds	S11

1) General Information

NMR spectra of the products **3a-3v** were obtained using Bruker Avance-500 instruments, calibrated to TMS (¹H NMR spectra) and CD(H)Cl₃ (¹³C NMR spectra) as the internal reference (0.00 ppm for ¹H NMR spectra and 77.00 ppm for ¹³C NMR spectra). High-resolution massspectra. (HRMS) were recorded on a Bruker Apex IV FTMS mass spectrometer using ESI (electrospray ionization). Reactions were monitored by thin-layer chromatography. Column chromatography (petroleum ether/ethyl acetate) was performed on silica gel(200-300 mesh).

2) Synthesis of Starting Materials Preparation of 1a-1j:^{1,2}

General Procedure for the Synthesis of o-iodoformanilides¹

To formic acid (2.41 mL, 63.9 mmol) was added acetic anhydride (2.16 mL, 22.8 mmol) and the mixure was stirred at room temperature. After stirring for 10 min, to the mixture was added the solution of *o*-iodoaniline (3.99 g, 18.3 mmol) in CH_2Cl_2 (60 mL) and the mixture was stirred at room temperature. After stirring for 2 h, the mixture was concentrated under reduced pressure to give *o*-iodoformanilides (4.42 g, 98%) as a white solid

General Procedure for the Synthesis of 2-iodophenyl isocyanides²

To a stirred solution of formamide **1** (1.0 mmol) and I_2 (381 mg, 1.5 mmol) in CH₂Cl₂ (3 mL) was added Ph₃P (394 mg, 1.5 mmol), followed by the dropwise addition of Et₃N (415 µL, 301 mg, 3 mmol). The mixture was stirred at r.t. until the consumption of the formamide was complete (TLC monitoring, typically 1 h), and then diluted with CH₂Cl₂ (10 mL) and washed with ice-cold sat. aq Na₂S₂O₃ solution (10 mL). The aq phase was extracted with CH₂Cl₂ (2 × 10 mL). Each portion of the organic phase was sequentially washed with deionized H₂O (10 mL) and brine (10 mL), dried over anhydrous Na₂SO₄, and filtered. The combined organic phase was concentrated under reduced pressure and purified by column chromatography (silica

gel, typically PE as the eluent) to give the corresponding 2-iodophenyl isocyanides

3) Typical Procedures

To a schlenk tube were added 2-iodophenyl isocyanides (0.3 mmol), K_2S (3equiv), amines (0.3 mmol), CuCl (10 mol%), 1,10-Phen (20 mol%), and DMF (2 mL). the mixture was stirred at 100 °C (oil bath temperature) for the indicated time until complete consumption of starting material as monitored by TLC. After the reaction was finished, the reaction mixture was cooled to room temperature, diluted in ethyl acetate, and washed with water. The aqueous phase was re-extracted with ethylacetate. The combined organic extracts were dried over Na₂SO₄ and concentrated in vacuum, and the resulting residue was purified by silica gel column chromatography with petroleum ether/ethyl acetate as eluent to afford the desired product.

4) Characterization Data

2-(piperidin-1-yl)benzo[d]thiazole(3a):³ The product was purified by flash chromatography to give 62 mg (95%) as a white solid. ¹H NMR (CDCl₃, 500 MHz) δ = 7.56 (d, *J* = 8.0 Hz, 1H), 7.53 (d, *J* = 8.5 Hz, 1H), 7.26 (t, *J* = 8.0 Hz, 1H), 7.03 (t, *J* = 7.5 Hz, 1H), 3.58 (s, 4H), 1.66 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz) δ = 168.8, 152.8, 130.5, 125.8, 121.0, 120.5, 118.7, 49.5, 25.2, 24.1.

2-(pyrrolidin-1-yl)benzo[d]thiazole(3b):³ The product was purified by flash chromatography to give 60 mg (98%) as a yellow solid. ¹H NMR (CDCl₃, 500 MHz) $\delta = 7.58$ (t, J = 8.0 Hz, 2H), 7.27 (t, J = 7.5 Hz, 1H), 7.02 (t, J = 7.5 Hz, 1H), 3.54 (t, J = 6.5 Hz, 4H), 2.03-2.01 (m, 4H). ¹³C NMR (CDCl₃, 125 MHz) $\delta = 165.2$, 153.0, 130.5, 125.8, 120.5(2C), 118.4, 49.4, 25.5.

N,N-diethylbenzo[d]thiazol-2-amine(3c):⁴ The product was purified by flash chromatography to give 58 mg (94%) as a colourless oil. ¹H NMR (CDCl₃, 500 MHz) $\delta = 7.55$ (t, J = 8.0 Hz, 2H), 7.25 (t, J = 7.5 Hz, 1H), 7.01 (t, J = 7.5 Hz, 1H), 3.57-3.52 (m, 4H), 1.26 (t, J = 7.0 Hz, 6H). ¹³C NMR (CDCl₃, 125 MHz) $\delta = 167.2$, 153.2, 130.5, 125.7, 120.6, 120.4 118.4, 45.3, 12.8.

N,N-diisopropylbenzo[d]thiazol-2-amine(3d):⁴ The product was purified by flash chromatography to give 48 mg (68%) as a yellow solid. ¹H NMR (CDCl₃, 500 MHz) $\delta = 7.56$ (d, J = 8.0 Hz, 1H), 7.51 (d, J = 8.0 Hz, 1H), 7.24 (t, J = 7.5 Hz, 1H), 7.01 (t, J = 7.5 Hz, 1H), 4.01-3.93 (m, 2H), 1.41 (d, J = 7.0 Hz, 12H). ¹³C NMR (CDCl₃, 125 MHz) $\delta = 165.4$, 153.0, 129.7, 125.5, 120.4, 120.0, 118.5, 50.8, 20.3.

4-(benzo[d]thiazol-2-yl)morpholine(3e):³ The product was purified by flash chromatography to give 62 mg (94%) as a yellow solid. ¹H NMR (CDCl₃, 500 MHz) $\delta = 7.61$ (d, J = 8.0 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.30 (t, J = 8.0 Hz, 1H), 7.09 (t, J = 7.5 Hz, 1H), 3.81 (t, J = 5 Hz, 4H), 3.60 (t, J = 5 Hz, 4H). ¹³C NMR (CDCl₃, 125 MHz) $\delta = 168.9$, 152.4, 130.5, 126.0, 121.6, 120.7, 119.2, 66.2, 48.4.

2-(thiazolidin-3-yl)benzo[d]thiazole(3f): The product was purified by flash chromatography to give 55 mg (82%) as a yellow solid. mp: 105.3-107.1 °C. ¹H NMR (CDCl₃, 500 MHz) δ = 7.61 (t, *J* = 8.0 Hz, 2H), 7.32 (t, *J* = 7.5 Hz, 1H), 7.10 (t, *J* = 7.5 Hz, 1H), 4.69 (s, 2H) 3.88 (t, *J* = 6.0 Hz, 2H), 3.15 (t, *J* = 6.0 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) δ = 165.0, 152.1, 130.6, 126.1, 121.7, 120.8, 119.2, 52.6, 51.8, 30.6.

N-allyl-N-methylbenzo[d]thiazol-2-amine(3g): The product was purified by flash chromatography to give 58 mg (95%) as a colourless oil. ¹H NMR (CDCl₃, 500 MHz) $\delta = 7.57$ (t, J = 7.5 Hz, 2H), 7.28 (t, J = 8.0 Hz, 1H), 7.05 (t, J = 7.5 Hz, 1H), 5.90-5.82 (m, 1H), 5.26 (d, J = 7.5 Hz, 1H), 5.23 (s, 1H), 4.12 (d, J = 5.5 Hz, 2H), 3.14 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz) $\delta = 168.4$, 152.8, 131.8, 130.6, 125.9, 121.0, 120.5, 118.7, 117.9, 55.4, 37.6. HRMS (ESI) m/z calcd for C₁₁H₁₃N₂S⁺(M+H)⁺205.07940, found 205.07928.

N-benzyl-N-methylbenzo[d]thiazol-2-amine(3h):⁵ The product was purified by flash chromatography to give 74 mg (97%) as a yellow solid. ¹H NMR (CDCl₃, 500 MHz) $\delta = 7.58$ (t, J = 8.5 Hz, 2H), 7.33-7.27 (m, 6H), 7.05 (t, J = 7.5 Hz, 1H), 4.74 (s, 2H), 3.11 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz) $\delta = 168.8$, 153.0, 136.3, 130.8, 128.7, 127.6, 127.5, 125.9, 121.0, 120.6, 118.8, 56.4, 37.7.

N,N-dibenzylbenzo[d]thiazol-2-amine(3i):⁶ The product was purified by flash chromatography to give 84 mg (85%) as a yellow solid. ¹H NMR (CDCl₃, 500 MHz) $\delta = 7.59$ (t, J = 8.0 Hz, 2H), 7.34-7.27 (m, 11H), 7.08 (t, J = 7.5 Hz, 1H), 4.74 (s, 4H). ¹³C NMR (CDCl₃, 125 MHz) $\delta = 169.0$, 153.0, 136.2, 131.0, 128.7, 127.7, 127.6, 126.0, 121.2, 120.6, 119.0, 53.2.

2-(3,4-dihydroisoquinolin-2(1H)-yl)benzo[d]thiazole(3j):⁷ The product was purified by flash chromatography to give 78 mg (98%) as a white solid. ¹H NMR (CDCl₃, 500 MHz) δ = 7.60 (d, *J* = 8.0 Hz, 2H), 7.30 (t, *J* = 7.5 Hz, 1H), 7.24-7.16 (m, 4H), 7.07 (t, *J* = 7.5 Hz, 1H), 4.80 (s, 2H), 3.85 (t, *J* = 6.0 Hz, 2H), 3.00 (t, *J* = 6.0 Hz), 3.00 (t, J = 6.0 Hz), 3.00

2H). ¹³C NMR (CDCl₃, 125 MHz) δ = 168.0, 152.7, 134.2, 132.4, 130.4, 128.5, 126.8, 126.5, 126.3, 125.9, 121.1, 120.6, 118.9, 49.5, 46.1, 28.7.

N-methyl-N-phenylbenzo[d]thiazol-2-amine(3k):⁸ The product was purified by flash chromatography to give 40 mg (56%) as a yellow solid. ¹H NMR (CDCl₃, 500 MHz) $\delta = 7.62$ (d, J = 8.0 Hz, 1H), 7.47 (t, J = 8.0 Hz, 1H), 7.45-7.40 (m, 4H), 7.33 (t, J = 7.5 Hz, 1H), 7.29 (t, J = 7.5 Hz, 1H) 7.06 (t, J = 7.5 Hz, 1H), 3.63 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz) $\delta = 168.2$, 152.5, 145.7, 131.1, 129.9, 127.4, 125.9, 125.8, 121.7, 120.4, 119.1, 40.4.

N-methyl-N-(p-tolyl)benzo[d]thiazol-2-amine(3l):⁹ The product was purified by flash chromatography to give 52 mg (68%) as a yellow solid. ¹H NMR (CDCl₃, 500 MHz) $\delta = 7.61$ (d, J = 8.0 Hz, 1H), 7.46 (d, J = 8.0 Hz, 1H), 7.29-7.23 (m, 5H), 7.04 (t, J = 7.0 Hz, 1H), 3.60 (s, 3H), 2.39 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz) $\delta = 168.5$, 152.6, 143.2, 137.5, 131.1, 130.5, 125.9, 125.8, 121.5, 120.4, 119.0, 40.4, 21.1.

2-(3,4-dihydroquinolin-1(2H)-yl)benzo[d]thiazole(3m):⁷ The product was purified by flash chromatography to give 54 mg (68%) as a white solid. ¹H NMR (CDCl₃, 500 MHz) $\delta = 7.87$ (d, J = 8.0 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.32 (t, J = 8.0 Hz, 1H), 7.22 (t, J = 8.0 Hz, 1H), 7.15 (d, J = 7.0 Hz, 1H), 7.12 (t, J = 7.5 Hz, 1H), 7.07 (t, J = 7.5 Hz, 1H), 4.07 (t, J = 6.0 Hz, 2H), 2.78 (t, J = 6.0 Hz, 2H), 2.06-2.01 (m, 2H). ¹³C NMR (CDCl₃, 125 MHz) $\delta = 166.6$, 151.6, 140.3, 130.8, 130.2, 129.0, 126.6, 125.9, 124.2, 122.3, 121.1, 120.5, 119.5, 49.3, 27.3, 23.4.

6-methyl-2-(piperidin-1-yl)benzo[d]thiazole(3n):³ The product was purified by flash chromatography to give 56 mg (80%) as a yellow solid. ¹H NMR (CDCl₃, 500 MHz) $\delta = 7.42$ (d, J = 8.5 Hz, 1H), 7.37 (s, 1H), 7.07 (d, J = 8.5 Hz, 1H), 3.57 (s, 4H), 2.37 (s, 3H), 1.67 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz) $\delta = 168.3$, 150.7, 130.6, 130.6, 126.9, 120.6, 118.3, 49.5, 25.2, 24.2, 21.1.

6-methoxy-2-(piperidin-1-yl)benzo[d]thiazole(3o):³ The product was purified by flash chromatography to give 66 mg (89%) as a white solid. ¹H NMR (CDCl₃, 500 MHz) δ = 7.44 (d, *J* = 8.5 Hz, 1H), 7.13 (d, *J* = 2.5 Hz, 1H), 7.07 (dd, *J* = 9.0 Hz, 2.5 Hz, 1H), 3.80 (s, 3H), 3.55 (s, 4H), 1.67 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz) δ = 167.6, 154.7, 147.1, 131.6, 119.2, 113.3, 105.2, 55.8, 49.6, 25.2, 24.2.

N,N-dimethyl-2-(piperidin-1-yl)benzo[d]thiazol-6-amine(3p): The product was purified by flash chromatography to give 68 mg (87%) as a green solid. mp: 113.6-114.2 °C. ¹H NMR (CDCl₃, 500 MHz) δ = 7.42 (d, *J* = 8.5 Hz, 1H), 6.98 (s, 1H), 6.79 (d, *J* = 8.5 Hz, 1H), 3.52 (s, 4H), 2.90 (s, 6H), 1.65 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz) δ = 166.7, 146.5, 144.8, 132.1, 118.9, 113.0, 104.8, 49.5, 41.6, 25.2, 24.2. HRMS (ESI) m/z calcd for C₁₄H₂₀N₃S⁺ (M+H)⁺ 262.13724, found 262.13724.

6-fluoro-2-(piperidin-1-yl)benzo[d]thiazole(3q):¹⁰ The product was purified by flash chromatography to give 57 mg (81%) as a yellow solid. ¹H NMR (CDCl₃, 500 MHz) $\delta = 7.44$ (dd, J = 9.0 Hz, 4.5 Hz, 1H), 7.28 (dd, J = 8.0 Hz, 2.5Hz, 1H), 6.98 (td, J = 9.0 Hz, 2.5 Hz, 1H), 3.56 (s, 4H), 1.68 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ : 168.4 (d, J = 1.6 Hz), 157.9 (d, J = 238.3 Hz), 149.3, 131.3 (d, J = 10.5 Hz), 119.0 (d, J = 8.5 Hz), 113.4 (d, J = 23.5 Hz), 107.2 (d, J = 27.0 Hz), 49.5, 25.2, 24.1.

6-chloro-2-(piperidin-1-yl)benzo[d]thiazole(3r):¹⁰ The product was purified by flash chromatography to give 63 mg (83%) as a yellow solid. ¹H NMR (CDCl₃, 500 MHz) $\delta = 7.52$ (s, 1H), 7.40 (d, J = 8.5 Hz, 1H), 7.21 (dd, J = 9.0 Hz, 2.0 Hz, 1H), 3.57 (s, 4H), 1.68 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz) $\delta = 168.8$, 151.5, 131.8, 126.2, 125.9, 120.2, 119.3, 49.6, 25.2, 24.1. HRMS (ESI) m/z calcd for C₁₂H₁₄ClN₂S⁺ (M+H)⁺ 253.05607, found 253.05609.

6-bromo-2-(piperidin-1-yl)benzo[d]thiazole(3s):¹¹ The product was purified by flash chromatography to give 76 mg (85%) as a yellow solid. ¹H NMR (CDCl₃, 500 MHz) δ = 7.67 (s, 1H), 7.36 (s, 2H), 3.58 (s, 4H), 1.69 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz) δ = 168.8, 151.9, 132.3, 129.0, 123.0, 119.8, 113.2, 49.6, 25.3, 24.1.

2-(piperidin-1-yl)-6-(trifluoromethyl)benzo[d]thiazole(3t):¹⁰ The product was purified by flash chromatography to give 40 mg (47%) as a yellow solid. ¹H NMR (CDCl₃, 500 MHz) δ = 7.82 (s, 1H), 7.55 (d, *J* = 8.5 Hz, 1H), 7.51 (d, *J* = 8.5 Hz, 1H), 3.63 (s, 4H), 1.71 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ = 170.2, 155.5, 130.7, 125.7, 123.1 (q, *J* = 3.6 Hz), 122.6 (q, *J* = 32.3 Hz), 118.3, 117.9 (q, *J* = 3.9 Hz), 49.7, 25.3, 24.1.

5-chloro-2-(piperidin-1-yl)benzo[d]thiazole(3u): The product was purified by flash chromatography to give 45 mg (60%) as a yellow solid. mp: 88.2-89.3 °C. ¹H NMR (CDCl₃, 500 MHz) δ = 7.49 (s, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 6.99 (dd, *J* = 8.5 Hz, 2.0 Hz, 1H), 3.58 (s, 4H), 1.68 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz) δ = 169.7, 154.0, 131.6, 128.8, 121.1, 121.0, 118.6, 49.6, 25.2, 24.1. HRMS (ESI) m/z calcd for C₁₂H₁₄ClN₂S⁺ (M+H)⁺ 253.05607, found 253.05609.

MeO

5-methoxy-2-(piperidin-1-yl)benzo[d]thiazole(3v): The product was purified by flash chromatography to give 58 mg (78%) as a yellow solid. mp: 102.6-103.6 °C. ¹H NMR (CDCl₃, 500 MHz) δ = 7.40 (d, *J* = 8.5 Hz, 1H), 7.10 (s, 1H), 6.67 (dd, *J* = 8.5 Hz, 2.5 Hz, 1H), 3.81 (s, 3H), 3.57 (s, 4H), 1.67 (s, 6H). ¹³C NMR (CDCl₃, 125 MHz) δ = 170.1, 158.9, 154.1, 122.0, 120.7, 109.6, 103.0, 55.4, 49.5, 25.2, 24.2. HRMS (ESI) m/z calcd for C₁₃H₁₇N₂OS⁺ (M+H)⁺ 249.10561, found 249.10562.

5) References

- 1. T. Yamakawa, E. Ideue, J. Shimokawa and T. Fukuyama, *Angew. Chem. Int. Ed.*, 2010, **49**, 9262.
- 2. X. Wang, Q. -G. Wang and Q. -L. Luo, Synthesis, 2015, 47, 49.
- 3. A. Banerjee, S. K. Santra, S. K. Rout and B. K. Patel, Tetrahedron, 2013, 69, 9096.
- 4. D. Kumar, B. B. Mishra and V. K. Tiwari, J. Org. Chem., 2014, 79, 251.
- 5. K. Matsumoto, M. Toda and S. Hashimoto, Chem. Lett., 1991, 8, 1283.
- 6. H. Yoon and Y. Lee, J. Org. Chem., 2015, 80, 10244.
- 7. L. L. Joyce, G. Evindar and R. A. Batey, Chem. Commun., 2004, 446.
- 8. Y. S. Wagh and B. M. Bhanage, Tetrahedron Lett., 2012, 53, 6500.
- 9. R. F. Hunter, E. R. Parken and E. M. Short, J. Chem. Soc., 1958, 1561.
- 10. G. Satish, K. Harsha Vardhan Reddy, K. Ramesh, K. Karnakar and Y.V.D. Nageswar, *Tetrahedron Lett.*, 2012, **53**, 2518.
- S. K. Sahoo, N. Khatun, A. Gogoi, A. Deb and B. K. Patel, *RSC Advances.*, 2013, 3, 438.

