Supporting Information

Indium-catalysed amide allylation of α-iminoamide: highly enantioselective synthesis of amide functionalised αmethylene-γ-butyrolactams

Tetsuya Sengoku,^a Kana Kokubo,^a Masami Sakamoto,^b Masaki Takahashi^a and Hidemi Yoda*^a

^a Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan

^b Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

E-mail: tchyoda@ipc.shizuoka.ac.jp

The following data are included in this material:

General methods	S2
Preliminary investigations into enantioselective amide allylation of α -iminocarbonyl	
derivatives (Scheme S1)	S3
X-ray structure for 8 (Figure S1)	S4
¹ H NMR spectra of indium complexes (Figure S2)	S5
¹ H NMR spectra of the samples prepared from 1a and metal salts (Figure S3)	S6
Experimental procedures and characterization data	S7–S22
HPLC Chromatographic data	S23–S41
Copies of ¹ H and ¹³ C NMR spectra	S42–S81

General methods:

All solvents and reagents were of reagent grade quality and used without further purification unless otherwise stated. Indium salts (In(OTf)₃ and InCl₃) and molecular sieves (MS3 Å and MS4 Å) were dried at 140 and 180 °C for 1 and 3 h under reduced pressure (ca. 1.0 Torr) prior to use, respectively. Acetonitrile (MeCN) was dried over MS3 Å and degassed by freeze–pump–thaw prior to use. β-Amido allylstannanes $1^{[1]}$ and α -iminoester $2^{[2]}$ were synthesized according to the literature. All new compounds were characterized by NMR, IR, and elemental analysis. The ¹H and ¹³C NMR spectra operating at the frequencies of 300 and 75 MHz, respectively, on a JEOL JNM-AL300 spectrometer were recorded in chloroform–d (CDCl₃) unless otherwise noted. Chemical shifts are reported in parts per million (ppm) relative to TMS and the solvent used as internal standards, and the coupling constants are reported in hertz (Hz). Optical rotations were measured in 1 dm path length cell of 2 mL capacity using a JASCO Model DIP-1000 polarimeter at a wavelength of 589 nm. Reactions were monitored by thin layer chromatography using 0.25 mm Merck silica gel 60–F254 precoated silica gel plates by irradiation with UV light and/or by treatment with a solution of phosphomolybdic acid in EtOH followed by heating. Column chromatography was performed using silica gel 60N from Kanto Chemical Co. and eluting with the indicated solvent system. Melting points were measured with a Yanaco MP-S3 micro melting point apparatus. Fourier transform infrared (FTIR) spectra were recorded on a JASCO FT/IR-550 spectrometer. Elemental analyses were performed by JSL Model JM 10 instruments.

Preliminary investigations on enantioselective amide allylation of α-iminocarbonyl derivatives:

Scheme S1. Reaction of **2a/3a** with **1a** in the presence of various chiral catalysts. The ee values were determined by HPLC analysis using Daicel Chiralpak IE (for **4a**) and IC (for **5a**), respectively.

X-ray structure for 8:

Figure S1. ORTEP diagram for X–ray structure of **8** (50% thermal ellipsoid probability).

¹H NMR spectra of indium complexes:

Figure S2. ¹H NMR spectra (300 MHz, CD₃CN) of (a) $3,3'-(4-MeC_6H_4)_2-(S)$ -BINOL, (b) **3a** and (c) InCl₃/**3a**/3,3'-(4-MeC_6H_4)_2-(S)-BINOL (1/1/1, stirred for 1 h at rt).

¹H NMR spectra of the samples prepared from 1a and metal salts (InCl₃ and/or ZnCl₂):

Figure S3. ¹H NMR spectra (300 MHz, CD₃CN) of (a) **1a**, (b) **1a**/InCl₃ (1/1, stirred for 30 min at rt), (c) $1a/ZnCl_2$ (1/1, stirred for 3 h at rt) and (d) $1a/InCl_3/ZnCl_2$ (1/1, stirred for 4 h at rt).

Experimental procedures and characterization data: General procedure for preparation of ketimines

All the experiments for the the synthesis of ketimines were carried out as described in the following typical procedure. For example, the reaction of N-phenyl-2-oxo-2-phenylacetamide with p-anisidine for the synthesis of **3a** was exemplified as follows.

Synthesis and characterization of 3a

To a solution of *N*-phenyl-2-oxo-2-phenylacetamide (500 mg, 3.07 mmol) and *p*-toluenesulfonic acid monohydrate (60.9 mg, 0.320 mmol, 10 mol %) in toluene (3.3 mL) was added *p*-anisidine (479 mg, 3.89 mmol, 1.2 equiv.) at room temperature. After stirring the mixture at reflux for 19 h, the solvent was removed under reduced pressure. The crude product was purified by column chromatography (silica gel, hexane/EtOAc = 5/1) and recrystallization from EtOAc-hexane to give **3a** (548 mg, 54%) as a yellow solid: $R_f = 0.57$ (silica gel, hexane/EtOAc = 2/1); M.p. 155–157 °C; IR (KBr) 3279 (N–H), 1650 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 9.73 (brs, 1H, major isomer, N*H*), 8.02 (m, 2H, minor isomer, Ar*H*), 7.74 (m, 2H, major isomer, Ar*H*), 7.49 (m, 2H, minor isomer, Ar*H*), 7.40-7.23 (m, 7H, Ar*H*), 7.14 (m, 1H, major isomer, Ar*H*), 6.80-6.73 (m, 4H, Ar*H*), 3.77 (s, 3H, C*H*₃); ¹³C NMR (75 MHz, CDCl₃) δ 161.5 (*C*), 159.9 (*C*), 157.7 (*C*), 140.3 (*C*), 137.6 (*C*), 131.8 (*C*), 129.5 (*C*H), 129.4 (CH), 129.0 (CH), 128.9 (CH), 128.6 (CH), 128.6 (CH), 128.2 (CH), 128.1 (CH), 124.2 (CH), 123.7 (CH), 121.9 (CH), 120.7 (CH), 119.4 (CH), 114.4 (CH), 114.0 (CH), 55.4 (CH₃), 55.3 (CH₃); Anal. Calcd for C₂₁H₁₈N₂O₂: C, 76.34; H, 5.49; N, 8.48. Found: C, 76.34; H, 5.52; N, 8.47.

Characterization for 3b

A solution of *N*-phenyl-2-oxo-2-(4-methoxyphenyl)acetamide, *p*-toluenesulfonic acid monohydrate and *p*-anisidine in toluene was stirred at reflux for 11 h, The crude product was purified by column

chromatography (silica gel, hexane/EtOAc = 5/1) and recrystallization from EtOAc-hexane to give **3b** (378 mg, 41%) as a yellow solid: $R_f = 0.44$ (silica gel, hexane/EtOAc = 2/1); M.p. 135–137 °C; IR (KBr) 3278 (N–H), 1668 (C=O), 1645 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 9.74 (brs, 1H, major isomer, N*H*), 7.94 (m, 2H, minor isomer, Ar*H*), 7.73 (dd, J = 1.5, 9.0 Hz, 2H, major isomer, Ar*H*), 7.36 (t, J = 8.0 Hz, 2H, major isomer, Ar*H*), 7.27-7.07 (m, 4H, Ar*H*), 6.94 (d, J = 9.0 Hz, 2H, minor isomer, Ar*H*), 6.84-6.74 (m, 5H, Ar*H*), 3.85 (s, 3H, minor isomer, CH₃), 3.78 (s, 3H, major isomer, CH₃), 3.76 (s, 3H, major isomer, CH₃), 3.74 (s, 3H, minor isomer, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 164.5 (C), 162.3 (C), 161.8 (C), 161.0 (C), 160.4 (C), 159.5 (C), 157.4 (C), 157.2 (C), 142.6 (C), 140.9 (C), 137.7 (C), 136.4 (C), 131.6 (CH), 130.0 (CH), 129.0 (CH), 128.9 (CH), 127.4 (CH), 125.2 (CH), 124.2 (CH), 123.6 (CH), 123.4 (CH), 121.8 (CH), 120.7 (CH), 119.4 (CH), 114.3 (CH), 114.1 (CH), 114.0 (CH), 113.5 (CH), 55.4 (CH₃), 55.3 (CH₃), 55.2 (CH₃). Anal. Calcd for C₂₂H₂₀N₂O₃: C, 73.32; H, 5.59; N, 7.77. Found: C, 73.23; H, 5.62; N, 7.79.

Characterization for 3c

A solution of *N*-phenyl-2-oxo-2-(4-trifluoromethylphenyl)acetamide, *p*-toluenesulfonic acid monohydrate and *p*-anisidine in toluene was stirred at reflux for 15 h. The crude product was purified by column chromatography (silica gel, hexane/EtOAc = 5/1) and recrystallization from EtOAc-hexane to give **3c** (132 mg, 19%) as a yellow solid: $R_f = 0.63$ (silica gel, hexane/EtOAc = 2/1); M.p. 154–156 °C; IR (KBr) 3354 (N–H), 1683 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 9.69 (brs, 1H, major isomer, N*H*), 8.14 (d, *J* = 7.5 Hz, 2H, minor isomer, Ar*H*), 7.73 (d, *J* = 7.5 Hz, 2H, major isomer, Ar*H*), 7.60 (d, *J* = 8.1 Hz, 2H, major isomer, Ar*H*), 7.41-7.36 (m, 4H, major isomer, Ar*H*), 7.32-7.29 (m, 2H, minor isomer, Ar*H*), 7.16 (t, *J* = 7.2 Hz, 1H, major isomer, Ar*H*), 6.77 (s, 4H, Ar*H*), 3.78 (s, 3H, major isomer, C*H*₃); ¹³C NMR (75 MHz, CDCl₃) δ 161.0 (*C*), 158.4 (*C*), 158.1 (*C*), 157.9 (*C*), 139.7 (*C*), 137.4 (*C*), 135.7 (*C*), 130.0 (*CH*), 129.1 (*C*H), 125.1 (q, *J* = 3.7 Hz, *C*H), 124.5 (*C*H), 123.9 (*C*), 123.8 (*C*H), 119.5 (*C*H), 114.2 (*C*H), 55.4 (*C*H₃). Anal. Calcd for C₂₂H₁₇F₃N₂O₂: C, 66.33; H, 4.30; N, 7.03. Found: C, 66.28; H, 4.50; N, 7.08.

Characterization for 3d

A solution of *N*-phenyl-2-oxo-2-(1-naphthyl)acetamide (1.37 mg, 6.00 mmol), *p*-toluenesulfonic acid monohydrate (114 mg, 0.600 mmol, 10 mol %) and *p*-anisidine (887 mg, 7.20 mmol, 1.2 equiv.) in toluene (6.5 mL) was stirred at reflux for 24 h. The crude product was purified by column chromatography (silica gel, hexane/EtOAc = 5/1) and recrystallization from EtOAc-hexane to give **3d** (1.28 g, 56%) as a yellow solid: R_f = 0.57 (silica gel, hexane/EtOAc = 2/1); M.p. 146–148 °C; IR (KBr) 3288 (N–H), 1676 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 9.87 (brs, 1H, NH), 7.87 (t, *J* = 6.9 Hz, 2H, Ar*H*), 7.77 (d, *J* = 8.7 Hz, 2H, Ar*H*), 7.60 (d, *J* = 8.1 Hz, 1H, Ar*H*), 7.48-7.26 (m, 6H, Ar*H*), 7.14 (t, *J* = 7.5 Hz, 1H, Ar*H*), 6.79 (m, 2H, Ar*H*), 6.60 (m, 2H, Ar*H*), 3.68 (s, 3H, C*H*₃); ¹³C NMR (75 MHz, CDCl₃) δ 161.8 (*C*), 160.2 (*C*), 158.2 (*C*), 139.7 (*C*), 137.7 (*C*), 133.2 (*C*), 131.5 (*C*), 130.8 (*C*), 129.6 (CH), 129.2 (CH), 129.1 (CH), 128.6 (CH), 126.8 (CH), 126.2 (CH), 125.5 (CH), 125.1 (CH), 124.8 (CH), 124.23 (CH), 124.19 (CH), 119.8 (CH), 119.4 (CH), 113.9 (CH), 55.2 (CH₃). Anal. Calcd for : C₂₅H₂₀N₂O₂: C, 78.93; H, 5.30; N, 7.36. Found: C, 78.56; H, 5.21; N, 7.58.

General procedure for amide allylation of ketimines

All the experiments for amide allylation of ketimines were carried out as described in the following typical procedure. For example, the reaction of 3 with 1 for the synthesis of 5a was exemplified as follows.

Synthesis and characterization of 5a

To a suspension of InCl₃ (9.6 mg, 0.0434 mmol, 0.2 equiv.) and MS3 Å (326 mg, 1.5 g/mmol) in

MeCN (0.43 mL) was added ZnCl₂ (3.0 mg, 0.0217 mmol, 0.1 equiv.) at room temperature under a nitrogen atmosphere, and the resulting mixture was stirred for 1 h. After addition of 3,3'-(4-MeC₆H₄)₂-(S)-BINOL (25.3 mg, 0.0543 mmol, 0.25 equiv.), the mixture was stirred at this temperature for 1 h, and then **3a** (71.7 mg, 0.217 mmol) was added. The resulting mixture was stirred for 1 h and cooled to 0 °C. After addition of 1a (17.3 mg, 0.260 mmol, 1.2 equiv.), the reaction mixture was stirred at the same temperature for an additional 6 h. The reaction was then quenched by addition of saturated aqueous NaHCO₃ (10 mL), and the resulting mixture was extracted with EtOAc (50 mL), washed with brine (10 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo to give a crude material. This material was purified by column chromatography (silica gel, hexane/EtOAc = 6/1) to give **5a** (134 mg, 99%, 96% ee) as a colorless oil: $R_f = 0.43$ (silica gel, hexane/AcOEt = 2/1); $[\alpha]_D^{27} + 42.9$ (c 0.97, CHCl₃); IR (NaCl) 3016 (N–H), 2935 (C–H), 1671 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.78 (brs, 1H, N*H*), 7.76 (brs, 1H, N*H*), 7.70 (d, *J* = 7.5 Hz, 2H, Ar*H*), 7.47-7.04 (m, 13H, Ar*H*), 6.59 (d, *J* = 9.0 Hz, 2H, ArH), 6.43 (d, J = 9.0 Hz, 2H, ArH), 6.40 (brs, 1H, NH), 5.69 (s, 1H, CH₂), 5.34 (s, 1H, CH_2), 3.62 (s, 3H, CH_3), 3.34 (d, J = 14.1 Hz, 1H, CH_2), 3.31 (d, J = 14.1 Hz, 1H, CH_2); ¹³C NMR (75) MHz, CDCl₃) & 170.7 (C), 168.2 (C), 152.3 (C), 140.7 (C), 139.7 (C), 137.9 (C), 137.3 (C), 137.2 (C), 128.9 (CH), 128.8 (CH), 128.3 (CH), 127.7 (CH), 127.4 (CH), 124.7 (CH), 124.5 (CH), 123.1 (CH₂), 120.3 (CH), 120.1 (CH), 116.9 (CH), 114.4 (CH), 68.3 (C), 55.4 (CH₃), 42.3 (CH₂). Anal. Calcd for C₃₁H₂₉N₃O₃: C, 75.74; H, 5.95; N, 8.55. Found: C, 76.06; H, 5.91; N, 8.51. The enantiomeric excess was determined by HPLC with a Daicel Chiralpak IC column (hexane/EtOH = 96/4), flow rate 0.5 mL/min, UV detection 274 nm, t_R (major) = 35.2 min, t_R (minor) = 27.3 min.

Characterization for 5b

The reaction of **3a** with **1b** was performed at 0 °C for 6 h. The crude material was purified by column chromatography (silica gel, hexane/EtOAc = 6/1) to give **5b** (71.2 mg, 99%, 91% ee) as a colorless oil:

 $R_f = 0.54$ (silica gel, hexane/AcOEt = 2/1); $[\alpha]_D^{28} + 52.4$ (*c* 0.95, CHCl₃); IR (NaCl) 3019 (N–H), 2931 (C–H), 1671 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.82 (brs, 1H, N*H*), 7.72 (d, *J* = 7.5 Hz, 2H, Ar*H*), 7.57 (brs, 1H, N*H*), 7.43 (d, *J* = 7.5 Hz, 2H, Ar*H*), 7.33-7.08 (m, 10H, Ar*H*), 6.59 (d, *J* = 8.7 Hz, 2H, Ar*H*), 6.47 (brs, 1H, N*H*), 6.43 (d, *J* = 8.7 Hz, 2H, Ar*H*), 5.69 (s, 1H, C*H*₂), 5.38 (s, 1H, C*H*₂), 3.64 (s, 3H, C*H*₃), 3.36 (d, *J* = 13.8 Hz, 1H, C*H*₂), 3.30 (d, *J* = 13.8 Hz, 1H, C*H*₂), 2.33 (s, 3H, C*H*₃); ¹³C NMR (75 MHz, CDCl₃) δ 170.7 (*C*), 168.2 (*C*), 152.3 (*C*), 140.9 (*C*), 139.8 (*C*), 138.0 (*C*), 137.3 (*C*), 134.7 (*C*), 134.5 (*C*), 129.5 (*C*H), 128.8 (*C*H), 128.3 (*C*H), 127.7 (*C*H), 127.3 (*C*H), 124.5 (*C*H), 122.9 (*C*H₂), 120.4 (*C*H), 120.1 (*C*H), 117.0 (*C*H), 114.4 (*C*H), 68.4 (*C*), 55.4 (*C*H₃), 42.9 (*C*H₂), 20.9 (*C*H₃). Anal. Calcd for C₃₂H₃₁N₃O₃: C, 76.02; H, 6.18; N, 8.31. Found: C, 76.27; H, 6.42; N, 8.44. The enantiomeric excess was determined by HPLC with a Daicel Chiralcel IE column (hexane/EtOH = 80/20), flow rate 0.5 mL/min, UV detection 274 nm, t_R (major) = 22.1 min, t_R (minor) = 18.5 min.

Characterization for 5c

The reaction of **3a** with **1c** was performed at 0 °C for 6 h. The crude material was purified by column chromatography (silica gel, hexane/EtOAc = 6/1) to give **5c** (69.1 mg, 98%, 92% ee) as a colorless oil: $R_f = 0.37$ (silica gel, hexane/AcOEt = 2/1); $[\alpha]_D^{29}$ +52.6 (*c* 1.03, CHCl₃); IR (NaCl) 3018 (N–H), 2936 (C–H), 1672 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.82 (brs, 1H, N*H*), 7.72-7.67 (m, 3H, Ar*H*, N*H*), 7.43-7.18 (m, 9H, Ar*H*), 7.07 (m, 1H, Ar*H*), 6.84 (d, *J* = 9.0 Hz, 2H, Ar*H*), 6.59 (d, *J* = 9.0 Hz, 2H, Ar*H*), 6.51 (brs, 1H, N*H*), 6.43 (d, *J* = 9.0 Hz, 2H, Ar*H*), 5.68 (s, 1H, C*H*₂), 5.34 (s, 1H, C*H*₂), 3.78 (s, 3H, C*H*₃), 3.63 (s, 3H, C*H*₃), 3.35 (d, *J* = 13.5 Hz, 1H, C*H*₂), 3.28 (d, *J* = 13.5 Hz, 1H, C*H*₂); ¹³C NMR (75 MHz, CDCl₃) δ 170.7 (C), 168.2 (C), 156.7 (C), 152.3 (C), 140.7 (C), 139.7 (C), 138.0 (C), 137.3 (C), 130.3 (C), 128.8 (CH), 128.3 (CH), 127.7 (CH), 127.3 (CH), 124.5 (CH), 122.9 (CH₂), 122.3 (CH), 120.1 (CH), 116.9 (CH), 114.4 (CH), 114.1 (CH), 68.4 (C), 55.4 (CH₃), 55.4 (CH₃), 42.7 (CH₂). Anal. Calcd for C₃₂H₃₁N₃O₄: C, 73.68; H, 5.99; N, 8.06. Found: C, 73.78; H, 6.12; N, 8.12. The enantiomeric excess was determined by HPLC with a Daicel Chiralpak IE column (hexane/EtOH = 80/20), flow rate 0.5 mL/min, UV detection 274 nm, t_R (major) = 26.0 min, t_R (minor) = 32.2 min.

Characterization for 5d

The reaction of **3a** with **1d** was performed at 0 °C for 6 h. The crude material was purified by column chromatography (silica gel, hexane/EtOAc = 6/1) to give **5d** (72.1 mg, 98%, 92% ee) as a colorless oil: $R_f = 0.60$ (silica gel, hexane/AcOEt = 2/1); $[\alpha]_D^{26} + 56.2$ (*c* 1.13, CHCl₃); IR (NaCl) 3019 (N–H), 2965 (C–H), 1665 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.82 (brs, 1H, N*H*), 7.74-7.71 (m, 2H, Ar*H*), 7.55 (brs, 1H, N*H*), 7.45-7.17 (m, 11H, Ar*H*), 7.08 (dt, *J* = 0.9, 7.2 Hz, 1H, Ar*H*), 6.60 (m, 2H, Ar*H*), 6.47 (brs, 1H, N*H*), 6.44 (m, 2H, Ar*H*), 5.70 (s, 1H, CH₂), 5.40 (s, 1H, CH₂), 3.65 (s, 3H, CH₃), 3.37 (d, *J* = 13.8 Hz, 1H, CH₂), 3.31 (d, *J* = 13.8 Hz, 1H, CH₂), 1.32 (s, 9H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 170.7 (*C*), 168.2 (*C*), 152.3 (*C*), 147.9 (*C*), 141.0 (*C*), 139.8 (*C*), 138.0 (*C*), 137.3 (*C*), 134.6 (*C*), 129.0 (CH), 128.3 (CH), 127.8 (CH), 127.3 (CH), 125.8 (CH), 124.5 (CH), 122.9 (CH₂), 120.13 (CH), 120.07 (CH), 117.0 (CH), 114.3 (CH), 68.5 (*C*), 55.4 (CH₃), 43.0 (CH₂), 34.4 (*C*), 31.3 (CH₃). Anal. Calcd for C₃₅H₃₇N₃O₃: C, 76.75; H, 6.81; N, 7.67. Found: C, 76.80; H, 7.03; N, 8.05. The enantiomeric excess was determined by HPLC with a Daicel Chiralcel IE column (hexane/EtOH = 80/20), flow rate 0.5 mL/min, UV detection 274 nm, t_R (major) = 18.2 min, t_R (minor) = 15.3 min.

Characterization for 5e

The reaction of **3a** with **1e** was performed at 0 °C for 6 h. The crude material was purified by column chromatography (silica gel, hexane/EtOAc = 6/1) to give **5e** (55.6 mg, 99%, 94% ee) as a white solid: $R_f = 0.49$ (silica gel, hexane/AcOEt = 2/1); $[\alpha]_D^{23} + 33.7$ (*c* 0.910, CHCl₃); IR (KBr) 3344 (N–H), 2948 (C–H), 1677 (C=O), 1624 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.79 (brs, 1H, N*H*), 7.94-7.71 (m, 7H, Ar*H*, N*H*), 7.53-7.04 (m, 11H, Ar*H*), 6.59 (d, *J* = 9.0 Hz, 2H, Ar*H*), 6.46-6.39 (m, 3H, Ar*H*, N*H*), 5.88 (s, 1H, CH₂), 5.48 (s, 1H, CH₂), 3.64 (s, 3H, CH₃), 3.45 (d, J = 13.8 Hz, 1H, CH₂), 3.40 (d, J = 13.8 Hz, 1H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 170.6 (C), 169.0 (C), 152.3 (C), 141.0 (C), 139.8 (C), 138.0 (C), 137.3 (C), 134.1 (C), 131.8 (C), 128.9 (CH), 128.7 (CH), 128.4 (CH), 127.7 (CH), 127.4 (CH), 126.5 (CH), 126.4 (CH), 126.1 (CH), 125.6 (CH), 124.5 (CH), 123.1 (CH₂), 121.4 (CH), 120.7 (CH), 120.1 (CH), 116.9 (CH), 114.4 (CH), 68.4 (C), 55.4 (CH), 42.5 (CH₂). Anal. Calcd for C₃₅H₃₁N₃O₃: C, 77.61; H, 5.77; N, 7.76. Found: C, 77.25; H, 5.94; N, 7.62. The enantiomeric excess was determined by HPLC with a Daicel Chiralpak IE column (hexane/EtOH = 80/20), flow rate 0.5 mL/min, UV detection 274 nm, t_R (major) = 38.8 min, t_R (minor) = 28.9 min.

Characterization for 5f

The reaction of **3a** with **1f** was performed at 0 °C for 18 h. The crude material was purified by column chromatography (silica gel, hexane/EtOAc = 6/1) to give **5f** (67.2 mg, 96%, 90% ee) as a colorless oil: $R_f = 0.45$ (silica gel, hexane/AcOEt = 2/1); $[\alpha]_D^{24}$ +45.4 (*c* 1.05, CHCl₃); IR (NaCl) 3019 (N–H), 1646 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.63 (brs, 1H, N*H*), 7.71 (d, *J* = 8.7 Hz, 2H, Ar*H*), 7.60 (brs, 1H, N*H*), 7.42-7.20 (m, 11H, Ar*H*), 7.08 (t, *J* = 7.2 Hz, 1H, Ar*H*), 6.62 (dt, *J* = 2.7, 9.0 Hz, 2H, Ar*H*), 6.44 (dd, *J* = 3.6, 9.0 Hz, 2H, Ar*H*), 6.12 (brs, 1H, N*H*), 5.73 (s, 1H, CH₂), 5.38 (s, 1H, CH₂), 3.66 (s, 3H, CH₃), 3.43 (d, *J* = 14.1 Hz, 1H, CH₂), 3.37 (d, *J* = 14.1 Hz, 1H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 170.7 (C), 167.9 (C), 152.5 (C), 140.8 (C), 139.7 (C), 137.8 (C), 137.2 (C), 136.0 (C), 129.7 (C), 129.0 (CH), 128.9 (CH), 128.5 (CH), 127.6 (CH), 127.5 (CH), 124.6 (CH), 123.4 (CH₂), 121.4 (CH), 120.1 (CH), 117.0 (CH), 114.5 (CH), 68.2 (C), 55.5 (CH₃), 41.3 (CH₂). Anal. Calcd for C₃₁H₂₈ClN₃O₃: C, 70.78; H, 5.37; Cl, 6.74; N, 7.99. Found: C, 71.00; H, 5.38; N, 8.22. The enantiomeric excess was determined by HPLC with a Daicel Chiralpak IC column (hexane/EtOH = 96/4), flow rate 0.5 mL/min, UV detection 274 nm, t_R (major) = 18.4 min, t_R (minor) = 21.9 min.

Characterization for 5g

The reaction of **3a** with **1g** was performed at 0 °C for 19 h. The crude material was purified by column chromatography (silica gel, hexane/EtOAc = 6/1) to give **5g** (82.1 mg, 92%, 82% ee) as a colorless oil: $R_f = 0.45$ (silica gel, hexane/AcOEt = 2/1); $[\alpha]_D^{26} + 104$ (*c* 1.05, CHCl₃); IR (NaCl) 3019 (N–H), 2933 (C–H), 1652 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.89 (brs, 1H, N*H*), 7.72 (d, *J* = 8.4 Hz, 2H, Ar*H*), 7.46 (d, *J* = 7.8 Hz, 2H, Ar*H*), 7.32-7.19 (m, 5H, Ar*H*), 7.09 (t, *J* = 7.2 Hz, 1H, Ar*H*), 6.76 (brs, 1H, N*H*), 6.59 (dt, *J* = 2.1, 9.0 Hz, 2H, Ar*H*), 6.43 (dt, *J* = 2.1, 9.0 Hz, 2H, Ar*H*), 5.88 (brs, 1H, N*H*), 5.52 (s, 1H, C*H*₂), 5.29 (s, 1H, C*H*₂), 3.65 (s, 3H, C*H*₃), 3.30-3.16 (m, 4H, C*H*₂), 1.50 (m, 2H, C*H*₂), 1.38-1.26 (m, 4H, C*H*₂), 0.90 (t, *J* = 6.9 Hz, 3H, C*H*₃); ¹³C NMR (75 MHz, CDCl₃) δ 170.7 (*C*), 170.3 (*C*), 152.1 (*C*), 140.4 (*C*), 139.8 (*C*), 138.2 (*C*), 137.5 (*C*), 128.9 (CH), 128.1 (CH), 128.0 (CH), 127.1 (CH), 124.4 (CH), 122.1 (CH₂), 120.0 (CH), 116.8 (CH), 114.3 (CH), 68.5 (*C*), 55.4 (CH₃), 43.9 (CH₂), 40.0 (CH₂), 29.1 (CH₂), 22.3 (CH₂), 13.9 (CH₃). Anal. Calcd for C₃₀H₃₅N₃O₃: C, 74.20; H, 7.26; N, 8.65. Found: C, 74.02; H, 7.24; N, 8.68. The enantiomeric excess was determined by HPLC with a Daicel Chiralpak IC column (hexane/EtOH = 96/4), flow rate 0.5 mL/min, UV detection 274 nm, t_R (major) = 22.6 min, t_R (minor) = 31.7 min.

Characterization for 5h

The reaction of **3b** with **1a** was performed at 0 °C for 3 h. The crude material was purified by column chromatography (silica gel, hexane/EtOAc = 6/1) to give **5h** (70.2 mg, 96%, 93% ee) as a white solid: $R_f = 0.38$ (silica gel, hexane/EtOAc = 2/1); M.p. 195–197 °C; $[\alpha]_D^{29}$ +52.7 (*c* 0.96, CHCl₃); IR (KBr) 3321 (N–H), 1660 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.72 (brs, 1H, N*H*), 7.65-7.60 (m, 3H, N*H*, Ar*H*), 7.46-7.03 (m, 10H, Ar*H*), 6.79 (d, *J* = 8.7 Hz, 2H, Ar*H*), 6.61 (d, *J* = 8.7 Hz, 2H, Ar*H*), 6.45 (d, *J* = 8.7 Hz, 2H, Ar*H*), 6.25 (brs, 1H, N*H*), 5.69 (s, 1H, C*H*₂), 5.33 (s, 1H, C*H*₂), 3.71 (s, 3H, C*H*₃), 3.65 (s, 3H, C*H*₃), 3.36 (d, *J* = 14.7 Hz, 1H, C*H*₂), 3.31 (d, *J* = 14.7 Hz, 1H, C*H*₂); ¹³C NMR (75 MHz, CDCl₃) δ 171.0 (*C*), 168.2 (*C*), 158.6 (*C*), 152.3 (*C*), 141.0 (*C*), 138.0 (*C*), 137.4 (*C*), 137.3 (*C*), 131.6 (*C*), 128.9 (*C*H), 128.8 (*C*H), 124.7 (*C*H), 124.5 (*C*H), 123.0 (*C*H₂), 120.2 (*C*H), 120.1 (*C*H), 117.0 (*C*H), 114.4 (*C*H), 113.6 (*C*H), 67.7 (*C*), 55.4 (*C*H₃), 55.1 (*C*H₃), 42.0 (*C*H₂). Anal. Calcd for C₃₂H₃₁N₃O₄: C, 73.68; H, 5.99; N, 8.06. Found: C, 73.34; H, 6.15; N, 8.17. The enantiomeric excess was determined by HPLC with a Daicel Chiralpak IC column (hexane/EtOH = 96/4), flow rate 0.5 mL/min, UV detection 274 nm, t_R (major) = 39.7 min, t_R (minor) = 49.1 min.

Characterization for 5i

The reaction of **3c** with **1a** was performed at 0 °C for 5 h. The crude material was purified by column chromatography (silica gel, hexane/EtOAc = 6/1) to give **5i** (62.1 mg, 99%, 95% ee) as a colorless oil: $R_f = 0.60$ (silica gel, hexane/EtOAc = 2/1); $[\alpha]_D^{25} + 45.5$ (*c* 1.01, CHCl₃); IR (NaCl) 3019 (N–H), 1668 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 9.00 (brs, 1H, N*H*), 7.92 (d, *J* = 8.4 Hz, 2H, Ar*H*), 7.59 (brs, 1H, N*H*), 7.53-7.09 (m, 12H, Ar*H*), 6.85 (brs, 1H, N*H*), 6.61 (dt, *J* = 2.1, 9.0 Hz, 2H, Ar*H*), 6.41 (dt, *J* = 2.1, 8.7 Hz, 2H, Ar*H*), 5.74 (s, 1H, C*H*₂), 5.46 (s, 1H, C*H*₂), 3.66 (s, 3H, C*H*₃), 3.29 (d, *J* = 13.8 Hz, 1H, C*H*₂), 3.20 (d, *J* = 13.8 Hz, 1H, C*H*₂); ¹³C NMR (75 MHz, CDCl₃) δ 170.1 (C), 168.3 (C), 152.5 (C), 143.9 (C), 140.4 (C), 137.5 (C), 137.2 (C), 137.1 (C), 129.2 (CH), 129.0 (CH), 128.6 (CH), 125.2 (CH), 125.0 (q, *J* = 3.7 Hz, CH), 124.7 (CH), 123.4 (CH₂), 120.3 (CH), 120.1 (CH), 116.8 (CH), 114.5 (CH), 68.4 (C), 55.4 (CH₃), 45.1 (CH₂). Anal. Calcd for C₃₂H₂₈F₃N₃O₃: C, 68.68; H, 5.04; N, 7.51. Found: C, 68.36; H, 5.12; N, 7.47. The enantiomeric excess was determined by HPLC with a Daicel Chiralpak IB column (hexane/EtOH = 96/4), flow rate 0.5 mL/min, UV detection 274 nm, t_R (major) = 24.8 min, t_R (minor) = 31.4 min.

Characterization for 5j

The reaction of 3d with 1a was performed at room temperature for 66 h. The crude material was

purified by column chromatography (silica gel, hexane/EtOAc = 6/1) to give **5j** (54.3 mg, 94%, 57% ee) as a colorless oil: $R_f = 0.46$ (silica gel, hexane/EtOAc = 2/1); $[\alpha]_D^{27}$ +99.9 (*c* 1.08, CHCl₃); IR (NaCl) 3019 (N–H), 1683 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 50.2 °C) δ 8.54 (brs, 1H, N*H*), 8.04 (d, *J* = 7.5 Hz, 1H, Ar*H*), 7.88-7.77 (m, 3H, Ar*H*), 7.54 (t, *J* = 7.8 Hz, 1H, Ar*H*), 7.40-6.91 (m, 12H, Ar*H*), 6.47 (d, *J* = 9.0 Hz, 2H, Ar*H*), 6.35 (d, *J* = 9.0 Hz, 2H, Ar*H*), 6.02 (brs, 1H, N*H*), 5.79 (s, 1H, C*H*₂), 5.37 (s, 1H, C*H*₂), 3.92 (d, *J* = 12.9 Hz, 1H, C*H*₂), 3.75 (d, *J* = 12.9 Hz, 1H, C*H*₂), 3.57 (s, 3H, C*H*₃); ¹³C NMR (75 MHz, CDCl₃, 50.2 °C) δ 171.8 (C), 167.7 (C), 152.3 (C), 141.9 (C), 138.5 (C), 137.9 (C), 136.6 (C), 136.3 (C), 134.8 (C), 131.6 (C), 130.4 (CH), 129.0 (CH), 128.8 (CH), 128.6 (CH), 126.7 (CH), 126.6 (CH), 126.1 (CH), 125.3 (CH), 124.9 (CH), 124.7 (CH), 124.2 (CH), 122.5 (CH₂), 121.0 (CH), 120.3 (CH), 116.5 (CH), 114.7 (CH), 67.3 (C), 55.6 (CH₃), 37.7 (CH₂). Anal. Calcd for C₃₅H₃₁N₃O₃: C, 77.61; H, 5.77; N, 7.76. Found: C, 77.27; H, 5.47; N, 8.12. The enantiomeric excess was determined by HPLC with a Daicel Chiralpak IC column (hexane/EtOH = 96/4), flow rate 0.5 mL/min, UV detection 274 nm, t_R (major) = 30.9 min, t_R (minor) = 26.5 min.

Characterization for 5k

The reaction of **3a** with **1h** was performed at 0 °C for 72 h. The crude material was purified by column chromatography (silica gel, hexane/EtOAc = 6/1) to give **5k** (21.1 mg, 18%, 22% ee) as a colorless oil: $R_f = 0.45$ (silica gel, hexane/EtOAc = 2/1); $[\alpha]_D^{27} + 0.79$ (*c* 0.94, CHCl₃); IR (NaCl) 3019 (N–H), 1642 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.81 (brs, 1H, NH), 7.68 (m, 2H, ArH), 7.40 (m, 2H, ArH), 7.35-7.20 (m, 8H, ArH), 7.05 (m, 1H, ArH), 6.93 (m, 8.4 Hz, 2H, ArH), 6.68 (dt, *J* = 2.1, 9.0 Hz, 2H, ArH), 6.54 (dt, *J* = 2.4, 9.0 Hz, 2H, ArH), 6.27 (brs, 1H, NH), 4.98 (s, 1H, CH₂), 4.78 (s, 1H, CH₂), 3.70 (s, 3H, CH₃), 3.27 (d, *J* = 14.4 Hz, 1H, CH₂), 3.16 (s, 3H, CH₃), 2.95 (d, *J* = 14.4 Hz, 1H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 172.0 (C), 171.2 (C), 152.6 (C), 143.8 (C), 139.9 (C), 138.8 (C), 138.4 (C), 137.7 (C), 129.2 (CH), 128.8 (CH), 128.3 (CH), 127.3 (CH), 127.1 (CH), 126.9 (CH), 126.7 (CH), 124.2 (CH, CH₂), 119.9 (CH), 117.4 (CH), 114.4 (CH), 67.5 (C), 55.5 (CH₃), 41.1 (CH₂), 37.7 (CH₃). Anal. Calcd for $C_{32}H_{31}N_3O_3$: C, 76.02; H, 6.18; N, 8.31. Found: C, 75.85; H, 6.49; N, 8.69. The enantiomeric excess was determined by HPLC with a Daicel Chiralpak IC column (hexane/EtOH = 90/10), flow rate 0.5 mL/min, UV detection 274 nm, t_R (major) = 18.8 min, t_R (minor) = 22.4 min.

General procedure for lactamization

The experiments for lactamization were carried out as described in the following typical procedure. For example, the reaction of 5a with di*-tert*-butyl dicarbonate (Boc₂O) for the synthesis of 7a was exemplified as follows.

Synthesis and characterization of 7a

To a solution of **5a** (65.1 mg, 0.132 mmol) in CH₂Cl₂ (0.26 mL) was added Boc₂O (115 mg, 0.528 mmol, 4.0 equiv.), triethylamine (Et₃N, 134 mg, 1.32 mmol, 10 equiv.) and *N*,*N*-dimethyl-4-aminopyridine (DMAP, 8.1 mg, 0.066 mmol, 0.5 equiv.) at room temperature under a nitrogen atmosphere. After stirring the solution at the same temperature for 24 h, the solvent was removed under reduced pressure. The crude residue was purified by column chromatography (silica gel, hexane/EtOAc = 3/1 to 0/1) to give **7a** (63.1 mg, 96%, 94% ee) as a red oil: R_f = 0.53 (silica gel, hexane/EtOAc = 2/1); [α]_D²⁷ +133 (*c* 1.04, CHCl₃); IR (NaCl) 3014 (C–H), 1747 (C=O), 1698 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.42-7.14 (m, 8H, Ar*H*), 7.04 (m, 2H, Ar*H*), 6.63 (s, 4H, Ar*H*), 6.21 (t, *J* = 2.4 Hz, 1H, CH₂), 5.58 (t, *J* = 2.4 Hz, 1H, CH₂), 4.14 (dt, *J* = 2.4, 18.3 Hz, 1H, CH₂), 3.77 (dt, *J* = 2.4, 18.3 Hz, 1H, CH₂), 3.73 (s, 3H, CH₃), 0.94 (s, 9H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 174.2 (C), 168.5 (C), 158.7 (C), 151.5 (C), 139.1 (C), 138.1 (C), 137.5 (C), 131.7 (CH), 129.5 (C), 129.1 (CH), 128.15 (CH), 128.06 (CH), 128.0 (CH), 127.7 (CH), 126.9 (CH), 116.9 (CH₂), 113.4 (CH), 83.4 (C), 75.3 (C), 55.2 (CH₃), 37.6 (CH₂), 27.1 (CH₃). Anal. Calcd for C₃₀H₃₀N₂O₅: C, 72.27; H, 6.07; N, 5.62. Found: C,

71.97; H, 6.02; N, 5.99. The enantiomeric excess was determined by HPLC with a Daicel Chiralpak IF column (hexane/EtOH = 80/20), flow rate 0.5 mL/min, UV detection 274 nm, t_R (major) = 25.5 min, t_R (minor) = 32.5 min.

Specific rotation of 7a prepared from 5b

A solution of **5b**, Boc₂O, Et₃N, and DMAP in CH₂Cl₂ was stirred at room temperature for 24 h. The crude material was purified by column chromatography (silica gel, hexane/EtOAc = 3/1 to 0/1) to give **7a** (70.8 mg, 98%, 91% ee) as a red oil: $[\alpha]_D^{25} + 126$ (*c* 1.05, CHCl₃).

Specific rotation of 7a prepared from 5c

A solution of **5c**, Boc₂O, Et₃N, and DMAP in CH₂Cl₂ was stirred at room temperature for 24 h. The crude material was purified by column chromatography (silica gel, hexane/EtOAc = 3/1 to 0/1) to give **7a** (68.5 mg, 96%, 92% ee) as a red oil: $[\alpha]_D^{27} + 128$ (*c* 1.05, CHCl₃).

Specific rotation of 7a prepared from 5d

A solution of **5d**, Boc₂O, Et₃N, and DMAP in CH₂Cl₂ was stirred at room temperature for 24 h. The crude material was purified by column chromatography (silica gel, hexane/EtOAc = 3/1 to 0/1) to give **7a** (71.8 mg, 97%, 92% ee) as a red oil: $[\alpha]_D^{25} + 126$ (*c* 1.02, CHCl₃).

Specific rotation of 7a prepared from 5e

A solution of **5e**, Boc₂O, Et₃N, and DMAP in CH₂Cl₂ was stirred at room temperature for 24 h. The crude material was purified by column chromatography (silica gel, hexane/EtOAc = 3/1 to 0/1) to give **7a** (55.4 mg, 98%, 93% ee) as a red oil: $[\alpha]_D^{26} + 128$ (*c* 0.98, CHCl₃).

Specific rotation of 7a prepared from 5f

A solution of **5f**, Boc₂O, Et₃N, and DMAP in CH₂Cl₂ was stirred at room temperature for 24 h. The crude material was purified by column chromatography (silica gel, hexane/EtOAc = 3/1 to 0/1) to give **7a** (65.8mg, 90%, 90% ee) as a red oil: $[\alpha]_D^{27}$ +120 (*c* 0.98, CHCl₃).

Specific rotation of 7a prepared from 5g

A solution of **5g**, Boc₂O, Et₃N, and DMAP in CH₂Cl₂ was stirred at room temperature for 24 h. The crude material was purified by column chromatography (silica gel, hexane/EtOAc = 3/1 to 0/1) to give **7a** (80.9 mg, 95%, 80% ee) as a red oil: $[\alpha]_D^{26} + 109$ (*c* 0.96, CHCl₃).

Characterization for 7b

A solution of **5h**, Boc₂O, Et₃N, and DMAP in CH₂Cl₂ was stirred at room temperature for 24 h. The crude material was purified by column chromatography (silica gel, hexane/EtOAc = 3/1 to 1/1) to give **7b** (69.8 mg, 90%, 92% ee) as a colorless oil: R_f = 0.44 (silica gel, hexane/EtOAc = 2/1); [α]_D²⁷ +102 (*c* 0.84, CHCl₃); IR (NaCl) 3019 (C–H), 1748 (C=O), 1696 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.42-7.29 (m, 3H, Ar*H*), 7.09-7.01 (m, 4H, Ar*H*), 6.79 (d, *J* = 9.0 Hz, 2H, Ar*H*), 6.67 (s, 4H, ArH), 6.19 (t, *J* = 2.4 Hz, 1H, C*H*₂), 5.56 (t, *J* = 2.4 Hz, 1H, C*H*₂), 4.05 (dt, *J* = 2.4, 18.3 Hz, 1H, C*H*₂), 3.81-3.73 (m, 1H, C*H*₂), 3.78 (s, 3H, C*H*₃), 3.74 (s, 3H, C*H*₃), 0.97 (s, 9H, C*H*₃); ¹³C NMR (75 MHz, CDCl₃) δ 174.5 (C), 168.5 (C), 159.3 (C), 158.7 (C), 151.5 (C), 139.1 (C), 137.5 (C), 131.7 (CH), 130.1 (C), 129.5 (C), 129.0 (CH), 128.3 (CH), 127.9 (CH), 127.6 (CH), 116.8 (CH₂), 113.5 (CH), 113.4 (CH), 83.3 (C), 74.8 (C), 55.3 (CH₃), 55.2 (CH₃), 37.7 (CH₂), 27.1 (CH₃). Anal. Calcd for C₃₁H₃₂N₂O₆: C, 70.44; H, 6.10; N, 5.30. Found: C, 70.09; H, 6.06; N, 5.35. The enantiomeric excess was determined by HPLC with a Daicel Chiralpak IF column (hexane/EtOH = 80/20), flow rate 0.5 mL/min, UV detection 274 nm, t_R (major) = 38.8 min, t_R (minor) = 52.3 min.

Characterization for 7c

A solution of **5i**, Boc₂O, Et₃N, and DMAP in CH₂Cl₂ was stirred at room temperature for 24 h. The crude material was purified by column chromatography (silica gel, hexane/EtOAc = 3/1 to 1/1) to give **7c** (61.8 mg, 97%, 95% ee) as a white oil: $R_f = 0.59$ (silica gel, hexane/EtOAc = 2/1); $[\alpha]_D^{27}$ +76.1 (*c* 0.86, CHCl₃); IR (NaCl) 3018 (C–H), 1747 (C=O), 1700 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.54 (d, J = 8.4 Hz, 2H, Ar*H*), 7.44-7.27 (m, 5H, Ar*H*), 7.04-7.01 (m, 2H, Ar*H*), 6.67 (s, 4H, Ar*H*), 6.24 (t, J = 2.4 Hz, 1H, CH₂), 5.62 (t, J = 2.4 Hz, 1H, CH₂), 4.14 (dt, J = 2.4, 18.3 Hz, 1H, CH₂), 3.74 (s, 3H, CH₃), 0.94 (s, 9H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 173.7 (*C*), 168.5 (*C*), 159.0 (*C*), 151.5 (*C*), 142.1 (*C*), 138.7 (*C*), 136.7 (*C*), 131.6 (*C*), 129.2 (*C*H), 129.1 (*C*), 128.2 (*C*H), 127.5 (*C*H₃), 27.0 (*C*H₃). Anal. Calcd for C₃₁H₂₉F₃N₂O₅: C, 65.72; H, 5.16; N, 4.94. Found: C, 65.93; H, 5.25; N, 5.18. The enantiomeric excess was determined by HPLC with a Daicel Chiralpak IE column (hexane/EtOH = 80/20), flow rate 0.5 mL/min, UV detection 274 nm, t_R (major) = 43.0 min, t_R (minor) = 33.6 min.

Characterization for 7d

A solution of **5j**, Boc₂O, Et₃N, and DMAP in CH₂Cl₂ was stirred at room temperature for 24 h. The crude material was purified by column chromatography (silica gel, hexane/EtOAc = 3/1 to 1/1) to give **7d** (63.9 mg, 90%, 57% ee) as a colorless oil: $R_f = 0.47$ (silica gel, hexane/EtOAc = 1/1); $[\alpha]_D^{27}$ +87.6 (*c* 1.05, CHCl₃); IR (NaCl) 3019 (C–H), 1643 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃, 50 °C) δ 7.80-7.75 (m, 2H, Ar*H*), 7.59-7.25 (m, 8H, Ar*H*), 7.00 (d, *J* = 6.3 Hz, 2H, Ar*H*), 6.76 (d, *J* = 8.4 Hz, 2H, Ar*H*), 6.47 (d, *J* = 9.3 Hz, 2H, Ar*H*), 6.31 (s, 1H, CH₂), 5.61 (s, 1H, CH₂), 4.37 (d, *J* = 18.9 Hz, 1H, CH₂), 3.84 (d, *J* = 18.9 Hz, 1H, CH₂), 3.62 (s, 3H, CH₃), 0.82 (s, 9H, CH₃); ¹³C NMR (75 MHz, CDCl₃,

50 °C) δ 174.2 (*C*), 168.6 (*C*), 158.8 (*C*), 151.1 (*C*), 139.2 (*C*), 137.6 (*C*), 134.5 (*C*), 130.8 (*C*H), 130.2 (*C*H), 129.4 (*C*H), 128.9 (*C*H), 128.0 (*C*H), 125.6 (*C*H), 125.3 (*C*H), 124.8 (*C*H), 117.3 (*C*), 113.5 (*C*H), 83.2 (*C*), 55.3 (*C*H₃), 39.9 (*C*H₂), 28.2 (*C*), 27.1 (*C*H₃). Anal. Calcd for C₃₄H₃₂N₂O₅: C, 74.43; H, 5.88; N, 5.11. Found: C, 74.56; H, 5.70; N, 5.36. The enantiomeric excess was determined by HPLC with a Daicel Chiralpak IE column (hexane/EtOH = 80/20), flow rate 0.5 mL/min, UV detection 274 nm, t_R (major) = 52.9 min, t_R (minor) = 38.2 min.

Synthesis and characterization of 8

To a solution of 7a (85.2 mg, 0.171 mmol) in THF/H₂O (4/1, 1.7 mL) was added LiOH (12.3 mg, 0.513 mmol, 3.0 equiv.) at room temperature. The resulting mixture was warmed to 60 °C and stirred for 24 h. The reaction was quenched by addition of saturated aqueous citric acid (10 mL). The resulting mixture was extracted with EtOAc (50 mL), washed with brine (10 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo to give a crude material (51.6 mg). To a solution of this crude material in CH₂Cl₂ (0.90 mL) was added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI HCl, 39.3 mg, 0.205 mmol, 1.2 equiv.), p-chlorophenol (26.4 mg, 0.205 mmol, 1.2 equiv.) and DMAP (9.6 mg, 0.086 mmol, 0.5 equiv.) at room temperature under a nitrogen atmosphere. After stirring the solution at the same temperature for 72 h, the reaction mixture was diluted with EtOAc (50 mL), washed with brine (10 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude residue was purified by column chromatography (silica gel, hexane/EtOAc = 4/1 to 2/1) to give 8 (28.9) mg, 52%, 95% ee) as a white solid: $R_f = 0.43$ (silica gel, hexane/EtOAc = 2/1); M.p. 127–129 °C; [α]_D²⁷ +18.2 (*c* 1.08, CHCl₃); IR (KBr) 1757 (C=O), 1703 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.42-7.26 (m, 7H, ArH), 7.02 (d, J = 9.0, Hz, 2H, ArH), 6.81 (d, J = 8.7 Hz, 2H, ArH), 6.74 (d, J = 9.0Hz, 2H, ArH), 6.28 (s, 1H, CH₂), 5.57 (s, 1H, CH₂), 3.79-3.70 (m, 4H, , CH₃, CH₂), 3.50 (d, J = 16.8Hz, 1H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 170.2 (C), 167.7 (C), 158.2 (C), 148.6 (C), 138.4 (C), 136.5 (*C*), 131.8 (*C*), 129.7 (*C*), 129.6 (*C*H), 128.7 (*C*H), 128.6 (*C*H), 128.0 (*C*H), 127.2 (*C*H), 122.3 (*C*H), 118.3 (*C*H₂), 113.8 (*C*H), 71.9 (*C*), 55.3 (*C*H₃), 40.9 (*C*H₂). Anal. Calcd for $C_{25}H_{20}CINO_4$: C, 69.21; H, 4.65; N, 3.23. Found: C, 69.15; H, 4.79; N, 3.46. The enantiomeric excess was determined by HPLC with a Daicel Chiralpak IF column (hexane/EtOH = 80/20), flow rate 0.5 mL/min, UV detection 274 nm, t_R (major) = 29.6 min, t_R (minor) = 32.8 min.

References

[1] (a) T. Suzuki, J. ichi Atsumi, T. Sengoku, M. Takahashi and H. Yoda, *J. Organomet. Chem.*, 2010,
695, 128–136; (b) M. Takahashi, Y. Murata, M. Ishida, F. Yagishita, M. Sakamoto, T. Sengoku and H. Yoda, *Org. Biomol. Chem.*, 2014, 12, 7686–7689.

[2] J. S. Dickstein, M. W. Fennie, A. L. Norman, B. J. Paulose and M. C. Kozlowski, J. Am. Chem. Soc., 2008, 130, 15794–15795.

Column: Daicel CHIRALPAK IC (ϕ 0.46 cm, L 25 cm); Eluent: *n*-hexane/EtOH = 96/4; Flow rate: 0.5 mL/min; UV detection: 274 nm.

Enantiomerically enriched (+)-5a (96% ee)

Column: Daicel CHIRALPAK IE (ϕ 0.46 cm, L 25 cm); Eluent: *n*-hexane/EtOH = 80/20; Flow rate:

NHPMP NHPh (+)-5b

0

Racemate of 5b

Enantiomerically enriched (+)-5b (96% ee)

Column: Daicel CHIRALPAK IE (ϕ 0.46 cm, L 25 cm); Eluent: *n*-hexane/EtOH = 80/20; Flow rate:

0.5 mL/min; UV detection: 274 nm.

Racemate of 5c

Enantiomerically enriched (+)-5c (96% ee)

Column: Daicel CHIRALPAK IE (ϕ 0.46 cm, L 25 cm); Eluent: *n*-hexane/EtOH = 80/20; Flow rate: 0.5 mL/min; UV detection: 274 nm.

.^tBu

Enantiomerically enriched (+)-5d (96% ee)

Column: Daicel CHIRALPAK IE (ϕ 0.46 cm, L 25 cm); Eluent: *n*-hexane/EtOH = 80/20; Flow rate:

0.5 mL/min; UV detection: 274 nm.

Racemate of 5e

	D. 8765						140.10	39.253			TIME 5.665 5.877 31.847	AREA 1211 719 32115	HEIGHT 135 94 731	MK V	IDNO	CONC 1.8356 1.0899 48.6763
•	•	0	0	•	•	0	0	•	0	°.	39.253	31932	541			48.3981
	ш) І	1	1	- 20	10	1 30	00	40	1	1 20	TOTAL	65977	1502			100

Enantiomerically enriched (+)-5e (94% ee)

Column: Daicel CHIRALPAK IC (ϕ 0.46 cm, L 25 cm); Eluent: *n*-hexane/EtOH = 96/4; Flow rate: 0.5

Enantiomerically enriched (+)-5f (90% ee)

Column: Daicel CHIRALPAK IC (ϕ 0.46 cm, L 25 cm); Eluent: *n*-hexane/EtOH = 96/4; Flow rate: 0.5

Column: Daicel CHIRALPAK IC (ϕ 0.46 cm, L 25 cm); Eluent: *n*-hexane/EtOH = 96/4; Flow rate: 0.5 mL/min; UV detection: 274 nm.

Column: Daicel CHIRALPAK IB (ϕ 0.46 cm, L 25 cm); Eluent: *n*-hexane/EtOH = 96/4; Flow rate: 0.5 mL/min; UV detection: 274 nm.

Racemate of 5i

Enantiomerically enriched (+)-5i (95% ee)

Column: Daicel CHIRALPAK IC (ϕ 0.46 cm, L 25 cm); Eluent: *n*-hexane/EtOH = 96/4; Flow rate: 0.5

S32

TOTAL

258068

100

Column: Daicel CHIRALPAK IC (ϕ 0.46 cm, L 25 cm); Eluent: *n*-hexane/EtOH = 90/10; Flow rate:

Racemate of 5k

8 6 6	17.607 0.367		TIME	AREA	MK	IDNO	CONC
		5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.398 12.5 17.607 20.367	12586 1491 20448 20593			22.8342 2.7058 37.0986 37.3615
			TOTAL	55119			100

Enantiomerically enriched (+)-5k (22% ee)

6.167 6.46 9 9 12.117 18.84 24 0 12.402 15 10 10 10 10 10 10 10 10 10 10	912 092 V 218 362 527 110	-	1.9769 6.7054 4.8095 52.8339 33.6744 100

Column: Daicel CHIRALPAK IF (ϕ 0.46 cm, L 25 cm); Eluent: *n*-hexane/EtOH = 80/20; Flow rate: 0.5 mL/min; UV detection: 274 nm.

Enantiomerically enriched (+)-7a (96% ee, from 5a)

Enantiomerically enriched (+)-7a (91% ee, from 5b)

Enantiomerically enriched (+)-7a (92% ee, from 5c)

Enantiomerically enriched (+)-7a (94% ee, from 5e)

Enantiomerically enriched (+)-7a (90% ee, from 5f)

Enantiomerically enriched (+)-7a (82% ee, from 5g)

Column: Daicel CHIRALPAK IE (ϕ 0.46 cm, L 25 cm); Eluent: *n*-hexane/EtOH = 80/20; Flow rate:

0.5 mL/min; UV detection: 274 nm.

Racemate of 7b

Enantiomerically enriched (+)-7b (92% ee)

Column: Daicel CHIRALPAK IE (ϕ 0.46 cm, L 25 cm); Eluent: *n*-hexane/EtOH = 80/20; Flow rate:

0.5 mL/min; UV detection: 274 nm.

Racemate of 7c

Enantiomerically enriched (+)-7c (95% ee)

Column: Daicel CHIRALPAK IE (ϕ 0.46 cm, L 25 cm); Eluent: *n*-hexane/EtOH = 80/20; Flow rate:

0.5 mL/min; UV detection: 274 nm.

Racemate of 7d

	5.665						006.16		42.767	TIME 5.665 31.588	AREA 704 27757	HE I GHT 68 681	MK	IDNO	CONC 1.2612 49.7472
0					0	0	0	0	-	42.767	27335	495			48.9916
Ċ.	10	10.	<u>م</u>	80 .	21 10	30.	35.	40.	4 0	TOTAL	55795	1244			100
1	1	1	1	1	1	1	1	1	1						

Enantiomerically enriched (+)-7d (57% ee)

Column: Daicel CHIRALPAK IE (ϕ 0.46 cm, L 25 cm); Eluent: *n*-hexane/EtOH = 80/20; Flow rate:

0.5 mL/min; UV detection: 274 nm.

Racemate of 8

Enantiomerically enriched (+)-8 (95% ee, from 7a)

