Pseudopeptidic Compounds for the Generation of Dynamic Combinatorial Libraries of Chemically Diverse Macrocycles in Aqueous Media

Joan Atcher, Jordi Solà* and Ignacio Alfonso*

J. Atcher, Jordi Solà and I. Alfonso
Department of Biological Chemistry and Molecular Modeling Institute of Advanced Chemistry of Catalonia, IQAC-CSIC Jordi Girona 18-26, 08034, Barcelona, Spain
e-mail: jordi.sola@iqac.csic.es
e-mail: ignacio.alfonso@iqac.csic.es

TABLE OF CONTENTS

General methods S3
Synthesis of the building blocks S4
Synthesis of tritylsulfanyl acetic acid S4
Synthesis of intermediates 1a-j and $\mathbf{1 1}$ S4
Synthesis of intermediates 2a-j S10
Synthesis of intermediates 3a-k S13
Synthesis of building blocks 4a-l S19
Characterization of building blocks 4a-l (Fig. S1-44) S24
Building block $\mathbf{4 a}$ S24
Building block 4b S27
Building block $4 \mathbf{c}$ S30
Building block 4d S33
Building block $\mathbf{4 e}$ S36
Building block $\mathbf{4 f}$ S39
Building block $\mathbf{4 g}$ S42
Building block $\mathbf{4 h}$ S45
Building block 4i S48
Building block $\mathbf{4 j}$ S51
Building block $\mathbf{4 k}$ S54
Building block 41 S57
MS analysis of the oligomeric disulfides (Fig. S45-79) S60
Homodimers S60
Heterodimers S64
Trimers S72
Stimuli responsiveness of a representative DCL (Fig. S80-81) S73
NMR titration experiments (Fig. S82-83) S74

General methods

Reagents and solvents were purchased from commercial suppliers (Aldrich, Fluka, Merck or Iris Biotech) and were used without further purification. Chromatographic purifications were performed on Biotage ${ }^{\circledR}$ Isolera Prime ${ }^{\mathrm{TM}}$ equipment using Biotage ${ }^{\circledR}$ SNAP KP-Sil and Biotage ${ }^{\circledR}$ SNAP KP-C18-HS cartridges for normal- and reversed-phase purifications respectively. TLCs were performed using $6 \times 3 \mathrm{~cm} \mathrm{SiO} 2$ pre-coated aluminium plates (ALUGRAM® SIL G/UV 254).

RP-HPLC analyses were performed on a Hewlett Packard Series 1100 (UV detector 1315A) modular system using a reversed-phase X-Terra C_{18} (15 x 0.46 $\mathrm{cm}, 5 \mu \mathrm{~m}$) column. ($\mathrm{MeCN}+0.07 \% ~\left(\mathrm{v} / \mathrm{v}\right.$) TFA and $\mathrm{H}_{2} \mathrm{O}+0.1 \%$ (v/v) TFA) mixtures at $1 \mathrm{~mL} / \mathrm{min}$ were used as mobile phase and the monitoring wavelengths were set at 220 and 254 nm . The temperature of the column was set at $25^{\circ} \mathrm{C}$. The HPLC samples were prepared by dilution with an acidic solution of $89 \% \mathrm{H}_{2} \mathrm{O}$, $10 \% \mathrm{MeCN}$ and 1% TFA. For the analysis of the DCLs a reversed-phase kromaphase $\mathrm{C}_{18}(25 \times 0.46 \mathrm{~cm}, 5 \mu \mathrm{~m})$ column was used, ($\mathrm{MeCN}+20 \mathrm{mM}$ HCOOH and $\mathrm{H}_{2} \mathrm{O}+20 \mathrm{mM} \mathrm{HCOOH}$) mixtures at $1 \mathrm{~mL} / \mathrm{min}$ were used as mobile phase and the monitoring wavelength was set at 254 nm .

Nuclear Magnetic Resonance (NMR) spectroscopic experiments were carried out on a Varian INOVA 500 spectrometer (500 MHz for ${ }^{1} \mathrm{H}$ and 126 MHz for ${ }^{13} \mathrm{C}$), a Varian Mercury 400 instrument (400 MHz for ${ }^{1} \mathrm{H}$ and 101 MHz for ${ }^{13} \mathrm{C}$) and a Varian Unity $300\left(300 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}$ and 75 MHz for $\left.{ }^{13} \mathrm{C}\right)$. The chemical shifts (δ) are reported in ppm relative to trimethylsilane (TMS), and coupling constants (J) are reported in Hertz (Hz). Signal assignment was carried out using the necessary 2D NMR spectra including ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ gCOSY, ${ }^{1} \mathrm{H}^{-}{ }^{13} \mathrm{C}$ gHSQC and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ gHMBC. For describing signals of ${ }^{1} \mathrm{H}$ NMR spectra de following abbreviations are used: s $=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{ABq}=\mathrm{AB}$ quartet, quint $=$ quintet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, $\mathrm{td}=$ triplet of doublets, $\mathrm{dq}=$ doublet of quartets, $\mathrm{qd}=$ quartet of doublets, ddd $=$ double doublet of doublets, ddt $=$ double doublet of triplets, $m=$ multiplet, and $\mathrm{br}=$ broad signal.

HRMS analyses were carried out at the IQAC Mass Spectrometry Facility, using UPLC-ESI-TOF equipment: [Acquity UPLC® BEH $\mathrm{C}_{18} 1.7 \mathrm{~mm}, 2.1 \mathrm{x} 100 \mathrm{~mm}$, LCT Premier Xe, Waters]. (MeCN +20 mM HCOOH and $\mathrm{H}_{2} \mathrm{O}+20 \mathrm{mM}$ $\mathrm{HCOOH})$ mixtures at $0.3 \mathrm{~mL} / \mathrm{min}$ were used as mobile phase. The characterization of the pure products and intermediates was performed in flow injection analysis (FIA) mode.

Synthesis of the building blocks

Synthesis of tritylsulfanyl acetic acid

This compound was prepared as previously described. ${ }^{1}$ To a solution of mercaptoacetic acid ($4.60 \mathrm{~g}, 49.9 \mathrm{mmol}$) and triphenylmethanol ($13.0 \mathrm{~g}, 49.9$ mmol) in chloroform (50 mL), trifluoroacetic acid (TFA, $5.0 \mathrm{~mL}, 65 \mathrm{mmol}$) was added. After the mixture was stirred at room temperature for 2 hours, volatiles were removed in vacuum. The crude product was recrystallized from dichloromethane/hexane to give 13.9 g of tritylsulfanyl acetic acid (83% yield) as a white solid. Rf of the product in AcOEt/Hexane, 3:7, (v/v): 0.39. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.42\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.30\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right)$, $7.23\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 3.03\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=174.7(1 \times \mathrm{CO}), 144.0\left(3 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 129.6\left(6 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 128.3\left(6 \mathrm{xCH}_{\mathrm{Ar}}\right), 127.2(3 \mathrm{x}$ $\mathrm{CH}_{\mathrm{Ar}}$), $67.4(1 \times \mathrm{C})$, $34.5\left(1 \times \mathrm{CH}_{2}\right)$. HRMS (ESI-) calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}$ [2M-$\mathrm{H}]^{-}(\mathrm{m} / \mathrm{z}): 667.1982$, found: 667.1996.

Synthesis of intermediates 1a-j and 11

Synthesis of 1a: to a solution of Fmoc-L-Asn(Trt)-OH ($4.24 \mathrm{~g}, 7.11 \mathrm{mmol}$) in dry DMF (15 mL), HOBt ($1.25 \mathrm{~g}, 9.27 \mathrm{mmol}$) and DCCD ($2.23 \mathrm{~g}, 10.8 \mathrm{mmol}$) were added under inert atmosphere of Ar. The resulting mixture was cooled down to $0{ }^{\circ} \mathrm{C}$ in an ice-water bath. Then, a solution of m-phenylenediamine (334 mg , $3.09 \mathrm{mmol})$ in dry DMF (10 mL) was added via cannula under inert atmosphere of Ar. The mixture was stirred at room temperature for 60 hours, after which complete conversion of the starting material was observed by TLC (Rf of 1a in AcOEt/hexane, 1:1 (v/v): 0.58). The mixture was filtered, and the filtrate was diluted with DCM, washed with saturated aqueous NaHCO_{3} and saturated aqueous NaCl , dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash chromatography using AcOEt/hexane as eluent (from 30% to $50 \% \mathrm{AcOEt}$) to give 2.05 g of $\mathbf{1 a}$ (52% yield) as a white solid. HRMS (ESI+) calcd. for $\mathrm{C}_{82} \mathrm{H}_{68} \mathrm{~N}_{6} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$: 1265.5171, found: 1265.5183. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.77$ (br s, $2 \mathrm{H}, \mathrm{NHCOC}^{*} \mathrm{H}$), 7.81$7.66\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.61-7.51\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.38\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right)$, 7.32-7.04 (m, 37H, CH ${ }_{\text {Ar }}$), 6.97 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CONHTrt}$), 6.54 (br s, $2 \mathrm{H}, \mathrm{NHFmoc}$), 4.68 (br s, $2 \mathrm{H}, \mathrm{C} * \mathrm{H}$), $4.51-4.32\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{COOCH}_{2}\right), 4.20(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH})$, $3.16\left(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C} * \mathrm{H}\right), 2.66\left(\mathrm{dd}, J=15.7,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C} * \mathrm{H}\right)$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.8(2 \mathrm{x} \mathrm{CO}), 169.0(2 \times \mathrm{CO}), 156.4(2 \mathrm{x}$

[^0]CO), $144.2\left(6 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right)$, $143.8\left(4 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right)$, $141.4\left(4 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 138.0\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 129.3(1 \mathrm{x}$ $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(12 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 128.2\left(12 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 127.9\left(4 \mathrm{xCH}_{\mathrm{Ar}}\right), 127.3\left(6 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right)$, $127.3\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 125.3\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 120.1\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 116.3\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 111.7(1$ $\mathrm{x} \mathrm{CH}_{\mathrm{Ar}}$), $71.2(2 \mathrm{x} \mathrm{C}), 67.5\left(2 \times \mathrm{COOCH}_{2}\right), 52.2(2 \times \mathrm{C} * \mathrm{H}), 47.2(2 \mathrm{x} \mathrm{CH}), 38.9$ ($2 \mathrm{x} \mathrm{CH}_{2} \mathrm{C} * \mathrm{H}$).

Synthesis of 1b: this compound was obtained as described above for 1a, starting from Fmoc-L-Gln(Trt)-OH. The residue was purified by flash chromatography using AcOEt/hexane as eluent (from 25% to $40 \% \mathrm{AcOEt}$, Rf of $\mathbf{1 b}$ in AcOEt/hexane, $3: 2(\mathrm{v} / \mathrm{v}): 0.50)$ to give 1.12 g of $\mathbf{1 b}(47 \%$ yield) as a white solid. HRMS (ESI+) calcd. for $\mathrm{C}_{84} \mathrm{H}_{72} \mathrm{~N}_{6} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$: 1293.5484, found: 1293.5472. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.84(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NHCOC} * \mathrm{H}), 7.89(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.75\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.61-7.52\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.38(\mathrm{t}, J=$ $\left.7.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.31-7.18\left(\mathrm{~m}, 34 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.10\left(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right)$, 7.03 (s, 2H, NHTrt), 6.98 (d, $\left.J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.09(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}$, NHFmoc), 4.43-4.30 (m, 4H, COOCH 2$), ~ 4.20(t, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}), 4.17-4.08$ $(\mathrm{m}, \quad 2 \mathrm{H}, \quad \mathrm{C} * \mathrm{H}), \quad 2.67-2.55\left(\mathrm{~m}, \quad 2 \mathrm{H}, \quad \mathrm{C} * \mathrm{HCH}_{2} \mathrm{CH}_{2}\right), \quad 2.50-2.38(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{C}^{*} \mathrm{HCH}_{2} \mathrm{CH}_{2}$), 2.19-2.08 (m, 2H, C* HCH_{2}), 2.03-1.89 (m, 2H, C* HCH_{2}). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.5(2 \times \mathrm{CO}), 169.5(2 \times \mathrm{CO}), 156.5(2 \mathrm{x} \mathrm{CO})$, $144.5\left(6 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 143.9\left(4 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 141.4\left(4 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 138.2\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 128.8(13 \mathrm{x}$ $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 128.2\left(12 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 127.8\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 127.2\left(10 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 125.3\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right)$, $120.1\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 115.9\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 111.6\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 71.0(2 \mathrm{x} \mathrm{C}), 67.2(2 \mathrm{x}$ $\left.\mathrm{COOCH}_{2}\right), 54.4(2 \times \mathrm{C} * \mathrm{H}), 47.3(2 \mathrm{x} \mathrm{CH}), 34.0\left(2 \times \mathrm{C} * \mathrm{HCH}_{2} \underline{\mathrm{C}}_{2}\right), 30.4(2 \mathrm{x}$ $\mathrm{C} * \mathrm{HCH}_{2}$).

Synthesis of 1c: this compound was obtained as described above for 1a, starting from Fmoc-L-Ser $\left({ }^{\mathrm{t}} \mathrm{Bu}\right)-\mathrm{OH}$. The residue was purified by flash chromatography using AcOEt/hexane as eluent (from 25% to $40 \% \mathrm{AcOEt}$, Rf of 1c in AcOEt/hexane, $3: 2(\mathrm{v} / \mathrm{v}): 0.83)$ to give 1.05 g of $\mathbf{1 c}(45 \%$ yield) as a white solid. HRMS (ESI+) calcd. for $\mathrm{C}_{50} \mathrm{H}_{54} \mathrm{~N}_{4} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$: 839.4014, found: 839.4029. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.80(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NHCOC} * \mathrm{H}), 7.96\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right)$, $7.77\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.62\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.41(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}$), $7.32\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.29-7.20\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 5.87(\mathrm{br}$ $\mathrm{s}, 2 \mathrm{H}, \mathrm{C} * \mathrm{HNHCO}), 4.44\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{COOCH}_{2}\right), 4.35(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{C} * \mathrm{H})$, $4.25(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}), 3.92$ (br s, $2 \mathrm{H}, \mathrm{C}^{*} \mathrm{HCH}_{2}$), $3.45(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{C} * \mathrm{HCH}_{2}$), $1.28\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.5(2 \mathrm{x} \mathrm{CO})$, $156.2(2 \times \mathrm{CO}), 143.9\left(4 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 141.4\left(4 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 138.4\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 129.9(1 \mathrm{x}$ $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 127.9\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 127.2\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 125.2\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 120.2\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right)$, $115.5\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 111.0\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 75.1(2 \times \mathrm{C}), 67.3\left(2 \mathrm{x} \mathrm{COOCH}_{2}\right), 61.9(2 \mathrm{x}$ C* HCH_{2}), $54.8(2 \times \mathrm{C} * \mathrm{H}), 47.3(2 \mathrm{xCH}), 27.6\left(6 \mathrm{x} \mathrm{CH}_{3}\right)$.

Synthesis of 1d: this compound was obtained as described above for 1a, starting from Fmoc-L-Thr $\left.{ }^{\text {t }} \mathrm{Bu}\right)-\mathrm{OH}$. The residue was purified by flash chromatography using AcOEt/hexane as eluent (from 25% to $40 \% \mathrm{AcOEt}$, Rf of $\mathbf{1 d}$ in AcOEt/hexane, $3: 7(\mathrm{v} / \mathrm{v}): 0.46$) to give 1.61 g of $\mathbf{1 d}(67 \%$ yield) as a white solid. HRMS (ESI-) calcd. for $\mathrm{C}_{52} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{O}_{8}[\mathrm{M}+\mathrm{HCOO}]^{-}(\mathrm{m} / \mathrm{z}): 911.4237$, found: 911.4254. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.24(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NHCOC} * \mathrm{H}), 7.92(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.78\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.63\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.41(\mathrm{t}$, $\left.J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.37-7.19\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.12(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}$, C* HNHCO), $4.49-4.21\left(\mathrm{~m}, 10 \mathrm{H}, 4 \mathrm{H} \times \mathrm{CH}_{2}+2 \mathrm{H} \times \mathrm{CH}+2 \mathrm{H} \times \mathrm{C}^{*} \mathrm{HNH}+2 \mathrm{H} \times\right.$ $\left.\mathrm{C} * \underline{\mathrm{H} C H}_{3}\right), 1.38\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.10\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.6(2 \times \mathrm{CO}), 156.2(2 \times \mathrm{CO}), 143.8\left(4 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 141.4(4$ $\left.\mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 138.4\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 129.8\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 127.9\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 127.2\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right)$, $125.3\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 120.2\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 115.3\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 110.9\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 76.3(2 \mathrm{x}$ C), $67.2\left(2 \mathrm{x} \mathrm{CH}_{2}\right), 67.1\left(2 \mathrm{x} \mathrm{C}^{*} \mathrm{HCH}_{3}\right), 59.1\left(2 \mathrm{x} \mathrm{C}^{*} \mathrm{HNH}\right), 47.3(2 \mathrm{x} \mathrm{CH}), 28.3$ $\left(6 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 16.9\left(2 \times \mathrm{C} * \mathrm{H}_{\mathrm{C}}^{3} \mathrm{H}_{3}\right)$.

Synthesis of 1e: this compound was obtained as described above for 1a, starting from Fmoc-L-Tyr(${ }^{\text {(} B u)-O H \text {. The residue was purified by flash chromatography }}$ using AcOEt/hexane as eluent (from 25% to $40 \% \mathrm{AcOEt}$, Rf of $\mathbf{1 e}$ in AcOEt/hexane, $2: 3(\mathrm{v} / \mathrm{v}): 0.46)$ to give 1.46 g of $\mathbf{1 e}(53 \%$ yield) as a white solid. HRMS (ESI+) calcd. for $\mathrm{C}_{62} \mathrm{H}_{62} \mathrm{~N}_{4} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$: 991.4640, found: 991.4622. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.91$ (br s, $2 \mathrm{H}, \mathrm{NHCOC} * \mathrm{H}$), 7.74 (d, $J=7.6$ $\left.\mathrm{Hz}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.60-7.48\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.37\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.31-$ $7.22\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.14-6.99\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.86\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right)$, 5.57 (br s, $2 \mathrm{H}, \mathrm{C} * \mathrm{HNHCO}$), $4.50(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{C} * \mathrm{H}), 4.44-4.25\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{COOCH}_{2}\right)$, $4.19(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}), 3.14-2.93\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2}\right), 1.26\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.5(2 \mathrm{x} \mathrm{CO}), 156.5(2 \mathrm{x} \mathrm{CO}), 154.6(2 \mathrm{x}$ C_{Ar}), $143.7\left(4 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 141.4\left(4 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 137.8\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 131.1\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 129.9(4 \mathrm{x}$ $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 129.5\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 127.9\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 127.3\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 125.2\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right)$, $124.6\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 120.1\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 116.1\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 111.7\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 78.7(2 \mathrm{x}$ C), $67.4\left(2 \mathrm{x} \mathrm{COOCH}_{2}\right), 57.3(2 \times \mathrm{C} * \mathrm{H}), 47.2(2 \times \mathrm{CH}), 38.0\left(2 \times \mathrm{C}^{*} \mathrm{HCH}_{2}\right), 28.9$ ($6 \mathrm{xCH}_{3}$).

Synthesis of 1f: this compound was obtained as described above for 1a, starting from Fmoc-L-Trp(Boc)-OH. The residue was purified by flash chromatography using AcOEt/hexane as eluent (from 30% to $35 \% \mathrm{AcOEt}$, Rf of $\mathbf{1 f}$ in AcOEt/hexane, $2: 3(\mathrm{v} / \mathrm{v}): 0.59)$ to give 1.33 g of $\mathbf{1 f}(43 \%$ yield $)$ as a white solid. HRMS (ESI-) calcd. for $\mathrm{C}_{68} \mathrm{H}_{64} \mathrm{~N}_{6} \mathrm{O}_{10} \quad[\mathrm{M}+\mathrm{HCOO}]^{-}(\mathrm{m} / \mathrm{z})$: 1169.4666, found:1169.5189. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.23$ (br s, $2 \mathrm{H}, \mathrm{NHCOC}^{*} \mathrm{H}$), $8.08\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.71\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.62-7.40\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right)$,
$7.34\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.29-6.98\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 5.72(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, $\mathrm{C} * \mathrm{HNHCO}$), 4.67 (br s, $2 \mathrm{H}, \mathrm{C} * \mathrm{H}$), $4.33\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, \mathrm{COOCH}_{2}\right), 4.18-4.10(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{COOCH}_{2} \mathrm{CH}$), 3.30-3.06 (m, 4H, C* HCH_{2}), $1.56\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.7(2 \times \mathrm{CO}), 156.6(2 \mathrm{x} \mathrm{CO}), 149.6(2 \mathrm{x} \mathrm{CO}), 143.7(4 \mathrm{x}$ $\left.\mathrm{C}_{\mathrm{Ar}}\right), 141.4\left(4 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 137.8\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 135.6\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 130.2\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 129.4(1 \mathrm{x}$ $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 127.8\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 127.2\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 125.2\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 124.8\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right)$, $124.6\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 122.9\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 120.1\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 119.1\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 116.3(2$ $\left.\mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 115.5\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 115.3\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 112.0\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 83.9(2 \mathrm{x} \mathrm{C}), 67.5$ $\left(2 \mathrm{x} \mathrm{COOCH}_{2}\right), 55.8(2 \mathrm{x} \mathrm{C} * \mathrm{H})$, $47.1(2 \mathrm{x} \mathrm{CH}), 28.2(6 \mathrm{x} \mathrm{CH} 3$), 28.1 (2 x $\mathrm{C} * \mathrm{H}_{\mathrm{CH}}^{2}$).

Synthesis of $\mathbf{1 g}$: this compound was obtained as described above for 1a, starting from Fmoc-L-Asp($\left.{ }^{\text {t }} \mathrm{Bu}\right)-\mathrm{OH}$. The residue was purified by flash chromatography using AcOEt/hexane as eluent (from 25% to $40 \% \mathrm{AcOEt}$, Rf of $\mathbf{1 g}$ in AcOEt/hexane, 2:3 (v/v): 0.34) to give 978 mg of $\mathbf{1 g}(42 \%$ yield) as a white solid. HRMS (ESI+) calcd. for $\mathrm{C}_{52} \mathrm{H}_{54} \mathrm{~N}_{4} \mathrm{O}_{10}[\mathrm{M}+\mathrm{Na}]^{+}(\mathrm{m} / \mathrm{z})$: 917.3732, found: 917.3764. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NHCOC}{ }^{*} \mathrm{H}\right.$), $7.80(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}$), $7.76\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.59\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.39(\mathrm{t}$, $\left.J=7.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.34-7.20\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.11(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$, C*HNHCO), $4.66(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{C} * \mathrm{H}), 4.45\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{COOCH}_{2}\right), 4.23(\mathrm{t}, J$ $=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}), 2.96\left(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2}\right), 2.69(\mathrm{dd}, J=17.0,6.7$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2}$), $1.45\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.5$ ($2 \times \mathrm{CO}$), $168.7(2 \times \mathrm{CO}), 156.4(2 \times \mathrm{CO}), 143.8\left(4 \times \mathrm{C}_{\mathrm{Ar}}\right), 141.5\left(4 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 138.2$ $\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 129.7\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 128.0\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 127.3\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 125.2\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right)$, $120.2\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 116.1\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 111.5\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 82.5(2 \times \mathrm{C}), 67.5(2 \mathrm{x}$ $\left.\mathrm{COOCH}_{2}\right), 51.9(2 \times \mathrm{C} * \mathrm{H}), 47.3(2 \mathrm{xCH}), 37.5\left(2 \mathrm{xC}^{*} \mathrm{HCH}_{2}\right), 28.2\left(6 \mathrm{xCH}_{3}\right)$.

Synthesis of $\mathbf{1 h}$: this compound was obtained as described above for 1a, starting from Fmoc-L-Glu(${ }^{\text {t }} \mathrm{Bu}$)-OH. The residue was purified by flash chromatography using AcOEt/hexane as eluent (from 30% to $40 \% \mathrm{AcOEt}$, Rf of $\mathbf{1 h}$ in AcOEt/hexane, $2: 3(\mathrm{v} / \mathrm{v}): 0.43)$ to give 1.79 g of $\mathbf{1 h}(70 \%$ yield) as a white solid. HRMS (ESI+) calcd. for $\mathrm{C}_{54} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$: 923.4226, found: 923.4225. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.62(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NHCOC} * \mathrm{H}), 7.84\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right)$, $7.75\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.59\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.38(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $\left.4 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.33-7.16\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 5.94\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{*} \mathrm{HNHCO}\right), 4.38-$ $4.28\left(\mathrm{~m}, 6 \mathrm{H}, 4 \mathrm{H} \times \mathrm{COOCH}_{2}+2 \mathrm{H} \times \mathrm{C}^{*} \mathrm{H}\right), 4.21(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}), 2.59-$ $2.46\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2} \mathrm{CH}_{2}\right), 2.43-2.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}^{*} \mathrm{HCH}_{2} \mathrm{CH}_{2}\right), 2.22-2.09(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{C}^{*} \mathrm{HCH}_{2}$), 2.04-1.93 (m, $2 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2}$), $1.46\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.4(2 \times \mathrm{CO}), 169.7(2 \mathrm{x} \mathrm{CO}), 156.7(2 \times \mathrm{CO}), 143.8(4 \mathrm{x}$ $\left.\mathrm{C}_{\mathrm{Ar}}\right), 141.4\left(4 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 138.2\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 129.6\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 127.9\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 127.2$
$\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 125.2\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 120.1\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 115.9\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 111.4(1 \mathrm{x}$ $\mathrm{CH}_{\mathrm{Ar}}$), $81.6(2 \mathrm{x} \mathrm{C}), 67.4\left(2 \times \mathrm{COOCH}_{2}\right), 55.2(2 \times \mathrm{C} * \mathrm{H}), 47.2(2 \times \mathrm{CH}), 32.1(2$ $\left.\mathrm{x} \mathrm{C} * \mathrm{HCH}_{2} \underline{\mathrm{CH}}_{2}\right), 28.3\left(2 \times \mathrm{C} * \mathrm{HCH}_{2}\right), 28.2\left(6 \mathrm{xCH}_{3}\right)$.

Synthesis of 1i: To a solution of Boc-L-Lys(Cbz)-OH ($2.30 \mathrm{~g}, 6.05 \mathrm{mmol}$) in dry DMF (15 mL), HBTU ($2.55 \mathrm{~g}, 6.74 \mathrm{mmol}$) and DIPEA ($2.3 \mathrm{~mL}, 13 \mathrm{mmol}$) were added. The resulting mixture was cooled down to $0^{\circ} \mathrm{C}$ in an ice-water bath. Then, a solution of m-phenylenediamine ($302 \mathrm{mg}, 2.79 \mathrm{mmol}$) in dry DMF (10 mL) was added via cannula under inert atmosphere of Ar. The mixture was stirred at room temperature for 60 hours, after which complete conversion of the starting material was observed by TLC (Rf of $\mathbf{1 i}$ in AcOEt/hexane, 3:2 (v / v): 0.41). The mixture was diluted with DCM, washed with saturated aqueous NaHCO_{3} and saturated aqueous NaCl , dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash chromatography using AcOEt/hexane as eluent (from 40% to $50 \% \mathrm{AcOEt}$) to give 1.77 g of $\mathbf{1 i}$ (56% yield) as a white solid. HRMS (ESI+) calcd. for $\mathrm{C}_{44} \mathrm{H}_{60} \mathrm{~N}_{6} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$: 833.4444, found: 833.4453. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.95$ (br s, $2 \mathrm{H}, \mathrm{NHCOC}{ }^{*} \mathrm{H}$), 7.73 (br s, 1 H , $\mathrm{CH}_{\mathrm{Ar}}$), 7.55-7.16 (m, 12H, $\mathrm{CH}_{\mathrm{Ar}}$), 7.16-6.97 (m, 1H, CH $\mathrm{Cl}_{\mathrm{Ar}}$), 5.72 (br s, 2 H , $\mathrm{C}^{*} \mathrm{HNHCO}$), $5.33-4.84\left(\mathrm{~m}, 6 \mathrm{H}, 4 \mathrm{H} \times \mathrm{NHCOOCH}_{2}+2 \mathrm{H} \times \mathrm{NHCbz}\right), 4.24$ (br s, $2 \mathrm{H}, \mathrm{C} * \mathrm{H}$), 3.16 (br s, $\left.4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NHCbz}\right), 2.00-1.59\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C} * \mathrm{H}_{\mathrm{CH}}^{2}\right.$), $1.58-1.18$ ($\mathrm{m}, 26 \mathrm{H}, 4 \mathrm{H} \times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCbz}+4 \mathrm{H} \times \mathrm{C}^{*} \mathrm{HCH}_{2} \mathrm{CH}_{2}+18 \mathrm{H} \times \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C} \mathrm{NMR}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.5$ (2 x CO), $156.8(2 \times \mathrm{CO}$), 156.4 ($2 \times \mathrm{CO}$), 138.5 (2 $\left.\mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 136.7\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 129.5\left(1 \times \mathrm{CH}_{\mathrm{Ar}}\right), 128.6\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 128.2\left(6 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right)$, $115.7\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 111.3\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 80.4(2 \mathrm{x} \mathrm{C}), 66.8\left(2 \mathrm{x} \mathrm{NHCOOCH}_{2}\right), 55.4(2$ x C $*$ H), 40.7 ($2 \times \mathrm{CH}_{2} \mathrm{NHCbz}$), 32.2 ($2 \times \mathrm{C} * \mathrm{HCH}_{2}$), $29.5\left(2 \times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCbz}^{2}\right)$, $28.5\left(6 \times \mathrm{CH}_{3}\right), 22.9\left(2 \times \mathrm{C} \mathrm{HCH}_{2} \mathrm{CH}_{2}\right)$.

Synthesis 1j: This compound was synthesized following the procedure described for $\mathbf{1 i}$ starting from Boc-L-Orn(Alloc)-OH. The crude product was purified by flash chromatography using AcOEt/hexane as eluent (from 45% to $55 \% \mathrm{AcOEt}$, Rf of $\mathbf{1} \mathbf{j}$ in AcOEt/hexane, $2: 3(\mathrm{v} / \mathrm{v}): 0.23$) to give 1.43 g of $\mathbf{1} \mathbf{j}$ (85% yield) as a white solid. HRMS (ESI+) calcd. for $\mathrm{C}_{34} \mathrm{H}_{52} \mathrm{~N}_{6} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$: 705.3818, found: 705.3813. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.92\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NHCOC}{ }^{*} \mathrm{H}\right)$, 7.77 (br s, $1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}$), $7.36-6.97\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right.$), 5.89 (ddt, $J=17.2,10.8,5.6 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{NHCOOCH}_{2} \mathrm{CHCH}_{2}$), 5.66 (br s, $2 \mathrm{H}, \mathrm{C} * \mathrm{HN} \underline{\mathrm{HCO}}$), 5.28 (dq, $J=17.2,1.6$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{NHCOOCH}_{2} \mathrm{CHCH}_{2}$), $5.22-5.07\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{H} \mathrm{x} \mathrm{NHCOOCH} 2 \mathrm{CHCH}_{2}+\right.$ 2 H x NHAlloc), 4.58 (d, $J=5.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{NHCOOCH}_{2} \mathrm{CHCH}_{2}$), 4.43 (br s, 2 H , C*H), 3.40 (br s, 2H, C \underline{H}_{2} NHAlloc), 3.24-3.02 (m, 2H, C \underline{H}_{2} NHAlloc), 1.96-1.77 $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{C}^{*} \mathrm{HCH}_{2}\right), 1.76-1.54\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{H} \times \mathrm{C} * \mathrm{HCH}_{2}+4 \mathrm{H} \times \mathrm{C}^{*} \mathrm{HCH}_{2} \mathrm{CH}_{2}\right), 1.43$ (s, $18 \mathrm{H}, \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.3(2 \times \mathrm{CO}), 157.2(2 \times \mathrm{CO})$,
$156.4(2 \times \mathrm{CO}), 138.5\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 133.0\left(2 \mathrm{x} \mathrm{NHCOOCH}_{2} \mathrm{CHCH}_{2}\right)$, 129.4 (1 x $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 117.7\left(2 \times \mathrm{NHCOOCH}_{2} \mathrm{CHCH}_{2}\right), 115.7\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 111.5\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 80.3$ $(2 \times \mathrm{C}), 65.9\left(2 \times \mathrm{NHCOOCH}_{2} \mathrm{CHCH}_{2}\right), 53.9\left(2 \times \mathrm{C}^{*} \mathrm{H}\right), 38.9\left(2 \times \mathrm{CH}_{2} \mathrm{NHAlloc}^{2}\right)$, $30.3\left(2 \times \mathrm{C} * \mathrm{HCH}_{2}\right), 28.5\left(6 \mathrm{x} \mathrm{CH}_{3}\right), 26.6\left(2 \mathrm{x} \mathrm{C}^{*} \mathrm{HCH}_{2} \underline{\mathrm{C}}_{2}\right)$.

Synthesis of 11: this compound was obtained as described above for 1a starting from Boc-L-Cys(Trt)-OH. In this case dry DCM was used instead of dry DMF as solvent. The crude product was purified by flash chromatography using $\mathrm{AcOEt} / \mathrm{hexane}$ as eluent (from 25% to $40 \% \mathrm{AcOEt}, \mathrm{Rf}$ of $\mathbf{1 1}$ in AcOEt/hexane, 1:2 (v/v): 0.39) to give 1.49 g of 11. (29\% yield) as a white solid. HRMS (ESI+) calcd. for $\mathrm{C}_{60} \mathrm{H}_{62} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$: 999.4184, found: 999.4145. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.02$ (br s, $2 \mathrm{H}, \mathrm{NHCOC}^{*} \mathrm{H}$), 7.64 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}$), 7.44 (d, $\left.J=7.1 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.30\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.25-7.13(\mathrm{~m}, 9 \mathrm{H}$, $\mathrm{CH}_{\mathrm{Ar}}$), 4.81 (br s, $2 \mathrm{H}, \mathrm{C} * \mathrm{HNHCO}$), $3.94(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{C} * \mathrm{H}), 2.85-2.70(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), 2.62 (dd, $J=13.2,5.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $1.43\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=168.9(2 \times \mathrm{CO}), 156.0(2 \mathrm{x} \mathrm{CO}), 144.5\left(6 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 138.1(2 \mathrm{x}$ $\left.\mathrm{C}_{\mathrm{Ar}}\right), 129.7\left(12 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 129.5\left(1 \mathrm{xCH}_{\mathrm{Ar}}\right), 128.2\left(12 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 127.1\left(6 \mathrm{xCH}_{\mathrm{Ar}}\right)$, $115.7\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 111.0\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 80.9(2 \times \mathrm{C}), 67.5(2 \times \mathrm{C}), 54.4\left(2 \times \mathrm{C} \mathrm{H}^{*}\right)$, $33.6\left(2 \mathrm{x} \mathrm{CH}_{2}\right)$, $28.4\left(6 \mathrm{x} \mathrm{CH}_{3}\right)$.

Synthesis of intermediates 2a-j

Synthesis of 2a: compound 1a ($600 \mathrm{mg}, 0.47 \mathrm{mmol}$) was dissolved in 4.0 mL of 20\% piperidine in dry DMF. After several minutes stirring at room temperature the product precipitated as a white solid but the mixture was allowed to react for 4 hours until complete conversion of starting material. Diethyl ether was added over the reaction mixture and the product was filtered off and washed with diethyl ether, obtaining 293 mg of diamine 2a (75% yield) as a white solid. HRMS (ESI+) calcd. for $\mathrm{C}_{52} \mathrm{H}_{48} \mathrm{~N}_{6} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z}): 821.3810$, found: 821.3832 . ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$): $\delta=7.93\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.38-7.31(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{\mathrm{Ar}}$), $7.30-7.10\left(\mathrm{~m}, 31 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 3.77\left(\mathrm{dd}, J=7.5,5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{*} \mathrm{H}\right), 2.77$ (dd, $\left.J=15.3,5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.68\left(\mathrm{dd}, J=15.3,7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{MeOD}-d_{4}\right): \delta=174.6(2 \times \mathrm{CO}), 172.5(2 \times \mathrm{CO}), 145.9\left(6 \times \mathrm{C}_{\mathrm{Ar}}\right), 140.0(2 \mathrm{x}$ $\left.\mathrm{C}_{\mathrm{Ar}}\right), 130.1\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 130.0\left(12 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(12 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 127.8\left(6 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right)$, $117.0\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 112.8\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 71.7(2 \times \mathrm{C}), 54.0\left(2 \times \mathrm{C}^{*} \mathrm{H}\right), 42.3\left(2 \mathrm{x} \mathrm{CH}_{2}\right)$.

Synthesis of 2b: 531 mg of $\mathbf{2 b}$ (white solid, $\mathbf{7 4 \%}$ yield) were obtained from 1b as described above for 2a. HRMS (ESI+) calcd. for $\mathrm{C}_{54} \mathrm{H}_{52} \mathrm{~N}_{6} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$: 849.4123, found: 849.4135. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.46$ ($\mathrm{s}, 2 \mathrm{H}$, $\mathrm{NHCOC} * \mathrm{H}), 7.82\left(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.35-7.19\left(\mathrm{~m}, 33 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.93(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{NHTrt}), 3.40(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} * \mathrm{H}), 2.53-2.45\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2} \mathrm{CH}_{2}\right)$, 2.13-1.94 (m, 4H, C* HCH_{2}), 1.68 (br s, $4 \mathrm{H}, \mathrm{NH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.3(2 \times \mathrm{CO}), 171.8(2 \times \mathrm{CO}), 144.7\left(6 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 138.4\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 129.7(1 \mathrm{x}$ $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 128.8\left(12 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 128.1\left(12 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 127.2\left(6 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 115.2(2 \mathrm{x}$ $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 110.5\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 70.7(2 \times \mathrm{C}), 54.8(2 \times \mathrm{C} * \mathrm{H}), 34.1\left(2 \times \mathrm{C}^{*} \mathrm{HCH}_{2} \mathrm{CH}_{2}\right)$, $31.0\left(2 \times \mathrm{C} * \mathrm{HCH}_{2}\right)$.

Synthesis of 2c: 522 mg of 2c (white solid, quantitative yield) were obtained from 1c as described above for 2a. HRMS (ESI+) calcd. for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ $(\mathrm{m} / \mathrm{z}): 395.2653$, found: $395.2672 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.54(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{NH}), 7.91\left(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.39-7.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.29-7.23(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{\mathrm{Ar}}$), $3.67\left(\mathrm{dd}, J=7.2,3.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.62-3.55(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{H} \times \mathrm{C} * \mathrm{H}+2 \mathrm{H} x$ CH_{2}), 2.00 (br s, $4 \mathrm{H}, \mathrm{NH}_{2}$), 1.21 (s, $18 \mathrm{H}, \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $171.6(2 \times \mathrm{CO}), 138.6\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 129.6\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 115.0\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 110.4(1 \mathrm{x}$ $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 73.8(2 \times \mathrm{C}), 63.8\left(2 \mathrm{x} \mathrm{CH}_{2}\right), 56.0(2 \times \mathrm{C} * \mathrm{H}), 27.7\left(6 \mathrm{x} \mathrm{CH}_{3}\right)$.

Synthesis of 2d: 445 mg of $\mathbf{2 d}$ (white solid, 64% yield) were obtained from $\mathbf{1 d}$ as described above for 2a. HRMS (ESI+) calcd. for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$: 423.2966, found: 423.2956. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.63$ ($\mathrm{s}, 2 \mathrm{H}$, $\mathrm{NHCOC} * \mathrm{H}), 7.82\left(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.40-7.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.32-7.23$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 4.23\left(\mathrm{qd}, J=6.3,2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{3}\right), 3.25(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}$,
$\mathrm{C}^{*} \underline{H N H}_{2}$), $1.95\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, \mathrm{NH}_{2}\right), 1.21\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{3}\right), 1.17(\mathrm{~s}, 18 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.3(2 \times \mathrm{CO}), 138.7\left(2 \times \mathrm{C}_{\mathrm{Ar}}\right)$, $129.6\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 115.0\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 110.4\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 74.4(2 \times \mathrm{C}), 67.8(2 \mathrm{x}$ $\left.\underline{\mathrm{C}}^{*} \mathrm{HCH}_{3}\right), 60.4\left(2 \times \mathrm{C} * \mathrm{HNH}_{2}\right), 28.6\left(6 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 20.5\left(2 \times \mathrm{C} * \underline{\mathrm{C}}_{3}\right)$.

Synthesis of $2 \mathbf{e}$: 812 g of $\mathbf{2 e}$ (white solid, quantitative yield) were obtained from 1e as described above for 2a. HRMS (ESI+) calcd. for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ $(\mathrm{m} / \mathrm{z}): 547.3279$, found: $547.3280 .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.48(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{NHCOC}^{*} \mathrm{H}\right), 7.92\left(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.40\left(\mathrm{dd}, J=8.1,2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right)$, $7.32-7.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.14\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}$, $\mathrm{CH}_{\mathrm{Ar}}$), $3.70(\mathrm{dd}, J=9.6,3.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} * \mathrm{H}$), $3.32(\mathrm{dd}, J=14.0,3.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{C}^{*} \mathrm{HCH}_{2}$), $2.72\left(\mathrm{dd}, J=13.9,9.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2}\right.$), $1.99\left(\mathrm{br} \mathrm{s}, 4 \mathrm{H}, \mathrm{NH}_{2}\right), 1.33$ $\left(\mathrm{s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.8(2 \mathrm{x} \mathrm{CO}), 154.5\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right)$, $138.4\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 132.5\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 129.8\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 129.7\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 124.6(4 \mathrm{x}$ $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 115.2\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 110.4\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 78.6(2 \times \mathrm{C}), 57.0\left(2 \times \mathrm{C}^{*} \mathrm{H}\right), 40.2(2$ $\mathrm{x} \mathrm{CH} 2), 29.0\left(6 \mathrm{xCH}_{3}\right)$.

Synthesis of $2 \mathbf{f}$: 781 mg of $\mathbf{2 f}$ (white solid, quantitative yield) were obtained from 1f as described above for 2a. HRMS (ESI+) calcd. for $\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{~N}_{6} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$ $(\mathrm{m} / \mathrm{z}): 681.3395$, found: $681.3399 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.57(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{NHCOC}^{*} \mathrm{H}\right), 8.14\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.94\left(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.65$ (dd, $\left.J=7.7,1.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.43(\mathrm{dd}, J=7.8,2.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{\mathrm{Ar}}$), 7.38-7.22 (m, 5H, $\mathrm{CH}_{\mathrm{Ar}}$), $3.84(\mathrm{dd}, J=9.8,3.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} * \mathrm{H}), 3.49$ (ddd, $\left.J=14.7,3.7,1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2}\right), 2.88\left(\mathrm{dd}, J=14.8,9.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2}\right)$, $1.66\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right), 1.58\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{NH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.7$ (2 x CO), $149.7(2 \times \mathrm{CO}), 138.4\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 135.8\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 130.3\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 129.7(1$ $\left.\mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 124.9\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 124.3\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 122.9\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 119.3\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right)$, $116.7\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 115.5\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 115.2\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 110.5\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 83.9(2 \mathrm{x}$ C), $55.4\left(2 \mathrm{xC}^{*} \mathrm{H}\right), 30.6\left(2 \mathrm{x} \mathrm{CH}_{2}\right), 28.3\left(6 \mathrm{x} \mathrm{CH}_{3}\right)$.

Synthesis of $\mathbf{2 g}$: 531 mg of $\mathbf{2 g}$ (white solid, quantitative yield) were obtained from 1 g as described above for 2a. HRMS (ESI+) calcd. for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$ $(\mathrm{m} / \mathrm{z}): 451.2551$, found: $451.2560 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{MeOD}-d_{4}\right): \delta=7.92(\mathrm{t}, J$ $\left.=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.38-7.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.29-7.24\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 3.75$ (dd, $\left.J=6.7,6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{*} \mathrm{H}\right), 2.74\left(\mathrm{dd}, J=16.2,6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.62(\mathrm{dd}, J=$ $16.2,6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $1.43\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$): $\delta=$ $174.5(2 \times \mathrm{CO}), 172.1(2 \times \mathrm{CO}), 140.0\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 130.2\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 116.9(2 \mathrm{x}$ $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 112.8\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 82.3(2 \times \mathrm{C}), 53.6(2 \times \mathrm{C} * \mathrm{H}), 41.5\left(2 \mathrm{x} \mathrm{CH}_{2}\right), 28.3(6 \mathrm{x}$ CH_{3}).

Synthesis of $\mathbf{2 h}$: 1.05 g of $\mathbf{2 h}$ (white solid, quantitative yield) were obtained from 1h as described above for 2a. HRMS (ESI+) calcd. for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$ $(\mathrm{m} / \mathrm{z}): 479.2864$, found: $479.2882 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$): $\delta=7.94(\mathrm{t}, J$ $\left.=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.37-7.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.30-7.23\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 3.45$ (dd, $J=7.2,6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} * \mathrm{H}), 2.44-2.30\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2} \mathrm{CH}_{2}\right), 2.07-1.96(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2}\right), 1.92-1.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2}\right), 1.43\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{MeOD}-d_{4}\right): \delta=175.5(2 \times \mathrm{CO}), 174.2(2 \times \mathrm{CO}), 140.0\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 130.2(1 \mathrm{x}$ $\mathrm{CH}_{\mathrm{Ar}}$), 117.1 ($2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}$), $113.1\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 81.7(2 \mathrm{x} \mathrm{C}), 56.1(2 \times \mathrm{C} * \mathrm{H}), 32.7(2 \mathrm{x}$ $\left.\mathrm{C}^{*} \mathrm{HCH}_{2} \underline{\mathrm{CH}}_{2}\right), 31.5\left(2 \times \mathrm{C} * \mathrm{HCH}_{2}\right), 28.3\left(6 \times \mathrm{CH}_{3}\right)$.

Synthesis of 2i-2TFA: 530 mg of $\mathbf{1 i}(0.72 \mathrm{mmol})$ were dissolved in DCM (10 $\mathrm{mL})$ and TFA (1.5 mL) was added. The mixture was stirred at room temperature for 4 hours and then concentrated under reduced pressure. Diethyl ether was then added over the residue and the precipitate formed was filtered and washed with diethyl ether, obtaining 474 mg of 2i-2TFA (white solid, 93% yield) HRMS (ESI+) calcd. for $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{~N}_{6} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$: 633.3395, found: 633.3389. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$): $\delta=8.10\left(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right.$), $7.41-7.24$ (m , $\left.13 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 5.01\left(\mathrm{ABq}, \delta_{\mathrm{A}}=5.04, \delta_{\mathrm{B}}=4.99, J=12.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{NHCOOCH}_{2}\right)$, $3.95\left(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{*} \mathrm{H}\right), 3.13\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NHCbz}\right), 2.04-1.84$ $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2}\right), 1.56$ (quint, $\left.J=7.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCbz}\right), 1.51-1.38(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2} \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$): $\delta=168.6$ (2 x CO), 159.0 ($2 \times \mathrm{CO}$), $139.7\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 138.3\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 130.5\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 129.4\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right)$, $128.9\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 117.4\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 113.0\left(1 \mathrm{xCH}_{\mathrm{Ar}}\right), 67.4(2 \mathrm{x}$ $\left.\mathrm{NHCOOCH}_{2}\right), 55.1(2 \times \mathrm{C} * \mathrm{H}), 41.1\left(2 \mathrm{x} \mathrm{CH}_{2} \mathrm{NHCbz}\right), 32.3\left(2 \times \mathrm{C} * \mathrm{HCH}_{2}\right), 30.5$ ($2 \mathrm{x} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCbz}$), $23.0\left(2 \times \mathrm{C} * \mathrm{HCH}_{2} \mathrm{CH}_{2}\right)$.

Synthesis of $\mathbf{2 j}$-2TFA: 1.27 g of $\mathbf{2} \mathbf{j}$-2TFA (white solid, 94% yield) were obtained from $\mathbf{1} \mathbf{j}$ as described above for $\mathbf{2 i} \cdot 2$ TFA. HRMS (ESI+) calcd. for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{6}$ $[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z}): 505.2769$, found: 505.2786. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$): $\delta=$ $8.08\left(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.40-7.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.34-7.29(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{\mathrm{Ar}}$), 5.90 (ddt, $J=17.3,10.6,5.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCOOCH}_{2} \mathrm{CHCH}_{2}$), 5.27 (dd, $J=$ $\left.17.3,1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCOOCH}_{2} \mathrm{CHCH}_{2}\right), 5.15(\mathrm{dd}, J=10.3,1.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{NHCOOCH}_{2} \mathrm{CHCH}_{2}$), $4.52\left(\mathrm{dt}, J=5.4,1.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{NHCOOCH}_{2} \mathrm{CHCH}_{2}\right), 4.02$ (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{*} \mathrm{H}$), 3.18 (td, $J=6.8,1.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NHAlloc}$), 2.0-1.85 $\left(\mathrm{m}, 4 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2}\right), 1.74-1.55\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , MeOD- d_{4}): $\delta=168.5(2 \times \mathrm{CO})$, $159.0(2 \times \mathrm{CO})$, $139.7\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right)$, $134.4(2 \mathrm{x}$ $\left.\mathrm{NHCOOCH}_{2} \underline{\mathrm{CHCH}}_{2}\right), 130.5\left(1 \times \mathrm{CH}_{\mathrm{Ar}}\right), 117.5\left(2 \mathrm{x} \mathrm{NHCOOCH}_{2} \mathrm{CHCH}_{2}\right), 117.3$ $\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 112.9\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 66.4\left(2 \times \mathrm{NHCOOCH}_{2} \mathrm{CHCH}_{2}\right), 54.8\left(2 \times \mathrm{C}^{*} \mathrm{H}\right)$, 40.8 ($2 \mathrm{x} \mathrm{CH}_{2}$ NHAlloc), 30.1 ($2 \times \mathrm{C} * \mathrm{HCH}_{2}$), $26.6\left(2 \mathrm{x} \mathrm{C}^{*} \mathrm{HCH}_{2} \mathrm{CH}_{2}\right.$).

Synthesis of intermediates 3a-k

Synthesis of 3a: tritylsulfanyl acetic acid ($501 \mathrm{mg}, 1.50 \mathrm{mmol}$) was dissolved in dry DMF (20 mL) and EDC• $\mathrm{HCl}(312 \mathrm{mg}, 1.63 \mathrm{mmol}$), HOBt ($228 \mathrm{mg}, 1.69$ mmol) and DIPEA ($1.6 \mathrm{~mL}, 4.59 \mathrm{mmol}$) were added over the solution. The reaction mixture was cooled down to $0{ }^{\circ} \mathrm{C}$ in an ice-water bath and $2 \mathbf{2 a}(585 \mathrm{mg}$, 0.715 mmol) was added over the mixture. The mixture was stirred at room temperature under an inert atmosphere of Ar for 48 hours, and the formation of the product was followed by TLC. The mixture was diluted with DCM, washed with saturated aqueous NaHCO_{3} and saturated aqueous NaCl , and dried under reduced pressure. The crude product was purified by flash chromatography using $\mathrm{AcOEt} / \mathrm{hexane}$ as eluent (from 40% to $60 \% \mathrm{AcOEt}$, Rf of 3a in AcOEt/hexane, 1:1 (v/v): 0.46) to give 758 mg of $\mathbf{3 a}(73 \%$ yield) as a white solid. HRMS (ESI+) calcd. for $\mathrm{C}_{94} \mathrm{H}_{80} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z}): 1453.5654$, found: 1453.5665. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.84(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NHCOC} * \mathrm{H}), 7.60\left(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right.$), $7.54-7.00\left(\mathrm{~m}, 65 \mathrm{H}, 2 \mathrm{H} \times \mathrm{C} * \mathrm{HNHCO}+63 \mathrm{H} \times \mathrm{CH}_{\mathrm{Ar}}\right), 6.91(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NHTrt}), 4.49$ $\left(\mathrm{td}, J=7.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{*} \mathrm{H}\right), 3.05\left(\mathrm{ABq}, \delta_{\mathrm{A}}=3.08, \delta_{\mathrm{B}}=3.02, J=15.7 \mathrm{~Hz}, 4 \mathrm{H}\right.$, $\left.\mathrm{CH}_{2} \mathrm{STrt}\right), 2.96-2.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}^{*} \mathrm{H}\right), 2.39$ (dd, $J=15.7,7.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{C}^{*} \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.7(2 \times \mathrm{CO}), 169.0(2 \times \mathrm{CO})$, $168.3(2 \times \mathrm{CO}), 144.2\left(6 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 144.1\left(6 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 138.11\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 129.7(12 \mathrm{x}$ $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 129.2\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(12 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 128.3\left(12 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 128.2(12 \mathrm{x}$ $\left.\mathrm{CH}_{\mathrm{Ar}}\right)$, $127.3\left(6 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 127.1\left(6 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 116.3\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 111.8\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right)$, $71.1(2 \times \mathrm{C}), 67.9(2 \mathrm{x} \mathrm{C}), 50.7(2 \mathrm{x} \mathrm{C} * \mathrm{H})$, $38.4\left(2 \mathrm{x} \mathrm{CH}_{2} \mathrm{C}^{*} \mathrm{H}\right)$, 36.2 (2 x $\left.\mathrm{CH}_{2} \mathrm{STrt}\right)$.

Synthesis of 3b: this compound was obtained as described above for 3a, starting from $\mathbf{2 b}$. The residue was purified by flash chromatography using AcOEt/hexane as eluent (from 30% to $40 \% \mathrm{AcOEt}$, Rf of $\mathbf{3 b}$ in AcOEt/hexane, $1: 1$ (v/v): 0.23) to give 593 mg of $\mathbf{3 b}$ (66% yield) as a white solid. HRMS (ESI+) calcd. for $\mathrm{C}_{96} \mathrm{H}_{84} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z}): 1481.5967$, found: $1481.5916 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=8.76(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NHCOC} * \mathrm{H}), 7.73\left(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.44-7.38$ $\left(\mathrm{m}, 12 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.31-6.96\left(\mathrm{~m}, 55 \mathrm{H}, 51 \mathrm{H} \times \mathrm{CH}_{\mathrm{Ar}}+2 \mathrm{H} \times \mathrm{C} * \mathrm{HNHCO}+2 \mathrm{H} \times\right.$ NHTrt), $4.03(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} * \mathrm{H}), 3.06\left(\mathrm{ABq}, \delta_{\mathrm{A}}=3.07, \delta_{\mathrm{B}}=3.05, J=\right.$ $\left.15.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{STrt}\right), 2.59-2.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}^{*} \mathrm{HCH}_{2} \mathrm{CH}_{2}\right), 2.39-2.29(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{C} * \mathrm{HCH}_{2} \mathrm{CH}_{2}$), $2.03-1.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2}\right), 1.81-1.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.5(2 \times \mathrm{CO}), 168.8(2 \times \mathrm{CO}), 168.6$ (2 x CO), $144.5\left(6 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 144.1\left(6 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 138.2\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 129.7\left(12 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 129.2(1 \mathrm{x}$ $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 128.8\left(12 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 128.3\left(12 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 128.1\left(12 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 127.2(6 \mathrm{x}$ $\mathrm{CH}_{\mathrm{Ar}}$), 127.1 $\left(6 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right)$, $115.9\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right)$, $111.4\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 70.9(2 \times \mathrm{C}), 68.0(2$
x C), $53.1\left(2 \times \mathrm{C}^{*} \mathrm{H}\right)$, $36.3\left(2 \mathrm{x} \mathrm{CH}_{2} \mathrm{STrt}\right)$, $34.2\left(2 \times \mathrm{C}^{*} \mathrm{HCH}_{2} \underline{\mathrm{CH}}_{2}\right)$, $30.3(2 \mathrm{x}$ $\mathrm{C} * \mathrm{HCH}_{2}$).

Synthesis of 3c: this compound was obtained as described above for 3a starting from 2c. The crude product was purified by flash chromatography using $\mathrm{AcOEt} / \mathrm{hexane}$ as eluent (from 35% to $45 \% \mathrm{AcOEt}$, Rf of $\mathbf{3 c}$ in AcOEt/hexane, 2:3 (v/v): 0.27) to give 612 mg of $\mathbf{3 c}(51 \%$ yield) as a white solid. HRMS (ESI+) calcd. for $\mathrm{C}_{62} \mathrm{H}_{66} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$: 1027.4497 , found: 1027.4492. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.68(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NHCOC} * \mathrm{H}), 7.79\left(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right.$), $7.43\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.28\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.25-7.18(\mathrm{~m}$, $9 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}$), $7.10(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} * \mathrm{HNHCO}), 4.24-4.18(\mathrm{dt}, J=9.7,4.6 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{C} * \mathrm{H}$), $3.71\left(\mathrm{dd}, J=8.6,4.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2}\right), 3.20-3.08(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{H} x$ $\left.\mathrm{C} * \mathrm{HCH}_{2}+4 \mathrm{H} \times \underline{\mathrm{H}}_{2} \mathrm{STrt}\right), 1.22\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $168.7(2 \times \mathrm{CO}), 168.2(2 \times \mathrm{CO}), 144.1\left(6 \times \mathrm{C}_{\mathrm{Ar}}\right), 138.4\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 129.8(1 \mathrm{x}$ $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 129.7\left(12 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 128.3\left(12 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 127.1\left(6 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 115.5\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right)$, $110.9\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 75.0(2 \times \mathrm{C}), 68.0(2 \times \mathrm{C}), 61.0\left(2 \times \mathrm{C}^{*} \mathrm{HCH}_{2}\right), 53.5(2 \times \mathrm{C} \mathrm{H})$, $36.2\left(2 \times \mathrm{CH}_{2} \mathrm{STrt}\right)$, $27.6\left(6 \times \mathrm{CH}_{3}\right)$.

Synthesis of 3d: this compound was obtained as described above for 3a starting from 2d. The residue was purified by flash chromatography using AcOEt/hexane as eluent (from 20% to 35% AcOEt, Rf of 3d in AcOEt/hexane, 3:7 (v/v): 0.28) to give 608 mg of 3d (57% yield) as a white solid. HRMS (ESI-) calcd. for $\mathrm{C}_{64} \mathrm{H}_{70} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{HCOO}]^{-}(\mathrm{m} / \mathrm{z}): 1099.4719$, found: 1099.4722. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.16(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NHCOC} * \mathrm{H}), 7.70\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.43(\mathrm{~d}, J=7.5$ $\left.\mathrm{Hz}, 12 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.33-7.17\left(\mathrm{~m}, 23 \mathrm{H}, 21 \mathrm{H} \times \mathrm{CH}_{\mathrm{Ar}}+2 \mathrm{H} \times \mathrm{C}^{*} \mathrm{HNHCO}\right), 4.24-4.13$ $\left(\mathrm{m}, 4 \mathrm{H}, 2 \mathrm{H} \times \mathrm{C}^{*} \underline{\mathrm{H} N H}+2 \mathrm{H} \times \mathrm{C}^{*} \underline{\mathrm{HCH}_{3}}\right), 3.07\left(\mathrm{ABq}, \delta_{\mathrm{A}}=3.10, \delta_{\mathrm{B}}=3.03, J=\right.$ $\left.15.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.33\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{C}_{3}\right)_{3}\right), 0.94\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.5$ (2 x CO), $167.4(2 \mathrm{x} \mathrm{CO}), 144.1(6 \mathrm{x}$ $\left.\mathrm{C}_{\mathrm{Ar}}\right), 138.4\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 129.9\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 129.7\left(12 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 128.2\left(12 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right)$, $127.1\left(6 \mathrm{xCH}_{\mathrm{Ar}}\right), 115.3\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 110.7\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 76.3(2 \times \mathrm{C}), 67.9(2 \times \mathrm{C})$, $66.2\left(2 \times \underline{\mathrm{C}} * \mathrm{HCH}_{3}\right), 58.3(2 \times \mathrm{C} * \mathrm{HNH}), 36.6\left(2 \mathrm{x} \mathrm{CH}_{2}\right), 28.3\left(6 \times \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 17.0$ ($2 \times \mathrm{C} * \mathrm{H}_{\mathrm{CH}}^{3}$).

Synthesis of 3e: this compound was obtained as described above for 3a, starting from 2e. The residue was purified by flash chromatography using AcOEt/hexane as eluent (from 30% to $40 \% \mathrm{AcOEt}$, Rf of $\mathbf{3 e}$ in AcOEt/hexane, 2:3 (v/v): 0.39) to give 1.07 g of $\mathbf{3 e}(79 \%$ yield) as a white solid. HRMS (ESI-) calcd. for $\mathrm{C}_{74} \mathrm{H}_{74} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{HCOO}]^{-}(\mathrm{m} / \mathrm{z})$: 1223.5032 , found: 1223.4956 . ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.73(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NHCOC} * \mathrm{H}), 7.51\left(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.36$ (d, $\left.J=7.2 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.29-7.22\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.18(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}$,
$\left.\mathrm{CH}_{\mathrm{Ar}}\right), 7.14-7.09\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.06\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.86(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}$) $, 6.61\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{*} \mathrm{HNHCO}\right), 4.37(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{C} * \mathrm{H}), 3.12\left(\mathrm{ABq}, \delta_{\mathrm{A}}=3.15, \delta_{\mathrm{B}}=3.09, J=16.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{STrt}\right), 2.91(\mathrm{~d}, J=$ 7.1 Hz, $4 \mathrm{H}, \mathrm{C}^{*} \mathrm{HCH}_{2}$), 1.28 ($\mathrm{s}, 18 \mathrm{H}, \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $169.0(2 \times \mathrm{CO}), 168.4(2 \times \mathrm{CO}), 154.6\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 144.0\left(6 \mathrm{X} \mathrm{C}_{\mathrm{Ar}}\right), 138.0\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right)$, $131.1\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 130.0\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 129.6\left(12 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 129.4\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 128.4(12$ $\left.\mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 127.3\left(6 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 124.6\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 115.9\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 111.3\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right)$, 78.6 (2 x C), $68.2(2 \mathrm{x} \mathrm{C}), 55.9(2 \mathrm{x} \mathrm{C} * \mathrm{H})$, $36.9\left(2 \mathrm{x} \mathrm{C}^{*} \mathrm{HCH}_{2}\right), 36.0(2 \mathrm{x}$ $\left.\mathrm{CH}_{2} \mathrm{STrt}\right)$, $29.0\left(6 \mathrm{x} \mathrm{CH}_{3}\right)$.

Synthesis of 3f: this compound was obtained as described above for 3a starting from $2 \mathbf{2 f}$. The residue was purified by flash chromatography using AcOEt/hexane as eluent (from 30% to $40 \% \mathrm{AcOEt}$, Rf of $\mathbf{3 f}$ in AcOEt/hexane, 2:3 (v/v): 0.54) to give 977 mg of $\mathbf{3 f}$ (88% yield) as a white solid. HRMS (ESI+) calcd. for $\mathrm{C}_{80} \mathrm{H}_{76} \mathrm{~N}_{6} \mathrm{O}_{8} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}(\mathrm{m} / \mathrm{z}): 1335.5058$, found: 1335.5060. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.10\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.94\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NHCOC}{ }^{*} \mathrm{H}\right), 7.55$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}$), $7.46\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.40\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.34(\mathrm{~d}, J=7.4$ $\left.\mathrm{Hz}, 12 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.29-7.02\left(\mathrm{~m}, 25 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, C*HNHCO), $4.52(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} * \mathrm{H}), 3.21-2.98\left(\mathrm{~m}, 8 \mathrm{H}, 4 \mathrm{H} \times \mathrm{CH}_{2} \mathrm{STrt}+\right.$ $4 \mathrm{H} \times \mathrm{C}^{*} \mathrm{HCH}_{2}$), $1.59\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.2(2 \mathrm{x}$ CO), $168.5(2 \times \mathrm{CO}), 149.6(2 \mathrm{x} \mathrm{CO}), 144.0\left(6 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 138.0\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 135.6(2 \mathrm{x}$ $\left.\mathrm{C}_{\mathrm{Ar}}\right), 130.2\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 129.6\left(12 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 129.4\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 128.3\left(12 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right)$, $127.2\left(6 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 124.9\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 124.5\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 123.0\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 119.2(2$ $\left.\mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 116.1\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 115.4\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 115.3\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 111.7\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right)$, $83.8(2 \times \mathrm{C}), 68.2(2 \times \mathrm{C}), 54.5(2 \times \mathrm{C} * \mathrm{H}), 36.0\left(2 \mathrm{x} \mathrm{COCH}_{2}\right), 28.3\left(6 \mathrm{xCH}_{3}\right)$, $27.0\left(2 \times \mathrm{C} * \mathrm{HCH}_{2}\right)$.

Synthesis of 3g: this compound was obtained as described above for 3a starting from 2g. The residue was purified by flash chromatography using AcOEt/hexane as eluent (from 25% to $45 \% \mathrm{AcOEt}$, Rf of $\mathbf{3 g}$ in AcOEt/hexane, 2:3 (v/v): 0.30) to give 644 mg of $\mathbf{3 g}$ (69% yield) as a white solid. HRMS (ESI+) calcd. for $\mathrm{C}_{64} \mathrm{H}_{66} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}(\mathrm{m} / \mathrm{z}): 1105.4214$, found: 1105.4236. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.54(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NHCOC} * \mathrm{H}), 7.63\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.40(\mathrm{~d}, J=7.9$ $\left.\mathrm{Hz}, 12 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.31-7.16\left(\mathrm{~m}, 23 \mathrm{H}, 21 \mathrm{H} \times \mathrm{CH}_{\mathrm{Ar}}+2 \mathrm{H} \mathrm{x} \mathrm{C} * \mathrm{HNHCO}\right), 4.54(\mathrm{td}, J$ $\left.=7.6,4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{*} \mathrm{H}\right), 3.16\left(\mathrm{ABq}, \delta_{\mathrm{A}}=3.18, \delta_{\mathrm{B}}=3.14, J=16.3 \mathrm{~Hz}, 4 \mathrm{H}\right.$, $\left.\mathrm{CH}_{2} \mathrm{STrt}\right), 2.69\left(\mathrm{dd}, J=17.2,3.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2}\right), 2.44(\mathrm{dd}, J=17.1,7.8 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2}\right), 1.43\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.3(2 \mathrm{x}$ CO), $169.0(2 \times \mathrm{CO}), 168.0(2 \times \mathrm{CO}), 144.0\left(6 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 138.3\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 129.6(13$ $\left.\mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 128.3\left(12 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 127.26\left(6 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 116.0\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 111.3(1 \mathrm{x}$
$\left.\mathrm{CH}_{\mathrm{Ar}}\right), 82.3(2 \times \mathrm{C}), 68.2(2 \times \mathrm{C}), 50.4(2 \times \mathrm{C} * \mathrm{H}), 36.6\left(2 \mathrm{x} \mathrm{CH}_{2}\right), 36.0\left(2 \mathrm{xCH}_{2}\right)$, $28.2\left(6 \mathrm{x} \mathrm{CH}_{3}\right)$.

Synthesis of 3h: this compound was obtained as described above for 3a, starting from $\mathbf{2 h}$. The residue was purified by flash chromatography using AcOEt/hexane as eluent (from 30% to 40% AcOEt, Rf of $\mathbf{3 h}$ in AcOEt/hexane, 2:3 (v/v): 0.20) to give 285 mg of $\mathbf{3 h}$ (74% yield) as a white solid. HRMS (ESI+) calcd. for $\mathrm{C}_{66} \mathrm{H}_{70} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$: 1111.4708 , found: $1111.4696 .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta=8.72(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NHCOC} * \mathrm{H}), 7.78\left(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.44-7.37$ $\left(\mathrm{m}, 12 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.30-7.14\left(\mathrm{~m}, 21 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.80(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} * \mathrm{HNHCO})$, $4.26(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} * \mathrm{H}), 3.14\left(\mathrm{ABq}, \delta_{\mathrm{A}}=3.16, \delta_{\mathrm{B}}=3.12, J=16.1 \mathrm{~Hz}, 4 \mathrm{H}\right.$, CH_{2} STrt), 2.45-2.34 (m, 2H, C* $\mathrm{HCH}_{2} \mathrm{CH}_{2}$), 2.28-2.17 (m, $2 \mathrm{H}, \mathrm{C}^{*} \mathrm{HCH}_{2} \mathrm{CH}_{2}$), 2.08-1.96 (m, 2H, C* HCH_{2}), 1.83-1.71 (m, 2H, C ${ }^{*} \mathrm{HCH}_{2}$), $1.44\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.1$ (2 x CO), 169.0 (2 x CO), 168.8 (2 x $\mathrm{CO}), 144.0\left(6 \times \mathrm{C}_{\mathrm{Ar}}\right), 138.4\left(2 \times \mathrm{C}_{\mathrm{Ar}}\right), 129.6\left(12 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 129.5\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 128.3$ $\left(12 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 127.2\left(6 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 115.7\left(2 \times \mathrm{CH}_{\mathrm{Ar}}\right), 111.0\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 81.3(2 \times \mathrm{C})$, $68.1(2 \times \mathrm{C}), 53.5(2 \times \mathrm{C} * \mathrm{H}), 36.1\left(2 \mathrm{x} \mathrm{CH}_{2} \mathrm{STrt}\right), 32.0\left(2 \mathrm{x} \mathrm{C}^{*} \mathrm{HCH}_{2} \underline{\mathrm{C}}_{2}\right), 28.2$ ($6 \mathrm{x} \mathrm{CH}_{3}$), $27.8\left(2 \mathrm{x} \mathrm{C}^{*} \mathrm{HCH}_{2}\right)$.

Synthesis of 3i: this compound was obtained as described above for 3a starting from 2i. The residue was purified by flash chromatography using AcOEt/hexane as eluent (from 50% to 65% AcOEt, Rf of $\mathbf{3 i}$ in AcOEt/hexane, $3: 2(\mathrm{v} / \mathrm{v}): 0.47$) to give 1.70 g of $\mathbf{3 i}$ (83% yield) as a white solid. HRMS (ESI+) calcd. for $\mathrm{C}_{76} \mathrm{H}_{76} \mathrm{~N}_{6} \mathrm{O}_{8} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z}): 1265.5239$, found: 1265.5187 . ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta=8.64$ (br s, $2 \mathrm{H}, \mathrm{NHCOC}{ }^{*} \mathrm{H}$), 7.62 (br s, $1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}$), $7.47-7.03$ (m, $\left.43 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.60(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} * \mathrm{HNHCO}), 5.03\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{NHCOOCH}_{2}\right)$, 4.97 (br s, 2H, NHCbz), 4.23 (br s, $2 \mathrm{H}, \mathrm{C} * \mathrm{H}$), 3.22-2.99 (m, $8 \mathrm{H}, 4 \mathrm{H} \mathrm{x}$ $\left.\mathrm{CH}_{2} \mathrm{NHCbz}+4 \mathrm{H} \times \mathrm{CH}_{2} \mathrm{STrt}\right), 1.92-1.64\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}^{*} \mathrm{HCH}_{2}\right), 1.57-1.34(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCbz}$), 1.33-1.09 (m, $\left.4 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=169.7(2 \times \mathrm{CO}), 169.2(2 \times \mathrm{CO}), 156.6(2 \mathrm{x} \mathrm{CO}), 144.1\left(6 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right)$, $138.4\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 136.8\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 129.6\left(13 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 128.6\left(4 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 128.3(12 \mathrm{x}$ $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 128.2\left(6 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 127.2\left(6 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 115.9\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 111.4\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right)$, $68.1(2 \times \mathrm{C})$, $66.7\left(2 \times \mathrm{NHCOOCH}_{2}\right), 54.3(2 \times \mathrm{C} \mathrm{H})$, 40.6 ($2 \times \mathrm{CH}_{2} \mathrm{NHCbz}^{2}$), 36.2 ($2 \mathrm{x} \mathrm{CH}_{2} \mathrm{STrt}$), $31.6\left(2 \times \mathrm{C} * \mathrm{H}_{\mathrm{CH}}^{2}\right.$), $29.5\left(2 \mathrm{x}_{\mathrm{C}}^{\mathrm{H}} \mathrm{CH}_{2} \mathrm{NHCbz}\right)$, $22.7(2 \mathrm{x}$ $\mathrm{C} * \mathrm{HCH}_{2} \mathrm{CH}_{2}$).

Synthesis of $\mathbf{3 j}$: this compound was obtained as described above for 3a, starting from $\mathbf{2 j}$. The residue was purified by flash chromatography using AcOEt/hexane as eluent (from 50% to $75 \% \mathrm{AcOEt}$, Rf of $\mathbf{3 j}$ in AcOEt/hexane, $4: 1(\mathrm{v} / \mathrm{v}): 0.51$) to give 281 mg of $\mathbf{3 j}$ (15% yield) as a white solid. HRMS (ESI+) calcd. for
$\mathrm{C}_{66} \mathrm{H}_{68} \mathrm{~N}_{6} \mathrm{O}_{8} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}(\mathrm{m} / \mathrm{z}): 1159.4432$, found: 1159.4454. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.75$ (br s, $2 \mathrm{H}, \mathrm{NHCOC} * \mathrm{H}$), 7.74 (br s, $1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}$), $7.42-7.35$ $\left(\mathrm{m}, 12 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.33-7.23\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.22-7.14\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.79(\mathrm{~d}, J$ $=6.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} * \mathrm{HNHCO}$), 5.86 (ddt, $J=16.3,10.7,5.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{NHCOOCH}_{2} \mathrm{CHCH}_{2}$), $5.25\left(\mathrm{dd}, J=17.2,1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCOOCH}_{2} \mathrm{CHCH}_{2}\right), 5.14$ (dd, $J=10.6,1.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCOOCH}_{2} \mathrm{CHCH}_{2}$), 5.02 (br s, $2 \mathrm{H}, \mathrm{N} \underline{H} A l l o c$), 4.56 (d, $J=5.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{NHCOOCH}_{2} \mathrm{CHCH}_{2}$), $4.52(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C} * \mathrm{H}), 3.41$ (br s, 2 H , CH_{2} NHAlloc $), 3.21-2.96\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{H} \times \mathrm{CH}_{2} \mathrm{NHAlloc}+4 \mathrm{H} \times \mathrm{CH}_{2}\right.$ STrt), $1.89-$ $1.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2}\right), 1.58-1.35\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{H} \times \mathrm{C} * \mathrm{HCH}_{2}+4 \mathrm{H} \times \mathrm{C} * \mathrm{HCH}_{2} \mathrm{CH}_{2}\right)$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.9$ (2 x CO), $169.1(2 \times \mathrm{CO})$, $157.1(2 \mathrm{x}$ $\mathrm{CO}), 144.1\left(6 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 138.5\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 133.0\left(2 \times \mathrm{NHCOOCH}_{2} \mathrm{CHCH}_{2}\right), 129.7(12$ $\left.\mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 129.4\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 128.3\left(12 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 127.2\left(6 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 117.7(2 \mathrm{x}$ $\mathrm{NHCOOCH}_{2} \mathrm{CHCH}_{2}$), $115.6\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 111.0\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 68.0(2 \times \mathrm{C}), 65.8(2 \mathrm{x}$ $\mathrm{NHCOOCH}_{2} \mathrm{CHCH}_{2}$), $52.9(2 \mathrm{x} \mathrm{C} * \mathrm{H})$, $39.7\left(2 \times \mathrm{CH}_{2} \mathrm{NHAlloc}\right)$, $36.3(2 \mathrm{x}$ $\left.\mathrm{CH}_{2} \mathrm{STrt}\right), 30.0\left(2 \times \mathrm{C} * \mathrm{H}_{\mathrm{CH}}^{2}\right), 26.4\left(2 \mathrm{x} \mathrm{C}^{*} \mathrm{HCH}_{2} \underline{\mathrm{C}}_{2}\right)$.

Synthesis of $\mathbf{3 k}$: To a solution of $\mathbf{3 j}(132 \mathrm{mg}, 0.116 \mathrm{mmol})$ in dry DCM (3.0 $\mathrm{mL}), \mathrm{PhSiH}_{3}(343 \mu \mathrm{~L}, 2.79 \mathrm{mmol})$ was added under inert atmosphere of Ar. Then a solution of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(18 \mathrm{mg}, 15 \mu \mathrm{~mol})$ in dry $\mathrm{DCM}(2.0 \mathrm{~mL})$ was added. The mixture was stirred at room temperature for 1 hour, after which complete conversion of the starting material was observed by TLC. The crude mixture was filtered through a bed of Celite ${ }^{\circledR}$ and the filtrate was concentrated to dryness under reduced pressure, obtaining diamine $\mathbf{5 j}$ as a brownish solid that was no further purified. HRMS (ESI+) calcd. for $\mathrm{C}_{58} \mathrm{H}_{60} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$: 969.4190, found: 969.4178. The residue was re-dissolved in DCM (5.0 mL), and triethylamine ($54 \mu \mathrm{~L}, 0.39 \mathrm{mmol}$) and N, N^{\prime}-di-Boc- $N^{\prime \prime}$-triflylguanidine (139 mg , 0.355 mmol) were added. The mixture was stirred for 2 hours under inert atmosphere of Ar, until the reaction was completed as evidenced by TLC (Rf of 3k in $\mathrm{AcOEt} / \mathrm{Hexane}, 2: 3(\mathrm{v} / \mathrm{v}): 0.30$). The mixture was diluted with DCM, washed with 2 M aqueous NaHSO_{4}, saturated aqueous NaHCO_{3} and saturated aqueous NaCl , dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash chromatography using AcOEt/hexane as eluent (from 40% to $45 \% \mathrm{AcOEt}$) to give 106.7 mg of $\mathbf{3 k}$ (63% yield over the last two steps) as a white solid. HRMS (ESI-) calcd. for $\mathrm{C}_{80} \mathrm{H}_{96} \mathrm{~N}_{10} \mathrm{O}_{12} \mathrm{~S}_{2}[\mathrm{M}-\mathrm{H}]^{-}(\mathrm{m} / \mathrm{z})$: 1451.6578, found: $1451.6572 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.46$ (s, 2 H , $\mathrm{NH}), 8.51-8.33(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{H} \times \mathrm{NHCOC} * \mathrm{H}+2 \mathrm{H} \times \mathrm{NH}), 7.67-7.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right)$, $7.41\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.31-7.16\left(\mathrm{~m}, 21 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.08(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{C} * \mathrm{HNHCO}), 4.34\left(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{*} \mathrm{H}\right), 3.43(\mathrm{q}, J=5.8 \mathrm{~Hz}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{NH}$), $3.14\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{STrt}\right), 1.90-1.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2}\right), 1.72-1.13(\mathrm{~m}$,
$42 \mathrm{H}, 2 \mathrm{H} \times \mathrm{C} * \mathrm{HCH}_{2}+4 \mathrm{H} \times \mathrm{C}^{*} \mathrm{HCH}_{2} \mathrm{CH}_{2}+36 \mathrm{H} \times \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C} \mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=169.3(2 \times \mathrm{CO}), 168.9(2 \times \mathrm{CO}), 167.5(2 \times \mathrm{C}$-guanidine), $152.5(2 \mathrm{x}$ $\mathrm{CO}), 147.0(2 \times \mathrm{CO}), 144.1\left(6 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 138.6\left(2 \mathrm{x} \mathrm{C}_{\mathrm{Ar}}\right), 129.7\left(12 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 129.3$ $\left(1 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 128.3\left(12 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 127.2\left(6 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 116.2\left(2 \mathrm{x} \mathrm{CH}_{\mathrm{Ar}}\right), 111.8(1 \mathrm{x}$ $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 90.1(2 \mathrm{x} \mathrm{C}), 81.0(2 \mathrm{x} \mathrm{C}), 68.0(2 \mathrm{x} \mathrm{C}), 53.1\left(2 \mathrm{x} \mathrm{C}^{*} \mathrm{H}\right), 41.9(2 \mathrm{x}$ $\mathrm{CH}_{2} \mathrm{NH}$), 36.3 ($2 \times \mathrm{CH}_{2} \mathrm{STrt}$), 29.9 ($2 \times \mathrm{C} * \mathrm{HCH}_{2}$), 28.1 ($12 \mathrm{x} \mathrm{CH}_{3}$), 25.5 (2 x $\mathrm{C} * \mathrm{HCH}_{2} \mathrm{CH}_{2}$).

Synthesis of building blocks 4a-l

Synthesis of 4a: to a solution of $\mathbf{3 a}(230 \mathrm{mg}, 0.16 \mathrm{mmol})$ in DCM $(1.0 \mathrm{~mL})$, TFA $(8.5 \mathrm{~mL})$, TIS $(332 \mu \mathrm{~L}, 1.28 \mathrm{mmol})$ and EDT $(160 \mu \mathrm{~L}, 1.91 \mathrm{mmol})$ were added rapidly and under stirring. The reaction mixture was stirred at room temperature for 2 hours, after which the solvents were partially evaporated using a N_{2} flow. Diethyl ether was added over the reaction mixture and the product was filtered off and washed with diethyl ether. The product was purified by reversed-phase flash chromatography using a mixture of $\mathrm{MeCN}+0.07 \%$ (v/v) TFA and $\mathrm{H}_{2} \mathrm{O}+$ $0.1 \%(\mathrm{v} / \mathrm{v})$ TFA as mobile phase (gradient: from 5% to $30 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$). After lyophilisation 37.8 mg of $\mathbf{4 a}(52 \%$ yield) were obtained as a white solid. HRMS (ESI+) calcd. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z}): 485.1277$, found: 485.1279. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=9.97(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NHCOC} * \mathrm{H}), 8.34(\mathrm{~d}$, $\left.J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{*} \mathrm{HNHCO}\right), 7.93\left(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 7.36\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.29$ $\left(\mathrm{dd}, J=7.6,2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{3}\right), 7.24-7.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 6.91\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.67(\mathrm{q}, J$ $\left.=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{*} \mathrm{H}\right), 3.17\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SH}\right), 2.73(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$, SH), 2.62-2.41 (m, 4H, C $\left.\underline{H}_{2} \mathrm{C}^{*} \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): $\delta=171.1$ (2 $\mathrm{x} \mathrm{CONH}_{2}$), $169.5(2 \mathrm{x} \mathrm{COC} * \mathrm{H}), 169.4\left(2 \mathrm{x} \mathrm{COCH}_{2}\right), 139.1\left(2 \mathrm{x} \mathrm{C}^{2}\right), 128.6(1 \mathrm{x}$ $\left.\mathrm{C}^{4}\right), 114.6\left(2 \mathrm{x} \mathrm{C}^{3}\right), 110.9\left(1 \mathrm{x} \mathrm{C}^{1}\right), 50.9\left(2 \mathrm{xC}^{*} \mathrm{H}\right), 37.1\left(2 \mathrm{x} \mathrm{CH}_{2} \mathrm{C}^{*} \mathrm{H}\right), 27.0(2 \mathrm{x}$ $\mathrm{CH}_{2} \mathrm{SH}$).

Synthesis of 4b: this compound was obtained as described above for $\mathbf{4 a}$, starting from $\mathbf{3 b}$. The product was purified by reversed-phase flash chromatography using a mixture of $\mathrm{MeCN}+0.07 \%(\mathrm{v} / \mathrm{v})$ TFA and $\mathrm{H}_{2} \mathrm{O}+0.1 \%(\mathrm{v} / \mathrm{v})$ TFA as mobile phase (gradient: from 5% to $30 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$) and 31.3 mg of $\mathbf{4 b}$ (48% yield) were obtained as a white solid. HRMS (ESI+) calcd. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ $(\mathrm{m} / \mathrm{z}): 513.1590$, found: $513.1592 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=10.09(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{NHCOC} * \mathrm{H}), 8.30\left(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{*} \mathrm{HN} \underline{H C O}\right), 7.96(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}^{1}\right), 7.35-7.27\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{H} \mathrm{x} \mathrm{H}^{3}+2 \mathrm{H} \mathrm{x} \mathrm{NH}_{2}\right), 7.26-7.20\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 6.77(\mathrm{~s}, 2 \mathrm{H}$, NH_{2}), $4.39(\mathrm{td}, J=8.0,5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} * \mathrm{H}), 3.25-3.12\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SH}\right), 2.75(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SH}), 2.22-2.04\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2} \mathrm{CH}_{2}\right), 1.99-1.88(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{C} * \mathrm{HCH}_{2}$), 1.88-1.76 (m, 2H, C* HCH_{2}). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): $\delta=$ $173.3\left(2 \mathrm{x} \mathrm{CONH}_{2}\right), 170.0(2 \mathrm{x} \mathrm{COC} * \mathrm{H}), 169.6\left(2 \times \mathrm{COCH}_{2}\right), 139.0\left(2 \mathrm{x} \mathrm{C}^{2}\right)$, $128.6\left(1 \mathrm{x} \mathrm{C}^{4}\right), 114.3\left(2 \mathrm{x} \mathrm{C}^{3}\right)$, $110.4\left(1 \mathrm{x} \mathrm{C}^{1}\right)$, $53.1\left(2 \mathrm{x} \mathrm{C}{ }^{*} \mathrm{H}\right)$, $31.1(2 \mathrm{x}$ $\left.\mathrm{C} * \mathrm{HCH}_{2} \underline{\mathrm{CH}}_{2}\right), 27.8\left(2 \times \mathrm{C} * \mathrm{H}_{\mathrm{CH}}^{2}\right), 26.7\left(2 \times \underline{\mathrm{C}}_{2} \mathrm{SH}\right)$.

Synthesis of 4c: this compound was obtained as described above for $\mathbf{4 a}$ starting from 3c. The product was purified by reversed-phase flash chromatography using a mixture of $\mathrm{MeCN}+0.07 \%(\mathrm{v} / \mathrm{v})$ TFA and $\mathrm{H}_{2} \mathrm{O}+0.1 \%(\mathrm{v} / \mathrm{v})$ TFA as mobile phase (gradient: from 5% to $30 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$) and 42.4 mg of $\mathbf{4 c}$ (51% yield)
were obtained as a white solid. HRMS (ESI+) calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ $(\mathrm{m} / \mathrm{z}): 431.1059$, found: $431.1054 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$): $\delta=7.92(\mathrm{t}, J$ $\left.=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 7.37-7.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{3}\right), 7.29-7.23\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 4.56(\mathrm{t}, J=5.3$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{C} * \mathrm{H}$), 3.93-3.82 (m, 4H, $\mathrm{CH}_{2} \mathrm{OH}$), $3.28\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SH}\right) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{MeOD}-d_{4}\right): \delta=173.1\left(2 \times \underline{\mathrm{COCH}}_{2}\right), 170.3\left(2 \times \underline{\mathrm{COC}}{ }^{*} \mathrm{H}\right), 139.7\left(2 \times \mathrm{C}^{2}\right)$, $129.9\left(1 \mathrm{xC}^{4}\right), 117.3\left(2 \mathrm{xC}^{3}\right), 113.4\left(1 \mathrm{x} \mathrm{C}^{1}\right), 62.8\left(2 \mathrm{xCH}_{2} \mathrm{OH}\right), 57.2\left(2 \mathrm{xC}^{*} \mathrm{H}\right)$, $27.9\left(2 \mathrm{xCH}_{2} \mathrm{SH}\right)$.

Synthesis of 4d: this compound was obtained as described above for 4a starting from 3d; 79.6 mg of $\mathbf{4 d}$ (92% yield) were obtained as a white solid which required no further purification. HRMS (ESI+) calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ $(\mathrm{m} / \mathrm{z}): 459.1372$, found: $459.1371 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$): $\delta=9.80(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{NHCOC} * \mathrm{H}), 8.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} * \mathrm{HNHCO}), 7.95-7.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{1}\right)$, 7.36-7.30 (m, 2H, H ${ }^{3}$), 7.29-7.23 (m, 1H, H ${ }^{4}$), 4.48-4.42 (m, 2H, C* ($\mathrm{qd}, J=6.4,3.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} * \underline{H C H}_{3}$), $3.35-3.29\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.24(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $\left.6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{MeOD}-d_{4}\right): \delta=173.3\left(2 \mathrm{x} \mathrm{COCH}_{2}\right), 170.4(2 \mathrm{x}$ $\underline{\mathrm{COC}}{ }^{\mathrm{H}}$), $139.5\left(2 \mathrm{x} \mathrm{C}^{2}\right), 129.8\left(1 \mathrm{x} \mathrm{C}^{4}\right), 117.2\left(2 \mathrm{x} \mathrm{C}^{3}\right), 113.3\left(1 \mathrm{x} \mathrm{C}^{1}\right), 68.4(2 \mathrm{x}$ $\left.\underline{\mathrm{C}} * \mathrm{HCH}_{3}\right), 60.6\left(2 \mathrm{x} \mathrm{C}^{*} \mathrm{HNH}\right), 28.0\left(2 \mathrm{x} \mathrm{CH}_{2}\right), 20.0\left(2 \mathrm{x} \mathrm{CH}_{3}\right)$.

Synthesis of 4e: this compound was obtained as described above for $\mathbf{4 a}$ starting from $\mathbf{3 e} ; 63.7 \mathrm{mg}$ of $\mathbf{4 e}$ (91% yield) were obtained as a white solid which required no further purification. HRMS (ESI+) calcd. for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$: 583.1685, found: 583.1696. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=10.11$ (s, 2 H , NHCOC*H), 9.17 (br s, 2H, OH), $8.34\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{*} \mathrm{HNHCO}\right), 7.88(\mathrm{t}, J$ $\left.=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 7.32-7.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{3}\right), 7.25-7.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 7.06(\mathrm{~d}, J=8.5$ $\left.\mathrm{Hz}, 4 \mathrm{H}, \mathrm{H}^{6}\right), 6.64\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}^{7}\right), 4.58\left(\mathrm{td}, J=8.4,5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{*} \mathrm{H}\right)$, 3.12 (d, $J=7.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SH}$), 2.92 (dd, $J=13.8,5.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2}$), 2.75 (dd, $\left.J=13.8,8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2}\right), 2.63(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SH}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=170.0\left(2 \times \underline{\mathrm{COC}}{ }^{*} \mathrm{H}\right)$, $169.4\left(2 \times \mathrm{COCH}_{2}\right)$, $155.8\left(2 \times \mathrm{C}^{8}\right)$, $139.0\left(2 \mathrm{x} \mathrm{C}^{2}\right), 130.1\left(4 \mathrm{x} \mathrm{C}^{6}\right), 128.8\left(1 \mathrm{x} \mathrm{C}^{4}\right), 127.4\left(2 \mathrm{x} \mathrm{C}^{5}\right), 114.9\left(4 \mathrm{x} \mathrm{C}^{7}\right)$, $114.6\left(2 \mathrm{x} \mathrm{C}^{3}\right), 110.6\left(1 \times \mathrm{C}^{1}\right), 55.3(2 \times \mathrm{C} * \mathrm{H})$, $37.1\left(2 \mathrm{x} \mathrm{C}^{*} \mathrm{H}_{\mathrm{CH}}^{2}\right), 26.9(2 \mathrm{x}$ $\mathrm{CH}_{2} \mathrm{SH}$).

Synthesis of 4f: this compound was obtained as described above for 4a starting from 3f. The product was purified by reversed-phase flash chromatography using a mixture of $\mathrm{MeCN}+0.07 \%(\mathrm{v} / \mathrm{v})$ TFA and $\mathrm{H}_{2} \mathrm{O}+0.1 \%(\mathrm{v} / \mathrm{v})$ TFA as mobile phase (gradient: from 30% to $65 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$) and 51.3 mg of $\mathbf{4 f}(44 \%$ yield) were obtained as a white solid. HRMS (ESI+) calcd. for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ $(\mathrm{m} / \mathrm{z}): 629.2004$, found: $629.2003 .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=10.82(\mathrm{~d}$, $\left.J=2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{5}\right), 10.17(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NHCOC} * \mathrm{H}), 8.37(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$,
$\mathrm{C}^{*} \mathrm{HNHCO}$), $7.93\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 7.64\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{10}\right), 7.35-7.27(\mathrm{~m}, 4 \mathrm{H}$, $\left.2 \mathrm{Hx} \mathrm{H}^{3}+2 \mathrm{H} \mathrm{x} \mathrm{H}^{7}\right), 7.24-7.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 7.16\left(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{13}\right), 7.05$ (ddd, $\left.J=8.1,6.9,1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{8}\right), 6.97\left(\mathrm{ddd}, J=8.0,7.0,1.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{9}\right), 4.72$ (td, $J=8.0,5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} * \mathrm{H}), 3.23-3.11\left(\mathrm{~m}, 6 \mathrm{H}, 4 \mathrm{H} \times \mathrm{CH}_{2} \mathrm{SH}+2 \mathrm{H} \times \mathrm{C}^{*} \mathrm{HCH}_{2}\right.$), 3.02 (dd, $\left.J=14.6,8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2}\right), 2.65(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{SH}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}): $\delta=170.3(2 \times \underline{\mathrm{COC}} * \mathrm{H})$, $169.4\left(2 \times \mathrm{COCH}_{2}\right), 139.0(2 \mathrm{x}$ C^{2}), $136.0\left(2 \mathrm{x} \mathrm{C}^{6}\right), 128.8\left(1 \mathrm{x} \mathrm{C}^{4}\right), 127.3\left(2 \mathrm{x} \mathrm{C}^{11}\right), 123.6\left(2 \mathrm{x} \mathrm{C}^{13}\right), 120.9(2 \mathrm{x}$ $\left.\mathrm{C}^{8}\right), 118.5\left(2 \mathrm{x} \mathrm{C}^{10}\right), 118.2\left(2 \mathrm{xC}^{9}\right), 114.7\left(2 \mathrm{x} \mathrm{C}^{3}\right), 111.3\left(2 \mathrm{x} \mathrm{C}^{7}\right), 110.8\left(1 \mathrm{x} \mathrm{C}^{1}\right)$, $109.6\left(2 \mathrm{xC}^{12}\right), 54.4\left(2 \mathrm{x} \mathrm{C}^{*} \mathrm{H}\right), 28.0\left(2 \mathrm{x} \mathrm{C}^{*} \mathrm{HCH}_{2}\right), 27.0\left(2 \mathrm{x} \mathrm{CH}_{2} \mathrm{SH}\right)$.

Synthesis of $\mathbf{4 g}$: this compound was obtained as described above for $\mathbf{4 a}$ starting from 3g. The product was purified by reversed-phase flash chromatography using a mixture of $\mathrm{MeCN}+0.07 \%(\mathrm{v} / \mathrm{v})$ TFA and $\mathrm{H}_{2} \mathrm{O}+0.1 \%(\mathrm{v} / \mathrm{v})$ TFA as mobile phase (gradient: from 5% to $30 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$) and 49.1 mg of $\mathbf{4 g}$ (53% yield) were obtained as a white solid. HRMS (ESI+) calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ $(\mathrm{m} / \mathrm{z}): 487.0957$, found: 487.0956. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$): $\delta=7.85(\mathrm{t}, J$ $\left.=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 7.35-7.29\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{3}\right), 7.28-7.22\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 4.90-4.81(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{C} * \mathrm{H}$), $3.24\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SH}\right), 2.91\left(\mathrm{dd}, J=16.6,6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2}\right), 2.78$ (dd, $J=16.6,7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$): $\delta=173.6$ $(2 \times \mathrm{COOH}), 173.4\left(2 \times \mathrm{COCH}_{2}\right), 170.9\left(2 \mathrm{x} \underline{\mathrm{COC}}{ }^{*} \mathrm{H}\right), 139.8\left(2 \times \mathrm{C}^{2}\right), 130.1(1 \mathrm{x}$ $\left.\mathrm{C}^{4}\right), 117.6\left(2 \mathrm{x} \mathrm{C}^{3}\right), 113.8\left(1 \mathrm{x} \mathrm{C}^{1}\right), 52.3\left(2 \mathrm{x} \mathrm{C}^{*} \mathrm{H}\right), 36.8\left(2 \mathrm{x} \mathrm{C}^{*} \mathrm{HCH}_{2}\right), 28.1(2 \mathrm{x}$ $\mathrm{CH}_{2} \mathrm{SH}$).

Synthesis of 4h: this compound was obtained as described above for 4a starting from 3 h. The product was purified by reversed-phase flash chromatography using a mixture of $\mathrm{MeCN}+0.07 \% ~(\mathrm{v} / \mathrm{v})$ TFA and $\mathrm{H}_{2} \mathrm{O}+0.1 \%$ (v/v) TFA as mobile phase (gradient: from 5% to $30 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$) and 49.6 mg of $\mathbf{4 h}$ (58% yield) were obtained as a white solid. HRMS (ESI+) calcd. for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ $(\mathrm{m} / \mathrm{z}): 515.1270$, found: $515.1271 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$): $\delta=7.90(\mathrm{t}, J$ $\left.=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 7.35-7.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{3}\right), 7.29-7.23\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 4.53(\mathrm{dd}, J=$ 8.7, $5.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} * \mathrm{H}), 3.24\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SH}\right), 2.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}$, $\mathrm{C} * \mathrm{HCH}_{2} \mathrm{CH}_{2}$), 2.25-2.12 (m, $2 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2}$), 2.08-1.96 (m, 2H, C* HCH_{2}). ${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{MeOD}-d_{4}\right): \delta=176.0(2 \mathrm{xCOOH}), 173.1\left(2 \times \mathrm{COCH}_{2}\right), 171.4$ $\left(2 \times \underline{\mathrm{COC}^{*}} \mathrm{H}\right), 139.5\left(2 \mathrm{x} \mathrm{C}^{2}\right), 129.8\left(1 \times \mathrm{C}^{4}\right), 117.0\left(2 \mathrm{x} \mathrm{C}^{3}\right), 113.1\left(1 \mathrm{x} \mathrm{C}^{1}\right), 54.5$ $(2 \times \mathrm{C} * \mathrm{H}), 30.7\left(2 \mathrm{x} \mathrm{C}^{*} \mathrm{HCH}_{2} \underline{\mathrm{CH}}_{2}\right), 28.3\left(2 \times \mathrm{C} * \mathrm{HCH}_{2}\right), 27.7\left(2 \mathrm{x} \mathrm{CH}_{2} \mathrm{SH}\right)$.

Synthesis of 4i-2TFA: a solution of $\mathbf{3 i}(64.3 \mathrm{mg}, 0.051 \mathrm{mmol})$ in dry DCM (3.3 mL) was cooled down to $0^{\circ} \mathrm{C}$ in an ice-water bath. Then triisobutylsilane (TIS, $55 \mu \mathrm{~L}, 0.21 \mathrm{mmol}$) and $800 \mu \mathrm{~L}$ of a solution of HBr in $\mathrm{CH}_{3} \mathrm{COOH}$ ($33 \mathrm{wt} . \%$) were added under stirring. After 40 minutes stirring at $0{ }^{\circ} \mathrm{C}$, diethyl ether was
added over the reaction mixture and the product was filtered off and washed with diethyl ether. The product was purified by reversed-phase flash chromatography using a mixture of $\mathrm{MeCN}+0.07 \%$ (v/v) TFA and $\mathrm{H}_{2} \mathrm{O}+0.1 \%$ (v/v) TFA as mobile phase (gradient: from 2% to $12 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$). During the purification the Br^{-}anions were exchanged by TFA ${ }^{-}$and 31.8 mg of $\mathbf{4 i} \cdot 2 \mathrm{TFA}$ (84% yield) were obtained as a white solid. HRMS (ESI+) calcd. for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ $(\mathrm{m} / \mathrm{z}): 513.2318$, found: $513.2319 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$): $\delta=8.01-$ $7.96\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 7.35-7.19\left(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{H} \mathrm{x} \mathrm{H}^{3}+1 \mathrm{H} \mathrm{x} \mathrm{H}^{4}\right), 4.49(\mathrm{dd}, J=8.5,5.5$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{C}^{*} \mathrm{H}\right), 3.24\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SH}\right), 2.93\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}\right), 2.01-$ $1.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2}\right), 1.86-1.63\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{H} \times \mathrm{C} * \mathrm{HCH}_{2}+4 \mathrm{H} \times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}\right)$, 1.62-1.39 (m, 4H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} * \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , MeOD- d_{4}): $\delta=173.5$ (2 $\left.\mathrm{x} \mathrm{COCH}_{2}\right), 172.1(2 \times \underline{\mathrm{COC}} \mathrm{H}), 139.9\left(2 \mathrm{x} \mathrm{C}^{2}\right), 130.2\left(1 \mathrm{x} \mathrm{C}^{4}\right), 117.5\left(2 \mathrm{x} \mathrm{C}^{3}\right)$, $113.6\left(1 \mathrm{x} \mathrm{C}^{1}\right), 55.3\left(2 \mathrm{x} \mathrm{C}^{*} \mathrm{H}\right), 40.5\left(2 \mathrm{xCH}_{2} \mathrm{NH}_{3}{ }^{+}\right), 32.9\left(2 \mathrm{x} \mathrm{C}^{*} \mathrm{HCH}_{2}\right), 28.2(2$ $\left.\mathrm{x} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}\right), 28.1\left(2 \mathrm{xCH}_{2} \mathrm{SH}\right), 23.8\left(2 \times \mathrm{C} * \mathrm{HCH}_{2} \mathrm{CH}_{2}\right)$.

Synthesis of $\mathbf{4} \mathbf{j} \cdot 2 T F A$: to a solution of $\mathbf{3 j}(133 \mathrm{mg}, 0.117 \mathrm{mmol})$ in dry DCM (3.0 $\mathrm{mL}), \mathrm{PhSiH}_{3}(345 \mu \mathrm{~L}, 2.80 \mathrm{mmol})$ was added under inert atmosphere of Ar. Then a solution of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(18 \mathrm{mg}, 15 \mu \mathrm{~mol})$ in dry $\mathrm{DCM}(2.0 \mathrm{~mL})$ was added. The mixture was stirred at room temperature for 1 hour, after which complete conversion of the starting material was observed by TLC. The crude mixture was filtered through a bed of Celite ${ }^{\circledR}$ and the filtrate was concentrated to dryness under reduced pressure. The resulting residue was re-dissolved in DCM (1.0 mL), and TFA (4.5 mL), TIS ($242 \mu \mathrm{~L}, 0.933 \mathrm{mmol}$) and EDT ($117 \mu \mathrm{~L}, 1.40 \mathrm{mmol}$) were added rapidly and under stirring. The reaction mixture was stirred at room temperature for 1 hour, after which the solvents were partially evaporated using a N_{2} flow. Diethyl ether was added over the reaction mixture and the product was filtered and washed with diethyl ether. The product was purified by reversedphase flash chromatography using a mixture of $\mathrm{MeCN}+0.07 \%$ (v/v) TFA and $\mathrm{H}_{2} \mathrm{O}+0.1 \%(\mathrm{v} / \mathrm{v})$ TFA as mobile phase (gradient: from 2% to $10 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$) and 46.9 mg of $\mathbf{4} \mathbf{j} \cdot 2$ TFA were obtained as a white solid (56% yield). HRMS (ESI+) calcd. for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z}): 485.2005$, found: 485.2007. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$): $\delta=8.02-7.97\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 7.34-7.18(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{H} x$ $\left.\mathrm{H}^{3}+1 \mathrm{H} \mathrm{x} \mathrm{H}^{4}\right), 4.54\left(\mathrm{dd}, J=8.0,5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{*} \mathrm{H}\right), 3.25\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SH}\right), 3.07-$ $2.90\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}\right), 2.05-1.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} * \mathrm{H} \mathrm{CH}_{2}\right), 1.88-1.68(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{H} \mathrm{x}$ $\mathrm{C} * \mathrm{HCH}_{2}+4 \mathrm{H}, \mathrm{C} * \mathrm{H} \mathrm{CH}_{2} \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$): $\delta=173.5(2 \mathrm{x}$ $\left.\mathrm{COCH}_{2}\right), 171.6\left(2 \times \underline{\mathrm{COC}}{ }^{*} \mathrm{H}\right), 139.9\left(2 \mathrm{x} \mathrm{C}^{2}\right), 130.2\left(1 \mathrm{x} \mathrm{C}^{4}\right), 117.5\left(2 \mathrm{x} \mathrm{C}^{3}\right)$, $113.5\left(1 \times \mathrm{C}^{1}\right), 54.8\left(2 \mathrm{x} \mathrm{C}^{*} \mathrm{H}\right), 40.3\left(2 \mathrm{x} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}\right), 30.4\left(2 \mathrm{x} \mathrm{C}^{*} \mathrm{HCH}_{2}\right), 28.1(2$ $\left.\mathrm{x} \mathrm{CH}_{2} \mathrm{SH}\right), 25.0\left(2 \mathrm{x} \mathrm{C}^{*} \mathrm{HCH}_{2} \underline{\mathrm{CH}}_{2}\right)$.

Synthesis of $\mathbf{4 k} \cdot 2$ TFA: this compound was obtained as described above for $\mathbf{4 a}$, starting from $\mathbf{3 k}$. The product was purified by reversed-phase flash chromatography using a mixture of $\mathrm{MeCN}+0.07 \%(\mathrm{v} / \mathrm{v})$ TFA and $\mathrm{H}_{2} \mathrm{O}+0.1 \%$ (v / v) TFA as mobile phase (gradient: from 5% to $10 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$) and 14.6 mg of $\mathbf{4 k} \cdot 2$ TFA (27% yield) were obtained as a white solid. HRMS (ESI+) calcd. for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{~N}_{10} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$: 569.2441, found: 569.2435. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{MeOD}-d_{4}\right): \delta=7.99\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{1}\right), 7.33-7.20\left(\mathrm{~m}, 3 \mathrm{H}, 2 \times \mathrm{H}^{3}+1 \mathrm{x} \mathrm{H}^{4}\right), 4.52$ (dd, $J=8.3,5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} * \mathrm{H}$), $3.29-3.11\left(\mathrm{~m}, 8 \mathrm{H}, 4 \mathrm{H} \times \mathrm{CH}_{2} \mathrm{SH}+4 \mathrm{H} \times \mathrm{CH}_{2} \mathrm{NH}\right.$), 2.00-1.87 (m, $2 \mathrm{H}, \mathrm{C} * \mathrm{HCH}_{2}$), 1.86-1.57 (m, $6 \mathrm{H}, 2 \mathrm{H} \times \mathrm{C} * \mathrm{HCH}_{2}+4 \mathrm{H} \times$ C* $\mathrm{HCH}_{2} \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$): $\delta=172.1\left(2 \times \underline{\mathrm{COCH}}_{2}\right), 170.5$ $\left(2 \times \mathrm{COC}^{*} \mathrm{H}\right), 157.2\left(2 \mathrm{x} \mathrm{C}^{5}\right), 138.4\left(2 \mathrm{x} \mathrm{C}^{2}\right), 128.8\left(1 \mathrm{x} \mathrm{C}^{4}\right), 116.1\left(2 \mathrm{xC}^{3}\right)$, $112.2\left(1 \mathrm{xC}^{1}\right), 53.6\left(2 \mathrm{x} \mathrm{C}^{*} \mathrm{H}\right), 40.6\left(2 \mathrm{xCH}_{2} \mathrm{NH}\right), 29.2\left(2 \mathrm{xC}^{*} \mathrm{HCH}_{2}\right), 26.7(2 \mathrm{x}$ $\left.\mathrm{CH}_{2} \mathrm{SH}\right), 24.9\left(2 \mathrm{x} \mathrm{C}^{*} \mathrm{HCH}_{2} \mathrm{CH}_{2}\right)$.

Synthesis of 4l-2TFA: this compound was obtained as described above for 4a, starting from 21. The product was purified by reversed-phase flash chromatography using a mixture of $\mathrm{MeCN}+0.07 \%(\mathrm{v} / \mathrm{v})$ TFA and $\mathrm{H}_{2} \mathrm{O}+0.1 \%(\mathrm{v} / \mathrm{v})$ TFA as mobile phase (gradient: from 0% to $10 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$) and 43.2 mg of 41-2TFA (40% yield) were obtained as a white solid. HRMS (ESI+) calcd. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$: 315.0949, found: $315.0950 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$): $\delta=8.07(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}^{1}\right), 7.41-7.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{3}\right), 7.36-7.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 4.14\left(\mathrm{dd}, J=7.2,5.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}^{*} \mathrm{H}\right)$, $3.16\left(\mathrm{dd}, J=14.7,5.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.04\left(\mathrm{dd}, J=14.7,7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}-d_{4}$): $\delta=166.7(2 \mathrm{x} \mathrm{CO}), 139.6\left(2 \mathrm{x} \mathrm{C}^{2}\right), 130.5\left(1 \mathrm{x} \mathrm{C}^{4}\right), 117.5(2 \mathrm{x}$ $\left.\mathrm{C}^{3}\right), 113.0\left(1 \times \mathrm{C}^{1}\right), 56.9\left(2 \times \mathrm{C}^{*} \mathrm{H}\right), 26.3\left(2 \mathrm{x} \mathrm{CH}_{2}\right)$.

Characterization of building blocks 4a-I

Building block 4a

Figure S1. ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, 298 \mathrm{~K}\right.$ in DMSO- $\left.d_{6}\right)$ and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ gCOSY $(400 \mathrm{MHz}, 298 \mathrm{~K}$ in DMSO- d_{6}) spectra of $4 \mathbf{a}$.

Figure S2. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ gHSQC ($400 \mathrm{MHz}, 298 \mathrm{~K}$ in DMSO- d_{6}) and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ gHMBC $(400 \mathrm{MHz}$, 298 K in DMSO- d_{6}) spectra of $\mathbf{4 a}$.

Figure S3. ${ }^{13} \mathrm{C}\left(101 \mathrm{MHz}, 298 \mathrm{~K}\right.$ in DMSO- $\left.d_{6}\right)$ spectrum of $\mathbf{4 a}$.

Figure S4. Experimental (lower trace) and simulated (upper trace) ESI-TOF mass spectra for $[\mathrm{M}+\mathrm{H}]^{+}$of $\mathbf{4 a}$.

Building block 4b

Figure S5. ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, 298 \mathrm{~K}\right.$ in DMSO- d_{6}) and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{gCOSY}(400 \mathrm{MHz}, 298 \mathrm{~K}$ in DMSO- d_{6}) spectra of $\mathbf{4 b}$.

Figure S6. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ gHSQC (400 MHz , 298 K in DMSO- d_{6}) and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ gHMBC (400 MHz , 298 K in DMSO- d_{6}) spectra of $\mathbf{4 b}$.

Figure S7. Experimental (lower trace) and simulated (upper trace) ESI-TOF mass spectra for $[\mathbf{M}+\mathrm{H}]^{+}$of $\mathbf{4 b}$.

Building block 4c

Figure S9. ${ }^{1}{ }^{13}-{ }^{13} \mathrm{C}$ gHSQC ($400 \mathrm{MHz}, 298 \mathrm{~K}$ in MeOD- d_{4}) and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ gHMBC (400 MHz , 298 K in MeOD- d_{4}) spectra of $\mathbf{4 c}$.

Figure S10. Experimental (lower trace) and simulated (upper trace) ESI-TOF mass spectra for $[\mathrm{M}+\mathrm{H}]^{+}$of $\mathbf{4 c}$.

Building block 4d

Figure S12. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ gHSQC (400 MHz , 298 K in MeOD- d_{4}) and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ gHMBC $(400 \mathrm{MHz}$, 298 K in MeOD- d_{4}) spectra of 4 d .

Figure S13. Experimental (lower trace) and simulated (upper trace) ESI-TOF mass spectra for $[\mathrm{M}+\mathrm{H}]^{+}$of $\mathbf{4 d}$.

Building block 4e

Figure S14. ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, 298 \mathrm{~K}\right.$ in $\left.\mathrm{DMSO}-d_{6}\right)$ and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ gCOSY $(400 \mathrm{MHz}, 298 \mathrm{~K}$ in DMSO- d_{6}) spectra of $\mathbf{4 e}$.

Figure S15. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ gHSQC ($400 \mathrm{MHz}, 298 \mathrm{~K}$ in DMSO- d_{6}) and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ gHMBC (400 $\mathrm{MHz}, 298 \mathrm{~K}$ in DMSO- d_{6}) spectra of $\mathbf{4 e}$.

Figure S16. ${ }^{13} \mathrm{C}\left(101 \mathrm{MHz}, 298 \mathrm{~K}\right.$ in $\left.\mathrm{DMSO}-d_{6}\right)$ spectrum of $\mathbf{4 e}$.

Figure S17. Experimental (lower trace) and simulated (upper trace) ESI-TOF mass spectra for $[\mathrm{M}+\mathrm{H}]^{+}$of $\mathbf{4 e}$.

Building block 4f

Figure S18. ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, 298 \mathrm{~K}\right.$ in $\left.\mathrm{DMSO}-d_{6}\right)$ and ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H} \mathrm{gCOSY}(400 \mathrm{MHz}, 298 \mathrm{~K}$ in DMSO- d_{6}) spectra of $\mathbf{4 f}$.

Figure S19. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ gHSQC ($400 \mathrm{MHz}, 298 \mathrm{~K}$ in DMSO- d_{6}) and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ gHMBC (400 $\mathrm{MHz}, 298 \mathrm{~K}$ in DMSO- d_{6}) spectra of $\mathbf{4 f}$.

Figure S20. ${ }^{13} \mathrm{C}\left(101 \mathrm{MHz}, 298 \mathrm{~K}\right.$ in DMSO- $\left.d_{6}\right)$ spectrum of $\mathbf{4 f}$.

Figure S21. Experimental (lower trace) and simulated (upper trace) ESI-TOF mass spectra for $[\mathrm{M}+\mathrm{H}]^{+}$of $\mathbf{4 f}$.

Building block 4g

Figure S22. ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, 298 \mathrm{~K}\right.$ in MeOD- d_{4}) and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{gCOSY}(400 \mathrm{MHz}, 298 \mathrm{~K}$ in MeOD- d_{4}) spectra of $\mathbf{4 g}$.

Figure S23. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ gHSQC (400 MHz , 298 K in MeOD- d_{4}) and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ gHMBC $(400 \mathrm{MHz}$, 298 K in MeOD- d_{4}) spectra of $\mathbf{4 g}$.

Figure S24. ${ }^{13} \mathrm{C}\left(101 \mathrm{MHz}, 298 \mathrm{~K}\right.$ in $\left.\mathrm{MeOD}-d_{4}\right)$ spectrum of $\mathbf{4 g}$.

Figure S25. Experimental (lower trace) and simulated (upper trace) ESI-TOF mass spectra for $[\mathrm{M}+\mathrm{H}]^{+}$of $\mathbf{4 g}$.

Building block 4h

Figure S26. ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, 298 \mathrm{~K}\right.$ in MeOD- $\left.d_{4}\right)$ and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ gCOSY ($400 \mathrm{MHz}, 298 \mathrm{~K}$ in MeOD- d_{4}) spectra of $\mathbf{4 h}$.

Figure S27. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ gHSQC (400 MHz , 298 K in MeOD- d_{4}) and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ gHMBC (400 MHz , 298 K in MeOD- d_{4}) spectra of $\mathbf{4 h}$.

Figure S28. Experimental (lower trace) and simulated (upper trace) ESI-TOF mass spectra for $[\mathbf{M}+\mathrm{H}]^{+}$of $\mathbf{4 h}$.

Building block 4i

Figure S29. ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, 298 \mathrm{~K}\right.$ in MeOD- $\left.d_{4}\right)$ and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{gCOSY}(400 \mathrm{MHz}, 298 \mathrm{~K}$ in MeOD- d_{4}) spectra of $\mathbf{4 i}$-2TFA.

Figure S30. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ gHSQC (400 MHz , 298 K in MeOD- d_{4}) and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ gHMBC (400 MHz , 298 K in MeOD- d_{4}) spectra of 4i-2TFA.

Figure S31. ${ }^{13} \mathrm{C}\left(101 \mathrm{MHz}, 298 \mathrm{~K}\right.$ in MeOD- $\left.d_{4}\right)$ spectrum of 4i-2TFA.

Figure S32. Experimental (lower trace) and simulated (upper trace) ESI-TOF mass spectra for $[\mathrm{M}+\mathrm{H}]^{+}$of $\mathbf{4 i}$.

Building block 4j

Figure S33. ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, 298 \mathrm{~K}\right.$ in MeOD- $\left.d_{4}\right)$ and ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ gCOSY $(400 \mathrm{MHz}, 298 \mathrm{~K}$ in MeOD- d_{4}) spectra of $\mathbf{4} \mathbf{j} \cdot 2 \mathrm{TFA}$.

Figure S34. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ gHSQC (400 MHz , 298 K in MeOD- d_{4}) and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ gHMBC (400 MHz , 298 K in MeOD- d_{4}) spectra of $\mathbf{4} \mathbf{j} \cdot 2 \mathrm{TFA}$.

Figure S35. ${ }^{13} \mathrm{C}\left(101 \mathrm{MHz}, 298 \mathrm{~K}\right.$ in MeOD- $\left.d_{4}\right)$ spectrum of $\mathbf{4 j} \cdot 2$ TFA.

Figure S36. Experimental (lower trace) and simulated (upper trace) ESI-TOF mass spectra for $[\mathbf{M}+\mathrm{H}]^{+}$of $\mathbf{4} \mathbf{j}$.

Building block 4k

Figure S37. ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, 298 \mathrm{~K}\right.$ in MeOD- $\left.d_{4}\right)$ and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{gCOSY}(400 \mathrm{MHz}, 298 \mathrm{~K}$ in MeOD- d_{4}) spectra of $\mathbf{4 k} \cdot 2$ TFA.

Figure S38. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ gHSQC (400 MHz , 298 K in MeOD- d_{4}) and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ gHMBC $(400 \mathrm{MHz}$, 298 K in MeOD- d_{4}) spectra of $\mathbf{4 k} \cdot 2 \mathrm{TFA}$.

-6	ก	*	∞.	\bigcirc
N	5	$\stackrel{\infty}{m}$	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{\sim}$
,	\ulcorner	\checkmark	,	

[^1]

Figure S39. ${ }^{13} \mathrm{C}\left(101 \mathrm{MHz}, 298 \mathrm{~K}\right.$ in $\left.\mathrm{MeOD}-d_{4}\right)$ spectrum of $\mathbf{4 k} \cdot 2 \mathrm{TFA}$.

Figure S40. Experimental (lower trace) and simulated (upper trace) ESI-TOF mass spectra for $[\mathrm{M}+\mathrm{H}]^{+}$of $\mathbf{4 k}$.

Building block 41

Figure S41. ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, 298 \mathrm{~K}\right.$ in MeOD- $\left.d_{4}\right)$ and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ gCOSY ($400 \mathrm{MHz}, 298 \mathrm{~K}$ in MeOD- d_{4}) spectra of 41.2TFA.

Figure S42. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ gHSQC (400 MHz , 298 K in MeOD- d_{4}) and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ gHMBC $(400 \mathrm{MHz}$, 298 K in MeOD- d_{4}) spectra of 4I-2TFA.

Figure S43. ${ }^{13} \mathrm{C}\left(101 \mathrm{MHz}\right.$, 298 K in MeOD- $\left.d_{4}\right)$ spectrum of 41•2TFA.

Figure S44. Experimental (lower trace) and simulated (upper trace) ESI-TOF mass spectra for $[\mathrm{M}+\mathrm{H}]^{+}$of $\mathbf{4 1}$.

MS analysis of the oligomeric disulfides

Homodimers

Chemical Formula: $\mathrm{C}_{36} \mathrm{H}_{44} \mathrm{~N}_{12} \mathrm{O}_{12} \mathrm{~S}_{4}$ Exact Mass: 964.2084

Figure S45. Structure and isotopic pattern of [4a $]_{2}$.

Chemical Formula: $\mathrm{C}_{40} \mathrm{H}_{52} \mathrm{~N}_{12} \mathrm{O}_{12} \mathrm{~S}_{4}$ Exact Mass: 1020.2710

Figure S46. Structure and isotopic pattern of [4b] $]_{2}$.

Chemical Formula: $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{8} \mathrm{O}_{12} \mathrm{~S}_{4}$ Exact Mass: 856.1649

Figure S47. Structure and isotopic pattern of $[\mathbf{4 c}]_{2}$.

Chemical Formula: $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{~N}_{8} \mathrm{O}_{12} \mathrm{~S}_{4}$ Exact Mass: 912.2275

Figure S48. Structure and isotopic pattern of $[\mathbf{4 d}]_{2}$.

Figure S49. Structure and isotopic pattern of $\left[4 \mathbf{e}_{2}\right.$.

Chemical Formula: $\mathrm{C}_{64} \mathrm{H}_{60} \mathrm{~N}_{12} \mathrm{O}_{8} \mathrm{~S}_{4}$ Exact Mass: 1252.3540

Figure S50. Structure and isotopic pattern of $[\mathbf{4 f}]_{2}$.

Chemical Formula: $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{~N}_{8} \mathrm{O}_{16} \mathrm{~S}_{4}$ Exact Mass: 968.1445

Figure S51. Structure and isotopic pattern of $[\mathbf{4 g}]_{2}$.

Chemical Formula: $\mathrm{C}_{40} \mathrm{H}_{48} \mathrm{~N}_{8} \mathrm{O}_{16} \mathrm{~S}_{4}$ Exact Mass: 1024.2071

Figure S52. Structure and isotopic pattern of $[\mathbf{4 h}]_{2}$.

Figure S53. Structure and isotopic pattern of $[4 i]_{2}$.

Figure S54. Structure and isotopic pattern of $[\mathbf{4 j}]_{2}$.

Figure S55. Structure and isotopic pattern of $[4 \mathbf{k}]_{2}$.

Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{~S}_{4}$ Exact Mass: 624.1429

Figure S56. Structure and isotopic pattern of [4I] $]_{2}$.

Heterodimers

Figure S57. UPLC-UV (254 nm) trace of the mixture of $\mathbf{4 d} \mathbf{~} \mathbf{4} \mathbf{e}+\mathbf{4 f} \mathbf{+} \mathbf{4} \mathbf{j}$ corresponding to the RP-HPLC trace shown in Figure 2 of the manuscript.

Figure S58. UPLC-UV (254 nm) traces of the mixture of $\mathbf{4 b} \mathbf{~} \mathbf{4} \mathbf{e}+\mathbf{4 g}+\mathbf{4 I}$ corresponding to the RP-HPLC trace shown in Figure 3 of the manuscript.

Figure S59. UPLC-UV (254 nm) traces of the mixture of $\mathbf{4 d} \mathbf{+} \mathbf{4} \mathbf{e}+\mathbf{4 h}+\mathbf{4 i}$ corresponding to the RP-HPLC trace shown in Figure 4 of the manuscript.

Chemical Formula: $\mathrm{C}_{38} \mathrm{H}_{54} \mathrm{~N}_{10} \mathrm{O}_{10} \mathrm{~S}_{4}$ Exact Mass: 938.2907

Figure S60. Structure and isotopic pattern of $[\mathbf{4 j}-\mathbf{4 d}]\left(t_{\mathrm{R}}=10.9 \mathrm{~min}\right.$ in Figure S57)

Figure S61. Structure and isotopic pattern of $[\mathbf{4 j}-\mathbf{4 e}]\left(t_{\mathrm{R}}=15.5 \mathrm{~min}\right.$ in Figure S57).

Chemical Formula: $\mathrm{C}_{52} \mathrm{H}_{60} \mathrm{~N}_{12} \mathrm{O}_{8} \mathrm{~S}_{4}$
Exact Mass: 1108.3540

Figure S62. Structure and isotopic pattern of $[\mathbf{4 j} \mathbf{j} \mathbf{4 f}]\left(t_{\mathrm{R}}=21.1 \mathrm{~min}\right.$ in Figure S57).

Chemical Formula: $\mathrm{C}_{46} \mathrm{H}_{52} \mathrm{~N}_{8} \mathrm{O}_{12} \mathrm{~S}_{4}$ Exact Mass: 1036.2588

Figure S63. Structure and isotopic pattern of [4d-4e] $t_{\mathrm{R}}=22.4 \mathrm{~min}$ in Figure S 57 and 13.5 \min in Figure S59).

Chemical Formula: $\mathrm{C}_{50} \mathrm{H}_{54} \mathrm{~N}_{10} \mathrm{O}_{10} \mathrm{~S}_{4}$ Exact Mass: 1082.2907

Figure S64. Structure and isotopic pattern of $[\mathbf{4 d} \mathbf{- 4 f}]\left(t_{\mathrm{R}}=29.1 \mathrm{~min}\right.$ in Figure S57).

Chemical Formula: $\mathrm{C}_{60} \mathrm{H}_{58} \mathrm{~N}_{10} \mathrm{O}_{10} \mathrm{~S}_{4}$ Exact Mass: 1206.3220

Figure S65. Structure and isotopic pattern of $[\mathbf{4 e}-\mathbf{4 f}]\left(t_{\mathrm{R}}=31.9 \mathrm{~min}\right.$ in Figure S57).

Chemical Formula: $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{~N}_{10} \mathrm{O}_{8} \mathrm{~S}_{4}$ Exact Mass: 822.2070

Figure S66. Structure and isotopic pattern of $[\mathbf{4 1 - 4 b}]\left(t_{\mathrm{R}}=6.3 \mathrm{~min}\right.$ in Figure S58).

Chemical Formula: $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{8} \mathrm{O}_{10} \mathrm{~S}_{4}$ Exact Mass: 796.1437

Figure S67. Structure and isotopic pattern of $[41-\mathbf{4 g}]\left(t_{\mathrm{R}}=7.5 \mathrm{~min}\right.$ in Figure S 58$)$.

Figure S68. Structure and isotopic pattern of [41-4e] $\left(t_{\mathrm{R}}=13.7 \mathrm{~min}\right.$ in Figure S58)

Chemical Formula: $\mathrm{C}_{38} \mathrm{H}_{46} \mathrm{~N}_{10} \mathrm{O}_{14} \mathrm{~S}_{4}$ Exact Mass: 994.2078

Figure S69. Structure and isotopic pattern of $[\mathbf{4 b}-\mathbf{4 g}]\left(t_{\mathrm{R}}=14.5 \mathrm{~min}\right.$ in Figure S58).

Figure S70. Structure and isotopic pattern of $[\mathbf{4 b}-4 \mathrm{e}]\left(t_{\mathrm{R}}=19.5 \mathrm{~min}\right.$ in Figure S58).

Figure S71. Structure and isotopic pattern of $[\mathbf{4 g}-\mathbf{4 e}]\left(t_{\mathrm{R}}=21.9 \mathrm{~min}\right.$ in Figure S 58$)$.

Chemical Formula: $\mathrm{C}_{42} \mathrm{H}_{58} \mathrm{~N}_{10} \mathrm{O}_{12} \mathrm{~S}_{4}$ Exact Mass: 1022.3119

Figure S72. Structure and isotopic pattern of $[\mathbf{4 h} \mathbf{- 4 i}]\left(t_{\mathrm{R}}=7.2 \mathrm{~min}\right.$ in Figure S59).

Chemical Formula: $\mathrm{C}_{40} \mathrm{H}_{58} \mathrm{~N}_{10} \mathrm{O}_{10} \mathrm{~S}_{4}$ Exact Mass: 966.3220

Figure S73. Structure and isotopic pattern of $[\mathbf{4 d}-4 \mathbf{i}]\left(t_{\mathrm{R}}=7.3 \mathrm{~min}\right.$ in Figure S59).

Figure S74. Structure and isotopic pattern of $[\mathbf{4 e}-\mathbf{4 i}]\left(t_{\mathrm{R}}=9.7 \mathrm{~min}\right.$ in Figure S59).

Chemical Formula: $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{~N}_{8} \mathrm{O}_{14} \mathrm{~S}_{4}$ Exact Mass: 968.2173

Figure S75. Structure and isotopic pattern of $[\mathbf{4 d}-\mathbf{4 h}]\left(t_{\mathrm{R}}=10.4 \mathrm{~min}\right.$ in Figure S59).

Figure S76. Structure and isotopic pattern of $[4 \mathrm{e}-4 \mathrm{~h}]\left(t_{\mathrm{R}}=13.0 \mathrm{~min}\right.$ in Figure S59).

Trimers

Figure S77. Structure and isotopic pattern of $\left[(\mathbf{4 d})_{2}-\mathbf{4} \mathbf{j}\right]\left(t_{\mathrm{R}}=13.6 \mathrm{~min}\right.$ in Figure S57 $)$.

Figure S78. Structure and isotopic pattern of $[\mathbf{4 d} \mathbf{- 4 e}-\mathbf{4 j}]\left(t_{\mathrm{R}}=17.5 \mathrm{~min}\right.$ in Figure S57).

Figure S79. Structure and isotopic pattern of [4d-4h-4i] $\left(t_{\mathrm{R}}=8.8 \mathrm{~min}\right.$ in Figure S59).

Stimuli responsiveness of a representative DCL

Figure S80. HPLC trace of a DCL formed by the mixture of $\mathbf{4 d}, \mathbf{4 e}, \mathbf{4 h}$ and $\mathbf{4 i}$ at 0.5 mM concentration of each BB, a) in the absence of stimulus b) in the presence of 0.125 mM spermine c) 0.5 mM spermine, d) 2 mM spermine, e) 10 mM spermine.

Figure S81. HPLC trace of a DCL formed by the mixture of $\mathbf{4 d}, \mathbf{4 e}, \mathbf{4 h}$ and $\mathbf{4 i}$ at 0.5 mM concentration of each BB, a) in the absence of stimulus, b) in the presence of 0.125 mM phytic acid c) 0.5 mM phytic acid, d) 2 mM phytic acid, e) 10 mM phytic acid.

NMR titration experiments

In order to confirm the host-guest interactions we decided to perform NMRtitrations of the amplified dimers with their corresponding guests, that is phytic acid for $[\mathbf{4 d}]_{2}$ and spermine for $[\mathbf{4 h}]_{2}$. To that end we prepared solutions containing the corresponding BBs that give rise to the amplified compounds under conditions similar to those of the libraries. Each homodimer $[\mathbf{4 d}]_{2}$ and $[\mathbf{4 h}]_{2}$ was prepared individually by oxidation of its component in a mixture of buffered $\mathrm{H}_{2} \mathrm{O}: \mathrm{MeCN}-d_{3}$ and DMSO- d_{6} at 0.5 mM concentration of BBs. The aqueous buffer was adjusted to pH 7.0 using tris(hydroxymethyl)aminomethaned_{11} (Tris- d_{11}) and the ${ }^{1} \mathrm{H}$ NMR spectra were acquired after 8 days to ensure complete oxidation (also checked by HPLC). The ${ }^{1} \mathrm{H}$ NMR data were consistent with the formation of the respective homodimers $[\mathbf{4 d}]_{2}$ (Thr) or $[\mathbf{4 h}]_{2}$ (Glu), although a minor formation of the trimer $[\mathbf{4 h}]_{3}$ (about $5 \% \mathrm{~mol}$) could be observed in the latter. Titration of the $[\mathbf{4 h}]_{2}$ with spermine showed the shift of several signals (see Figure 5 in the main text and Figures S82-S83).

Figure S82. NMR titration experiment ($500 \mathrm{MHz}, 4: 4: 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{CD}_{3} \mathrm{CN}:$ DMSO- d_{6}, Tris- d_{11} buffer $\left.\mathrm{pH} 7.0,298 \mathrm{~K}\right)$ of $[\mathbf{4 h}]_{2}(125 \mu \mathrm{M})$ upon de addition of increasing amounts of spermine (from bottom up: $0,0.125,0.25,0.5,1.23,2.41 \mathrm{mM}$).

Figure S83. Zoomed region of the spectra shown in Figure S82.
Unfortunately the NMR monitoring of the addition of phytate (up to 10 eq.) to $[\mathbf{4 d}]_{2}$ was hampered by the close proximity of the key CHOH proton signals (both in host and guest) to the water suppression region. Moreover, the appearance of a slight turbidity during the titration experiment additionally precluded to confirm the host-guest interaction

[^0]: ${ }^{1}$ A. P. Kozikowski, Y. Chen, A. Gaysin, B. Chen, M. A. D'Annibale, C. M. Suto and B. C. Langley, J. Med. Chem., 2007, 50, 3054-3061.

[^1]:

