Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Copper(II) Catalyzed Synthesis of Novel Helical Luminescent Benzo[4,5]imidazo[1,2-*a*][1,10]phenanthrolines via an Intramolecular C–H Amination Reaction

Ramon Borges da Silva,^a Rodolfo Inêz Teixeira,^a James L. Wardell,^{b,c} Solange M. S. V. Wardell,^d and Simon J. Garden^a*

^a Instituto de Química, Universidade Federal do Rio de Janeiro, Centro Tecnológica,

Bloco A, Cidade Universitária, Ilha do Fundão, 21949-909 Rio de Janeiro, RJ, Brazil.

^b Instituto de Tecnologia em Fármacos – Farmanguinhos, Fiocruz. R. Sizenando Nabuco, 100,

Manguinhos, 21041-250, Rio de Janeiro, RJ, Brazil.

^c Department of Chemistry, University of Aberdeen, Old Aberdeen, AB24 3UE, Scotland

^d CHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland.

*E-mail: garden@iq.ufrj.br; Tel: +55-21-3938-7135

Contents

	Pages
1 H, 13 C spectra of compounds 3	2 - 21
1 H, 13 C spectra of compound 5	22
1 H, 13 C spectra of compounds 6	23 - 34
HRMS of compounds 3 , 5 and 6	35 - 50
2D NMR of compound 3a and of compound 6a	51 - 53
Theoretical calculations of 6a and 6a TS	55 - 56
Absorption, emission and excitation spectra of 6a	56 - 58
in different solvents.	
Crystallography Experimental and details	59 - 66

SI Figure 1: ¹H NMR: *N*-phenyl-1,10-phenanthroline (**3a**), (300 MHz, DMSO-d₆).

SI Figure 2: ¹³C NMR: *N*-phenyl-1,10-phenanthroline (**3a**), (75 MHz, DMSO-d₆).

SI Figure 3: ¹H NMR: *N*-(2-methoxyphenyl)-1,10-phenanthrolin-2-amine (**3b**), (200 MHz, DMSO-d₆).

SI Figure 4: ¹³C NMR: *N*-(2-methoxyphenyl)-1,10-phenanthrolin-2-amine (3**b**), (50 MHz, DMSO-d₆).

SI Figure 5: ¹H NMR *N*-o-tolyl-1,10-phenanthrolin-2-amine (**3c**), (500 MHz, CDCl₃).

SI Figure 6: ¹³C NMR: *N*-o-tolyl-1,10-phenanthrolin-2-amine (**3**c), (125 MHz, CDCl₃).

SI Figure 7: ¹H NMR: *N*-(2-fluorophenyl)-1,10-phenanthrolin-2-amine (**3d**), (500 MHz, DMSO-d₆)

MHz, DMSO-d₆)

SI Figure 9: ¹H NMR: *N*-(2-chlorophenyl)-1,10-phenanthrolin-2-amine (**3e**), (500 MHz, DMSO-d₆).

SI Figure 10: ¹³C NMR: *N*-(2-chlorophenyl)-1,10-phenanthrolin-2-amine (**3e**), (125 MHz, DMSO-d₆).

SI Figure 11: ¹H NMR: *N*-(3-methoxyphenyl)-1,10-phenanthrolin-2-amine (3**f**), (200 MHz, DMSO-d₆).

SI Figure 12: ¹³C NMR: *N*-(3-methoxyphenyl)-1,10-phenanthrolin-2-amine (**3f**), (50 MHz, DMSO-d₆).

SI Figure 13: ¹H NMR: *N*-m-tolyl-1,10-phenanthrolin-2-amine (**3**g), (300 MHz, DMSO-d₆).

SI Figure 14: ¹³C NMR: *N*-m-tolyl-1,10-phenanthrolin-2-amine (**3g**), (75 MHz, DMSO-d₆).

SI Figure 15: ¹H NMR: *N*-(3-fluorophenyl)-1,10-phenanthrolin-2-amine (**3h**), (500 MHz, DMSO-d₆).

SI Figure 16: ¹³C NMR: *N*-(3-fluorophenyl)-1,10-phenanthrolin-2-amine (**3h**), (125 MHz, DMSO-d₆).

SI Figure 17: ¹H NMR: *N*-(3-chlorophenyl)-1,10-phenanthrolin-2-amine (**3i**), (300 MHz, DMSO-d₆).

SI Figure 18: ¹³C NMR: *N*-(3-chlorophenyl)-1,10-phenanthrolin-2-amine (**3i**), (75 MHz, DMSO-d₆).

SI Figure 19: ¹H NMR: *N*-(3-(trifluoromethyl)phenyl)-1,10-phenanthrolin-2-amine (**3j**) (200 MHz, DMSO-d₆).

SI Figure 20: ¹³C NMR: *N*-(3-(trifluoromethyl)phenyl)-1,10-phenanthrolin-2-amine (**3j**), (50 MHz, DMSO-d₆)

SI Figure 21: ¹H NMR: 3-(1,10-phenanthrolin-2-ylamino)benzonitrile (**3**k), (200 MHz, DMSO-d₆).

SI Figure 22: ¹³C NMR: 3-(1,10-phenanthrolin-2-ylamino)benzonitrile (**3k**), (50 MHz, DMSO-d₆).

SI Figure 23: ¹H NMR: *N*-(3-nitrophenyl)-1,10-phenanthrolin-2-amine (**3**I), (500 MHz, DMSO-d₆).

SI Figure 24: ¹³C NMR: *N*-(3-nitrophenyl)-1,10-phenanthrolin-2-amine (**3**I), (125 MHz, DMSO-d₆).

SI Figure 25: ¹H NMR: *N*-(4-methoxyphenyl)-1,10-phenanthrolin-2-amine (**3m**), (300 MHz, DMSO-d₆).

SI Figure 26: ¹³C NMR: *N*-(4-methoxyphenyl)-1,10-phenanthrolin-2-amine (**3m**), (75 MHz, DMSO-d₆).

SI Figure 27: ¹H NMR: *N*-p-tolyl-1,10-phenanthrolin-2-amine (**3n**), (300 MHz, DMSO-d₆).

d₆).

SI Figure 29: ¹H NMR: *N*-(4-fluorophenyl)-1,10-phenanthrolin-2-amine (**30**), (200 MHz, DMSO-d₆).

SI Figure 30: ¹³C NMR: *N*-(4-fluorophenyl)-1,10-phenanthrolin-2-amine (**30**), (50 MHz, DMSO-d₆).

SI Figure 31: ¹H NMR: *N*-(4-chlorophenyl)-1,10-phenanthrolin-2-amine (**3p**), (300 MHz, DMSO-d₆).

SI Figure 32: ¹³C NMR: *N*-(4-chlorophenyl)-1,10-phenanthrolin-2-amine (3**p**), (75 MHz, DMSO-d₆).

SI Figure 33: ¹H NMR: *N*-(4-bromophenyl)-1,10-phenanthrolin-2-amine (**3q**), (200 MHz, DMSO- d_6).

SI Figure 34: ¹³C NMR: *N*-(4-bromophenyl)-1,10-phenanthrolin-2-amine (**3q**) (50 MHz, DMSO-d₆).

SI Figure 35: ¹H NMR: 4-(1,10-phenanthrolin-2-ylamino)benzonitrile (**3r**), (300 MHz, DMSO-d₆).

SI Figure 36: ¹³C NMR: 4-(1,10-phenanthrolin-2-ylamino)benzonitrile (**3r**), (75 MHz, DMSO-d₆).

SI Figure 37: ¹H NMR: *N*-(naphthalen-1-yl)-1,10-phenanthrolin-2-amine (**3s**) (200 MHz, CDCl₃).

SI Figure 38: ¹³C NMR: *N*-(naphthalen-1-yl)-1,10-phenanthrolin-2-amine (**3s**), (50 MHz, CDCl₃).

SI Figure 39: ¹H NMR: *N*-(naphthalen-2-yl)-1,10-phenanthrolin-2-amine (**3t**), (500 MHz, DMSO-d₆, CDCl₃).

SI Figure 40: ¹³C NMR: *N*-(naphthalen-2-yl)-1,10-phenanthrolin-2-amine (**3t**), (125 MHz, DMSO-d₆, CDCl₃).

SI Figure 41: ¹H NMR: benzo[4,5]imidazo[1,2-*a*]pyridine (**5**), (500 MHz, CDCl₃).

SI Figure 42: ¹³C NMR: benzo[4,5]imidazo[1,2-*a*]pyridine (5), (125 MHz, CDCl₃).

SI Figure 43: ¹H NMR: benzo[4,5]imidazo[1,2-*a*][1,10]phenanthroline (**6a**), (500 MHz, CDCl₃).

SI Figure 44: ¹³C NMR: benzo[4,5]imidazo[1,2-*a*][1,10]phenanthroline (**6a**), (125 MHz, CDCl₃).

SI Figure 45: ¹H NMR: 12-methylbenzo[4,5]imidazo[1,2-*a*][1,10]phenanthroline (**6c**), (300 MHz, CDCl₃).

SI Figure 46: ¹³C NMR: 12-methylbenzo[4,5]imidazo[1,2-*a*][1,10]phenanthroline (**6c**), (75 MHz, CDCl₃).

SI Figure 47: ¹H NMR: 12-fluorobenzo[4,5]imidazo[1,2-*a*][1,10]phenanthroline (**6d**), (500 MHz, CDCl₃).

(125 MHz, CDCl₃).

SI Figure 49: ¹H NMR: 13-methoxybenzo[4,5]imidazo[1,2-*a*][1,10]phenanthroline (**6f**), (300 MHz, CDCl₃).

(6f), (75 MHz, CDCl₃).

SI Figure 51: ¹H NMR: 13-methylbenzo[4,5]imidazo[1,2-*a*][1,10]phenanthroline (**6g**), (500 MHz,CDCl₃).

SI Figure 52: ¹³C NMR: 13-methylbenzo[4,5]imidazo[1,2-*a*][1,10]phenanthroline (**6**g), (75 MHz, CDCl₃).

SI Figure 53: ¹H NMR: 13-fluorobenzo[4,5]imidazo[1,2-*a*][1,10]phenanthroline (**6h**), (500 MHz, CDCl₃).

SI Figure 54: ¹³C NMR: 13-fluorobenzo[4,5]imidazo[1,2-*a*][1,10]phenanthroline (**6h**), (125 MHz, CDCl₃).

SI Figure 55: ¹H NMR: 13-clorobenzo[4,5]imidazo[1,2-*a*][1,10] fenantrolina (**6i**), (300 MHz, CDCl₃)

SI Figure 56: ¹³C NMR: 13-chlorobenzo[4,5]imidazo[1,2-*a*][1,10]phenanthroline (**6i**), (75 MHz, CDCl₃).

SI Figure 57: ¹H NMR: 13-(trifluoromethyl)benzo[4,5]imidazo[1,2-*a*][1,10]phenanthroline (**6j**), (500 MHz, CDCl₃).

SI Figure 58: ¹³C NMR: 13-(trifluoromethyl)benzo[4,5]imidazo[1,2-*a*][1,10] phenanthroline (**6j**), (125 MHz, CDCl₃)

SI Figure 59: ¹H NMR: 14-methoxybenzo[4,5]imidazo[1,2-a][1,10]phenanthroline (**6m**), (300 MHz, CDCl₃, DMSO-d₆).

SI Figure 60: ¹³C NMR: 14-methoxybenzo[4,5]imidazo[1,2-a][1,10]phenanthroline (**6m**), (75 MHz, CDCl₃, DMSO-d₆).

SI Figure 61: ¹H NMR: 14-methylbenzo[4,5]imidazo[1,2-*a*][1,10]phenanthroline (**6n**), (500 MHz, CDCl₃).

SI Figure 62: ¹H NMR: 14-methylbenzo[4,5]imidazo[1,2-*a*][1,10]phenanthroline (**6n**), (125 MHz, CDCl₃).

SI Figure 63: ¹H NMR: 14-fluorobenzo[4,5]imidazo[1,2-*a*][1,10]phenanthroline (**60**), (300 MHz,CDCl₃).

SI Figure 64: ¹³C NMR: 14-fluorobenzo[4,5]imidazo[1,2-*a*][1,10]phenanthroline (**60**), (75 MHz, CDCl₃).

SI Figure 65: ¹H NMR: 14-chlorobenzo[4,5]imidazo[1,2-*a*][1,10]phenanthroline (**6p**), (500 MHz, CDCl₃).

(125 MHz, CDCl₃).

SI Figure 67: HRMS of compound 3a

SI Figure 68: HRMS of compound 3b.

SI Figure 69: HRMS of compound 3c

SI Figure 70: HRMS of compound 3d

SI Figure 71: HRMS of compound 3e

SI Figure 72: HRMS of compound 3f

SI Figure 73: HRMS of compound 3g

SI Figure 74: HRMS of compound 3h

SI Figure 75: HRMS of compound 3i

SI Figure 76: HRMS of compound 3j

SI Figure 77: HRMS of compound 3k

SI Figure 78: HRMS of compound 31

SI Figure 79: HRMS of compound 3m

SI Figure 81: HRMS of compound 30

SI Figure 82: HRMS of compound **3p**

SI Figure 84: HRMS of compound 3r

SI Figure 85: HRMS of compound 3s

SI Figure 86: HRMS of compound 3t

SI Figure 87: HRMS of compound 5

SI Figure 88: HRMS of compound 6a

SI Figure 89: HRMS of compound 6c

SI Figure 91: HRMS of compound 6f

SI Figure 92: HRMS of compound 6g

SI Figure 93: HRMS of compound 6h

SI Figure 94: HRMS of compound 6i

SI Figure 97: HRMS of compound 6n

SI Figure 98: HRMS of compound 60

SI Figure 99: HRMS of compound 6p

SI Figure 100: COSY spectrum of *N*-phenyl-1,10-phenanthroline (**3a**)

SI Figure 101: HMQC spectrum of *N*-phenyl-1,10-phenanthroline (**3a**)

SI Figure 102: HMBC spectrum of *N*-phenyl-1,10-phenanthroline (**3a**)

Si fuolo il fictoronaciona concentiona (filibe)											
¹ H NMR	NH	H9	Η7	H12	H4	Н5	H6	H8	H13	H3	H14
δ	9.63	9.09	8.38	8.32	8.20	7.81	7.70	7.68	7.37	7.27	6.97
113.94	³ J										
118.26	³ J								2 J		³ J
120.87				³ J							
122.17		2 J									
122.61			³ J								
122.76						2 J	³ J			³ J	
126.40					^{3}J						
128.83											2 J
128.92		⁴ J	2 J			³ J		³ J			
135.92		^{3}J									
137.22						^{3}J	^{4}JW				
141.68				² J					³ J		
144.81	⁴ J W	³ J	³ J		³ J	³ J	³ J				
149.49			3 J					2 J			
154.62	³ J				³ J						
	¹ H NMR δ 113.94 118.26 120.87 122.17 122.61 122.76 126.40 128.83 128.92 135.92 137.22 141.68 144.81 149.49 154.62	¹ H NMR NH δ 9.63 113.94 ³ J 118.26 ³ J 120.87 3J 122.17 122.61 122.61 122.76 126.40 128.83 128.92 135.92 137.22 141.68 144.81 ⁴ J W 149.49 3J	¹ H NMR NH H9 δ 9.63 9.09 113.94 ³ J 1 118.26 ³ J 1 120.87 2J 2J 122.17 ² J 2J 122.61 1 2 122.76 1 3J 128.83 1 3J 135.92 ⁴ J 3J 137.22 1 3J 141.68 4J W 3J 149.49 3J 1	¹ H NMR NH H9 H7 δ 9.63 9.09 8.38 113.94 ³ J J 118.26 ³ J J 120.87 ² J ³ J 122.17 ² J ³ J 122.61 ³ J J 122.76 J J 128.83 J J 135.92 ⁴ J ² J 137.22 J J 141.68 J J 144.81 ⁴ J W ³ J 154.62 ³ J	¹ H NMR NH H9 H7 H12 δ 9.63 9.09 8.38 8.32 113.94 ³ J - - - 118.26 ³ J - - - 120.87 ² J - - - - 122.17 ² J - - - - - 122.61 ³ J -	¹ H NMR NH H9 H7 H12 H4 δ 9.63 9.09 8.38 8.32 8.20 113.94 ³ J - - - - - 113.94 ³ J -	¹ H NMR NH H9 H7 H12 H4 H5 δ 9.63 9.09 8.38 8.32 8.20 7.81 113.94 ³ J - - - - - 113.94 ³ J - - - - - - 113.94 ³ J -	InterformationInterformationInterformationInterformationInterformationInterformationInterformationInterformation1NMRNHH9H7H12H4H5H6 δ 9.639.098.388.328.207.817.70113.94 3 J 3 J 3 J 3 J 3 J ${}^{7.70}$ 113.94 3 J 3 J 3 J 3 J ${}^{7.70}$ 120.87 3 J 3 J 3 J 3 J 2 J 3 J122.61 3 J 3 J 2 J 3 J 2 J 3 J122.76 4 J 2 J 3 J 3 J 3 J 3 J128.83 2 J 3 J 3 J 3 J 3 J 3 J135.92 3 J 2 J 3 J 3 J 3 J 3 J137.22 2 J 3 J 3 J 3 J 3 J 3 J144.81 4 JW 3 J 3 J 3 J 3 J 3 J154.62 3 J 3 J 3 J 3 J 3 J	¹ H NMR NH H9 H7 H12 H4 H5 H6 H8 δ 9.63 9.09 8.38 8.32 8.20 7.81 7.70 7.68 113.94 ³ J -	¹ H NMR NH H9 H7 H12 H4 H5 H6 H8 H13 δ 9.63 9.09 8.38 8.32 8.20 7.81 7.70 7.68 7.37 113.94 ³ J - - - - - 2J 118.26 ³ J - - - - 2J 120.87 - - 3J - - 2J 122.17 ² J - - - - - 2J 122.61 - <	¹ H NMR NH H9 H7 H12 H4 H5 H6 H8 H13 H3 δ 9.63 9.09 8.38 8.32 8.20 7.81 7.70 7.68 7.37 7.27 113.94 ³ J - - - - 2J - - 2J - - - 2J - - - 2J - - - 2J -

SI Table 1. Heter	onuclear multipl	e bond corr	elations (HMBC)
-------------------	------------------	-------------	-----------------

SI Figure 103: COSY spectrum of benzo[4,5]imidazo[1,2-*a*][1,10]phenanthroline (6a).

SI Figure 104: HMQC spectrum of benzo[4,5]imidazo[1,2-*a*][1,10]phenanthroline (6a).

SI Figure 105: HMBC spectrum of benzo[4,5]imidazo[1,2-*a*][1,10]phenanthroline (**6a**).

01 140	10 2. 110		01001 1110	and pro	00114 00	/11 C 14(1		<i>c</i>).			
	ΙΗ	H9	H15	H7	H12	Н3	H5,6	H4	H8	H13	H14
¹³ C	δ	9.02	8.85	8.28	8.01	7.93	7.79	7.75	7.61	7.55	7.34
C3	118.70							2 J			
C12	118.94										³ J
C15	120.37									³ J	
C14	120.69				³ J						
C8	122.89	2 J									
C4a	124.69					³ J	³ J				
C6	125.11			³ J							
C13	125.54		³ J								
C5	127.01							³ J			
C6a	128.69						³ J		³ J		
C4	131.09					2 J	³ J				
*C1a,	133.08		⁴ JU1a				³ J1a	³ J1a			
C15a	133.10				³ J15a						³ J15a
C7	136.36	³ J									
C10a	139.04	³ J		³ J			³ J				
C11a	143.09		³ J							³ J	
C9	147.52			³ J					2 J		
C2	148.61					² J		³ J			

SI Table 2. Heteronuclear multiple bond correlations (HMBC).

* Not possible to distinguish between C1a and C15a. The ¹³C resonances are arbitrarily assigned.

Theoretical calculations

SI Table 3. Calculated energies of **6a** (energy minimum) and **6a**TS, the transition state leading to chirality inversion. [B3LYP/6-31+G(d)]

	6a	6a TS (-45 cm ⁻¹)*
Total Electronic Energy=	-856.8458656	-856.843579
Zero-point correction=	0.246505	0.246395
Thermal correction to Energy=	0.260234	0.259354
Thermal correction to Enthalpy=	0.261178	0.260299
Thermal correction to Gibbs Free Energy=	0.206062	0.207156
Sum of electronic and zero-point Energies=	-856.599361	-856.597184
Sum of electronic and thermal Energies=	-856.585632	-856.584225
Sum of electronic and thermal Enthalpies=	-856.584688	-856.58328
Sum of electronic and thermal Free Energies=	-856.639804	-856.636423

* imaginary vibration (an in and out of molecular plane wagging motion of the "arms" of the structure giving rise to either of the enantiomers).

	Compound 6a			Compound 6aTS			
С	-3.195973	-2.669596	-0.350474	3.286087	-2.686682	0.000004	
С	-3.757723	-1.476002	0.046343	3.839769	-1.426553	-0.000258	
С	-2.949392	-0.32014	0.171633	3.008977	-0.280178	-0.000256	
С	-1.54167	-0.46402	-0.066438	1.583439	-0.474693	0.000103	
С	-1.810074	-2.68994	-0.625109	1.878869	-2.776793	0.00048	
С	-3.504531	0.958625	0.453152	3.567055	1.024235	-0.000389	
С	-0.687384	0.693912	0.053065	0.698803	0.675386	-0.0002	
С	-1.295702	1.963499	0.182511	1.310181	1.956929	-0.000245	
С	-2.700062	2.062617	0.416106	2.729949	2.099143	-0.00038	
С	-0.523155	3.164629	0.015293	0.536506	3.165402	0.000096	
Η	-1.032516	4.121026	0.096076	1.063507	4.11525	0.000023	
С	0.798503	3.10252	-0.290965	-0.815128	3.114069	0.00043	
С	1.454626	1.839941	-0.309697	-1.465253	1.852501	0.000432	
Н	-4.571621	1.047411	0.640558	4.647069	1.146375	-0.000708	
Η	-3.792326	-3.569572	-0.468232	3.898613	-3.583322	-0.000121	
Н	-4.824419	-1.396347	0.244114	4.918613	-1.287809	-0.000605	
Н	-1.335428	-3.605372	-0.977281	1.392976	-3.752804	0.0009	
Η	-3.12037	3.054994	0.558987	3.130744	3.109396	-0.000527	
Η	1.406968	3.982003	-0.470132	-1.448991	3.993641	0.000712	
С	2.924765	0.297054	-0.186832	-2.963392	0.339435	-0.000182	
С	4.14192	-0.403361	-0.120839	-4.207019	-0.31498	-0.000601	
С	1.677205	-1.686206	0.529632	-1.773091	-1.784924	0.000311	
С	4.114757	-1.732036	0.273007	-4.225266	-1.699027	-0.000538	
Η	5.069353	0.112321	-0.351618	-5.116058	0.279094	-0.000883	
С	2.894056	-2.355691	0.612601	-3.012594	-2.417445	0.000014	

Coordinates for the structures 6a and 6aTS

Н	0.75909	-2.187768	0.791355	-0.865794	-2.360235	0.000474
Η	5.040964	-2.296737	0.342265	-5.171224	-2.23452	-0.000826
Η	2.899461	-3.388639	0.950866	-3.035729	-3.504344	0.000075
Ν	2.748953	1.637408	-0.430735	-2.767643	1.693537	-0.000073
Ν	-1.016853	-1.644312	-0.480993	1.076703	-1.729212	0.000525
Ν	0.712971	0.654227	-0.048028	-0.721136	0.62894	0.000576
С	1.690724	-0.353235	0.090567	-1.732756	-0.378088	0.000227

Absorption, emission and excitation spectra of **6a** in different solvents.

SI Figure 106: Normalized absorption spectra (—), excitation (---) and emission ([…]) of **6a** in acetonitrile.

SI Figure 107: Normalized Absorption (—), excitation (---) and emission spectra ([…]) of **6a** in methanol.

SI Figure 108: Normalized absorption (—), excitation (---) and emission spectra ([…]) of **6a** in dichloromethane.

Crystallography experimental and details

Data for compound **6j** were obtained with Mo-Kα radiation at 100(2) K by means of a XtaLAB AFC12 (RCD3): Kappa single diffractometer by the NCS crystallographic service, based at the University of Southampton. Data collection, data reduction and unit cell refinement were achieved with CrysAlisPro 1.171.39.9g.⁽¹⁾ Correction for absorption was achieved by CrysAlisPro 1.171.39.9g⁽¹⁾ Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. The program MERCURY⁽²⁾ were used in the preparation of the Figures. SHELXL97⁽³⁾ and PLATON⁽⁴⁾ were used in the calculation of molecular geometry. The structures were solved by direct methods using SHELXS-97⁽³⁾ and fully refined by means of the program SHELXL-97.⁽³⁾ All hydrogen atoms were placed in calculated positions.

References

1. CrysAlisPro 1.171.39.9g Rigaku Oxford Diffraction, 2015.

2. MERCURY 3.9 Cambridge Crystallographic Data Centre: Cambridge, UK.

3. Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112–122.

4. Spek, A.L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7–13.

Identification code	Compound 6j, CCDC 1520619
Empirical formula	C38H20F6N6 (pair of enantiomers)
Formula weight	674.60
Temperature	100(2) K
Wavelength	0.71073 Agst
Crystal system	Monoclinic
Space group	P2(1)/c
Unit cell dimensions	a = 15.7235(4)Agst alpha = 90deg
	b = 7.2386(2)Agst beta = 96.401(3)deg
	c = 25.4616(7)Agst gamma = 90deg
Volume	2879.87(14) Agst@3
Ζ	4
Density (calculated)	1.556 Mg/m@3
Absorption coefficient	0.122 mm@-1
F(000)	1376
Crystal size	0.070 x 0.050 x 0.020 mm
Theta range for data collection	2.927 to 27.484 deg.
Index ranges	-18<=h<=20; -9<=k<=9; -33<=l<=23
Reflections collected	22616
Independent reflections	6501 [R(int) = 0.0329]
Reflections observed (>2sigma)	5111
Data Completeness	0.983
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.66434
Refinement method	Full-matrix least-squares on F@2
Data / restraints / parameters	6501 / 0 / 451
Goodness-of-fit on F@2	1.062
Final R indices [I>2sigma(I)]	$R \sim 1 = 0.0532$ w $R \sim 2 = 0.1128$
R indices (all data)	$R \sim 1 = 0.0738 \text{ w}R \sim 2 = 0.1223$
Largest diff. peak and hole	0.382 and -0.252 e.Agst@-3

SI Table 4. Crystal data and structure refinement for **6**j.

A figure showing the stacking of the molecules. Intermolecular interactions linking molecules are π --- π and C-H--- π interactions and C-H---N hydrogen bonds.

SI Table 5. Atomic coordinates ($x \ 10@4$) and equivalent isotropic displacement parameters (Å@2 x 10@3) for **6j**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Atom	v	V	7	U(ea)
F(1)	8000(1)	y 10266(2)	<u>2</u> 9195(1)	32(1)
F(23)	7865(1)	4454(2)	9432(1)	$\frac{32(1)}{31(1)}$
F(21)	9163(1)	3450(2)	9509(1)	36(1)
F(2)	7108(1)	8079(2)	9274(1)	37(1)
F(22)	8922(1)	6375(2)	9524(1)	35(1)
F(3)	6725(1)	10899(2)	9368(1)	39(1)
N(21)	8966(1)	5057(2)	7105(1)	$\frac{39(1)}{18(1)}$
N(1)	5859(1)	9939(2)	6938(1)	18(1)
N(31)	10064(1)	6129(2)	7693(1)	21(1)
N(10)	7518(1)	9649(2)	6588(1)	20(1)
N(30)	7158(1)	4881(2)	6792(1)	20(1) 21(1)
N(11)	5072(1)	11257(2)	7539(1)	27(1)
C(10A)	6819(1)	9121(3)	6258(1)	$\frac{22(1)}{18(1)}$
C(15A)	6350(1)	9805(3)	7431(1)	18(1)
C(35)	7987(1)	4112(3)	7815(1)	10(1)
C(35A)	8695(1)	4903(3)	7613(1)	17(1)
C(15)	7110(1)	8897(3)	7613(1)	17(1) 18(1)
C(21A)	8610(1)	4568(3)	6592(1)	17(1)
C(22)	9812(1)	5733(3)	7194(1)	19(1)
C(1A)	5987(1)	9401(3)	6423(1)	19(1)
C(33)	8653(1)	4869(3)	8698(1)	20(1)
C(34)	7976(1)	4129(3)	8358(1)	20(1)
C(30A)	7706(1)	4342(3)	6445(1)	$\frac{28(1)}{18(1)}$
C(14)	7369(1)	8958(3)	8149(1)	19(1)
C(13)	6884(1)	9877(3)	8502(1)	19(1)
C(32)	9364(1)	5609(3)	8504(1)	20(1)
C(26A)	7420(1)	3701(3)	5929(1)	20(1)
C(24A)	9163(1)	4438(3)	6200(1)	20(1)
C(31A)	9385(1)	5609(3)	7958(1)	18(1)
C(23)	10333(1)	5768(3)	6773(1)	22(1)
C(6A)	6884(1)	8454(3)	5738(1)	20(1)
C(11A)	5850(1)	10674(3)	7786(1)	20(1)
C(12)	6117(1)	10719(3)	8326(1)	21(1)
C(5)	5355(1)	8590(3)	5535(1)	24(1)
C(4A)	5264(1)	9285(3)	6048(1)	21(1)
C(16)	7176(1)	9796(3)	9077(1)	24(1)
C(6)	6130(1)	8138(3)	5388(1)	23(1)
C(2)	5082(1)	10754(3)	7043(1)	20(1)
C(9)	8277(1)	9446(3)	6422(1)	22(1)
C(3)	4377(1)	10781(3)	6640(1)	22(1)
C(28)	5983(1)	3994(3)	6152(1)	25(1)
C(27)	6528(1)	3498(3)	5796(1)	24(1)
C(29)	6327(1)	4713(3)	6643(1)	23(1)
C(7)	7712(1)	8223(3)	5586(1)	22(1)
C(8)	8408(1)	8713(3)	5925(1)	23(1)
C(25)	8852(1)	3784(3)	5689(1)	23(1)
C(26)	8012(1)	3368(3)	5559(1)	24(1)
C(4)	4454(1)	9992(3)	6171(1)	23(1)
C(36)	8646(1)	4787(3)	9284(1)	25(1)
C(24)	10034(1)	5057(3)	6303(1)	22(1)

Bond	Length [Å]	Angle	[°]
F(1)-C(16)	1.341(2)	C(21A)-N(21)-C(35A)	134.51(17)
F(23)-C(36)	1.346(3)	C(21A)-N(21)-C(22)	120.40(16)
F(21)-C(36)	1.349(3)	C(35A)-N(21)-C(22)	104.86(16)
F(2)-C(16)	1.349(3)	C(15A)-N(1)-C(1A)	134.14(17)
F(22)-C(36)	1.350(3)	C(15A)-N(1)-C(2)	105.08(16)
F(3)-C(16)	1.344(2)	C(1A)-N(1)-C(2)	120.74(16)
N(21)-C(21A)	1.408(2)	C(22)-N(31)-C(31A)	104.25(16)
N(21)-C(35A)	1.409(3)	C(9)-N(10)-C(10A)	117.89(18)
N(21)-C(22)	1.411(2)	C(29)-N(30)-C(30A)	117.77(18)
N(1)-C(15A)	1.402(2)	C(2)-N(11)-C(11A)	104.43(17)
N(1)-C(1A)	1.403(3)	N(10)-C(10A)-C(6A)	122.20(18)
N(1)-C(2)	1.410(3)	N(10)-C(10A)-C(1A)	118.64(18)
N(31)-C(22)	1.318(3)	C(6A)-C(10A)-C(1A)	118.93(18)
N(31)-C(31A)	1.378(3)	C(15)-C(15A)-N(1)	134.07(18)
N(10)-C(9)	1.319(3)	C(15)-C(15A)-C(11A)	120.83(18)
N(10)-C(10A)	1.361(3)	N(1)-C(15A)-C(11A)	$104\ 70(17)$
N(30)-C(29)	1 325(3)	C(34)-C(35)-C(35A)	11757(19)
N(30)-C(30A)	1.323(3) 1.357(3)	C(34)-C(35)-H(35)	121.2
N(11)-C(2)	1.357(3)	C(35A)-C(35)-H(35)	121.2
N(11)-C(11A)	1.378(3)	C(35)-C(35A)-N(21)	134 76(19)
C(10A)-C(6A)	1.370(3) 1 422(3)	C(35)-C(35A)-C(31A)	120.37(18)
C(10A)-C(1A)	1.122(3) 1.434(3)	N(21)-C(35A)-C(31A)	10456(16)
C(15A)-C(15)	1.398(3)	C(14)-C(15)-C(15A)	107.50(10) 117 51(18)
C(15A)-C(11A)	1.590(3)	C(14)-C(15)-H(15)	121.2
C(35)-C(34)	1.410(3)	C(15A)-C(15)-H(15)	121.2
C(35)-C(35A)	1.304(3) 1.400(3)	C(24A)-C(21A)-N(21)	121.2 117 75(17)
C(35)-C(35A)	0.9500	C(24A)-C(21A)-R(21)	117.75(17) 118 75(18)
C(35A) - C(31A)	1.414(3)	N(21)-C(21A)-C(30A)	123 31(17)
C(15) C(14)	1.414(3) 1.378(3)	N(21) - C(21A) - C(50A)	123.31(17) 114.03(17)
C(15) - C(14)	0.0500	N(31) - C(22) - N(21)	114.03(17) 125.88(18)
C(13)-11(13) C(21A) C(24A)	1.200(2)	N(31)-C(22)-C(23)	123.88(18) 110.70(18)
C(21A)-C(24A)	1.399(3) 1.420(3)	N(21)-C(22)-C(23)	119.79(18) 117.57(18)
C(21A)-C(30A)	1.439(3) 1.422(3)	C(4A) - C(1A) - N(1)	117.37(18) 110.27(18)
C(22)-C(23)	1.422(3)	N(1) C(1A) C(10A)	119.27(10) 122.05(17)
C(1A)-C(4A)	1.403(3)	(1)-C(1A)-C(10A)	122.93(17)
C(33)-C(32)	1.381(3) 1.402(2)	C(32)-C(33)-C(34)	121.04(19) 117.00(10)
C(33)-C(34)	1.402(3)	C(32)- $C(33)$ - $C(36)$	117.99(19)
C(33)-C(36)	1.495(5)	C(34)-C(33)-C(36)	120.89(18)
C(34)-H(34)	0.9500	C(35)-C(34)-C(35)	121.80(19)
C(30A)-C(26A)	1.419(3)	C(33)-C(34)-H(34)	119.1
C(14)-C(13)	1.408(3)	C(33)-C(34)-H(34)	119.1
C(14)-H(14)	0.9500	N(30)-C(30A)-C(26A)	122.50(18)
C(13)-C(12)	1.380(3)	N(30)-C(30A)-C(21A)	118.61(18)
C(13)-C(16)	1.486(3)	C(26A)-C(30A)-C(21A)	118.70(18)
C(32)-C(31A)	1.393(3)	C(15)-C(14)-C(13)	121.57(19)
C(32)-H(32)	0.9500	C(15)-C(14)-H(14)	119.2
C(26A)-C(27)	1.413(3)	C(13)-C(14)-H(14)	119.2
C(26A)-C(26)	1.415(3)	C(12)-C(13)-C(14)	121.27(19)
C(24A)-C(25)	1.419(3)	C(12)-C(13)-C(16)	119.90(18)
C(24A)-C(24)	1.436(3)	C(14)-C(13)-C(16)	118.64(18)

SI Table 6. Bond lengths [Å] and angles [°] for **6j**.

C(23)-C(24)	1.338(3)	C(33)-C(32)-C(31A)	117.89(18)
C(23)-H(23)	0.9500	C(33)-C(32)-H(32)	121.1
C(6A)-C(7)	1.410(3)	C(31A)-C(32)-H(32)	121.1
C(6A)-C(6)	1.422(3)	C(27)-C(26A)-C(26)	122.08(19)
C(11A)-C(12)	1.393(3)	C(27)-C(26A)-C(30A)	117.36(19)
C(12)-H(12)	0.9500	C(26)-C(26A)-C(30A)	120.49(19)
C(5)-C(6)	1.354(3)	C(21A)-C(24A)-C(25)	119.92(19)
C(5)-C(4A)	1.422(3)	C(21A)-C(24A)-C(24)	120.20(19)
C(5)-H(5)	0.9500	C(25)-C(24A)-C(24)	119.79(18)
C(4A)-C(4)	1.439(3)	N(31)-C(31A)-C(32)	126.49(18)
C(6)-H(6)	0.9500	N(31)-C(31A)-C(35A)	112.13(17)
C(2)-C(3)	1.425(3)	C(32)-C(31A)-C(35A)	121.20(18)
C(9)-C(8)	1.407(3)	C(24)-C(23)-C(22)	119.53(19)
C(9)-H(9)	0.9500	C(24)-C(23)-H(23)	120.2
C(3)-C(4)	1.341(3)	C(22)-C(23)-H(23)	120.2
C(3)-H(3)	0.9500	C(7)-C(6A)-C(6)	122.68(19)
C(28)-C(27)	1.363(3)	C(7)-C(6A)-C(10A)	117.42(18)
C(28)-C(29)	1.407(3)	C(6)-C(6A)-C(10A)	119.81(18)
C(28)-H(28)	0.9500	N(11)-C(11A)-C(12)	126.77(19)
C(27)-H(27)	0.9500	N(11)-C(11A)-C(15A)	111.88(18)
C(29)-H(29)	0.9500	C(12)-C(11A)-C(15A)	121.04(18)
C(7)-C(8)	1.363(3)	C(13)-C(12)-C(11A)	117.69(19)
C(7)-H(7)	0.9500	C(13)-C(12)-H(12)	121.2
C(8)-H(8)	0.9500	С(11А)-С(12)-Н(12)	121.2
C(25)-C(26)	1.359(3)	C(6)-C(5)-C(4A)	121.75(19)
C(25)-H(25)	0.9500	C(6)-C(5)-H(5)	119.1
C(26)-H(26)	0.9500	C(4A)-C(5)-H(5)	119.1
C(4)-H(4)	0.9500	C(1A)-C(4A)-C(5)	119.28(19)
C(24)-H(24)	0.9500	C(1A)-C(4A)-C(4)	120.04(19)
		C(5)-C(4A)-C(4)	120.51(19)
		F(1)-C(16)-F(3)	106.36(17)
		F(1)-C(16)-F(2)	105.35(17)
		F(3)-C(16)-F(2)	105.83(17)
		F(1)-C(16)-C(13)	113.30(17)
		F(3)-C(16)-C(13)	113.32(18)
		F(2)-C(16)-C(13)	112.04(17)
		C(5)-C(6)-C(6A)	120.0(2)
		C(5)-C(6)-H(6)	120.0
		C(6A)-C(6)-H(6)	120.0
		N(11)-C(2)-N(1)	113.69(17)
		N(11)-C(2)-C(3)	126.63(19)
		N(1)-C(2)-C(3)	119.32(18)
		N(10)-C(9)-C(8)	123.94(19)
		N(10)-C(9)-H(9)	118.0
		C(8)-C(9)-H(9)	118.0
		C(4)-C(3)-C(2)	119.72(19)
		C(4)-C(3)-H(3)	120.1
		C(2)-C(3)-H(3)	120.1
		C(27)-C(28)-C(29)	118.73(19)
		C(27)-C(28)-H(28)	120.6
		C(29)-C(28)-H(28)	120.6
		C(28)-C(27)-C(26A)	119.6(2)

С(28)-С(27)-Н(27)	120.2
С(26А)-С(27)-Н(27)	120.2
N(30)-C(29)-C(28)	123.8(2)
N(30)-C(29)-H(29)	118.1
С(28)-С(29)-Н(29)	118.1
C(8)-C(7)-C(6A)	119.67(19)
C(8)-C(7)-H(7)	120.2
C(6A)-C(7)-H(7)	120.2
C(7)-C(8)-C(9)	118.73(19)
C(7)-C(8)-H(8)	120.6
C(9)-C(8)-H(8)	120.6
C(26)-C(25)-C(24A)	121.55(19)
С(26)-С(25)-Н(25)	119.2
C(24A)-C(25)-H(25)	119.2
C(25)-C(26)-C(26A)	119.60(19)
С(25)-С(26)-Н(26)	120.2
C(26A)-C(26)-H(26)	120.2
C(3)-C(4)-C(4A)	120.99(19)
C(3)-C(4)-H(4)	119.5
C(4A)-C(4)-H(4)	119.5
F(23)-C(36)-F(21)	106.19(17)
F(23)-C(36)-F(22)	106.49(17)
F(21)-C(36)-F(22)	105.76(17)
F(23)-C(36)-C(33)	113.13(18)
F(21)-C(36)-C(33)	112.40(18)
F(22)-C(36)-C(33)	112.32(18)
C(23)-C(24)-C(24A)	121.14(19)
C(23)-C(24)-H(24)	119.4
C(24A)-C(24)-H(24)	119.4