Electronic Supplementary Information

Mercury^{II}-mediated base pairs in DNA: unexpected behavior in metal ion binding and

duplex stability induced by 2'-deoxyuridine 5-substituents

Xiurong Guo^{*a,b*}, Sachin A. Ingale^{*b,c*}, Haozhe Yang^{*b,c*}, Yang He^{*a*}, and Frank Seela^{*b,c*}*

^aPrecision Medicine Research Laboratory, West China Hospital, West China School of Medicine, Sichuan University, 610041 Chengdu, People's Republic of China,^bLaboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany, and ^cLaboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany

Corresponding author: Prof. Dr. Frank Seela Phone: +49 (0)251 53 406 500; Fax: +49 (0)251 53 406 857 E-mail: Frank.Seela@uni-osnabrueck.de Homepage: www.seela.net

Table of Contents

Table S1 ¹³ C NMR data of 5-substituted 2'-deoxyuridine nucleosides	3
Table S2 Selected ¹ H- ¹³ C coupling constants of 5-substituted 2'-deoxyuridine nucleos	ides. 4
Fig. S1 pK_a determination by UV	5
Fig. S2-S3 Reversed-phase HPLC profiles of purified oligonucleotides	6
Fig. S4-S5 Melting profiles of duplexes	10
Fig. S6-S10 Stoichiometric titrations of oligonucleotides	12
References	14
Fig. S11-S50 NMR spectra	15

	C2	C4	C5	C6	5-substitutents	C-1'	C-2'	C-3'	C-4'	C-5'
2 ¹	149.9	161.6	112.1	146.5	193.4, 30.2	85.5	[c]	70.2	87.9	61.0
17^d	150.0	161.7	112.3	146.4	193.5, 30.6	86.6	[<i>c</i>]	70.8	86.4	64.0
11	163.0	169.4	116.0	154.3	6.8, 5.8	-	-	-	-	-
12	164.4	150.8	113.4	135.7	.35.7 7.4, 5.1		-	-	-	-
13a	149.9	163.3	115.6	134.2	8.0, 5.3, 5.2	84.9	36.0	74.7	81.2	64.2
13b	149.7	163.4	114.3	134.1	8.2, 5.2, 4.6	86.1	37.2	74.6	83.4	63.9
3^2	149.8	163.3	115.1	134.1	7.7, 5.4, 5.3	83.8	[c]	70.1	87.0	60.9
18	149.8	163.1	115.0	134.0	8.1, 4.9	83.8	39.0	70.3	85.2	63.6
16	149.5	161.8	104.5	140.3	140.3 145.8, 142.4, 134.3, 121.7, 117.7, 112.3		37.2	74.1	81.9	63.7
9 ³	149.5	161.8	103.9	140.9	.9 146.0,121.6, 117.9, 112.2		_[c]	70.5	87.8	61.3
19	149.4	161.9	103.7	140.6	145.9, 142.5, 134.3,121.6,121.5,117.9,112.2		40.7	70.5	85.9	63.6
4 ⁴	149.5	161.6	97.5	144.5	83.6, 76.4	84.7	[c]	70.9	87.5	61.8
7^d	149.4	161.4	99.5	144.4	98.3, 93.0, 52.6, 18.5, 10.7	84.9	_[c]	69.8	87.6	60.7
14 ¹	148.7	160.9	98.3	144.1	98.3, 93.3, 54.4, 17.8, 10.1	84.8	[c]	69.9	85.3	63.1
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ $										
2		17	11	12	13a 13b		3		18	
$\begin{array}{c} 0 \\ HN \\ $						S -				
1	10	9		19	4		1		14	

 Table S1 ¹³C NMR data of 5-substituted 2'-deoxyuridine nucleosides^{a,b}

^{*a*}Measured in DMSO- d_6 at 298 K. ^{*b*}Pyrimidine numbering. ^{*c*}Superimposed by DMSO. ^{*d*}Assigned by 2D spectra (HSQC and HMBC). All the other assignments were done by using ¹H-¹³C gated-decoupled spectra and DEPT-135 spectra.

Table S2 Selected 1 H- 13 C coupling constants (Hz) of 5-substituted 2'-deoxyuridine nucleosides^{*a,b*}

¹ H- ¹³ C coupling constants	11	1 3 a	13b	18	16	19		
$^{1}J(C6, H-C6)$	178.2	178.3	177.8	177.3	183.0	184.5		
$^{3}J(C6, H-C1')$	4.3	n.d	n.d.	4.8	3.5	4.3		
${}^{3}J(C2, H-C6)$ or ${}^{3}J(C2, H-C1')$	9.5	7.8	8.2	7.9	8.3	8.3		
$^{3}J(C4, H-C6)$	9.4	10.0	10.0	10.0	9.2	9.4		
¹ J(C1', H-C1')	-	167.4	168.7	169.0	170.5	167.2		
$^{1}J(C3', H-C3')$	-	161.4	154.0	147.2	159.2	150.0		
$^{1}J(C4^{2}, H-C4^{2})$	-	153.6	154.3	149.0	152.3	151.9		
$^{1}J(C5', H-C5')$	-	152.6	149.4	142.4	147.9	141.7		
Meo N Tolo OTol N Tolo OTol N OTol N OTol N O N N N N N N N N N N N N N								
11 13a		13b	16	18	19			
^a Measured in DMSO-d ₆ at 298 K. ^b Pyrimidine numbering. n.d.: not detected.								

4

pK_a Determination by UV

Nucleosides (2, 3, 4, or 7) were dissolved in 0.1 M sodium phosphate buffer, pH 4.5. An aqueous NaOH solution (4 M) and concentrated phosphorus acid were used to adjust the pH value of the buffer. At defined pH values, the UV absorbance of nucleosides was measured (Fig. S1).

Fig. S1 UV absorbance vs pH. (a) Nucleoside 2 at 285 nm; (b) nucleoside 3 at 280 nm; (c) nucleoside 4 at 290 nm; (d) nucleoside 7 at 300 nm. All measurements were performed in 0.1 M sodium phosphate buffer.

(e) 5'-d(TAG GTC **5**AT ACT) ODN **35**

(f) 5'-d(AGT AT5 GAC CTA) ODN 36

(g) 5'-d(TAG GTC 6AT ACT) ODN 37

(h) 5'-d(AGT AT6 GAC CTA) ODN 38

Fig. S2 HPLC purity profiles of oligonucleotides. (a) ODN 29; (b) ODN 30; (c) ODN 31; (d) ODN 32; (e) ODN 35; (f) ODN 36; (g) ODN 37; (h) ODN 38; (i) ODN 39; (j) ODN 40; (k) ODN 43; (l) ODN 44. For elution the following solvent system was used: 0.1 M (Et₃NH)OAc : MeCN (95:5) (pH 7.0) (A) and MeCN (B). Gradient: 0-20 min 0-20% B in A, 20-25 min 20% B in A, 25-30 min 20-0% B in A, flow rate 0.8 mL min⁻¹.

(b) 5'-d(AGT AT8 GAC CTA) ODN 42

Fig. S3 HPLC profiles of phenyltriazolyl modified oligonucleotides (crude mixture): (a) ODN 41; (b) ODN 42. For elution the following solvent system was used: 0.1 M (Et₃NH)OAc : MeCN (95:5) (pH 7.0) (A) and MeCN (B). Gradient: 0-20 min 0-20% B in A, 20-25 min 20% B in A, 25-30 min 20-0% B in A, flow rate 0.8 mL min⁻¹.

Melting profiles of duplexes

Fig. S4 The original and normalized melting curves of duplexes obtained from heating and cooling experiments with a single-strand concentration of 5 μ M + 5 μ M in 10 mM Mops, 100 mM NaNO₃ (pH 7.0) at 260 nm, absence and in presence of 1 equiv. of Hg²⁺. Figures in column I: original melting curves (heating). Figures in column II: original melting curves (cooling). Figures in column III: normalized melting curves (heating). Relative absorbance A (normalized) = (A-A_{min}) /(A_{max}-A_{min}) at 260 nm. : a) ODN **24·25**; b) ODN **29·30**; c) ODN **31·32**; d) ODN **33·34**; e) ODN **35·36**; f) ODN **37·38**; g) ODN **39·40**; h) ODN **41·42**; i) ODN **43·44**.

Fig. S5 The melting curves of duplexes obtained from heating and cooling experiments with a single-strand concentration of 5 μ M + 5 μ M in 10 mM Mops, 100 mM NaNO₃ (pH 7.0) at 260 nm, in presence of 1 equiv. of Hg²⁺. Relative absorbance A(normalized) = (A-A_{min}) /(A_{max}-A_{min}) at 260 nm: a) ODN **25·24** + 1Hg²⁺; b) ODN **25·24** + 1Hg²⁺ + 20 equiv. EDTA; c) ODN **33·34**+1 Hg²⁺; d) ODN **33·34** + 1Hg²⁺ + 20 equiv. EDTA.

Stoichiometric titrations of oligonucleotides

Fig. S6 (a) UV spectrophotometric titration of 5 μM ODN 25•24 with increasing concentration of Hg²⁺ ions (0–2.0 equiv.) in buffer (10 mM Mops, 100 mM NaNO₃, pH 7.0).
(b) Graph of ratio of equivalents of Hg²⁺/duplex *vs* changes in absorbance at 260 nm from (a).

Fig. S7 (a) UV spectrophotometric titration of 5 μM ODN 29•30 with increasing concentration of Hg²⁺ ions (0–2.0 equiv.) in buffer (10 mM Mops, 100 mM NaNO₃, pH 7.0).
(b) Graph of ratio of equivalents of Hg²⁺/duplex *vs* changes in absorbance at 260 nm from (a).

Fig. S8 (a) UV spectrophotometric titration of 5 μM ODN 31•32 with increasing concentration of Hg²⁺ ions (0–2.0 equiv.) in buffer (10 mM Mops, 100 mM NaNO₃, pH 7.0).
(b) Graph of ratio of equivalents of Hg²⁺/duplex *vs* changes in absorbance at 260 nm from (a).

Fig. S9 (a) UV spectrophotometric titration of 5 μM ODN 33•34 with increasing concentration of Hg²⁺ ions (0–2.0 equiv.) in buffer (10 mM Mops, 100 mM NaNO₃, pH 7.0).
(b) Graph of ratio of equivalents of Hg²⁺/duplex *vs* changes in absorbance at 260 nm from (a).

Fig. S10 (a) UV spectrophotometric titration of 5 μM ODN 35•36 with increasing concentration of Hg²⁺ ions (0–2.0 equiv) in buffer (10 mM Mops, 100 mM NaNO₃, pH 7.0).
(b) Graph of ratio of equivalents of Hg²⁺/duplex *vs* changes in absorbance at 260 nm from (a).

References

(1) S. A. Ingale, H. Mei, P. Leonard and F. Seela, J. Org. Chem., 2013, 78, 11271-11282.

(2) I. Basnak, A. Balkan, P. L. Coe and R. T. Walker, Nucleos. Nucleot., 1994, 13, 177-196.

(3) J. Krim, C. Grünewald, M. Taourirte and J. W. Engels, *Bioorg. Med. Chem.*, 2012, **20**, 480-486.

(4) V. Borsenberger, M. Kukwikila and S. Howorka, *Org. Biomol. Chem.*, 2009, **7**, 3826-3835.

Fig. S11 ¹H NMR spectrum of compound **11**.

Fig. S12 ¹³C NMR spectrum of compound 11.

Fig. S14 ¹H-¹³C gated-decoupled spectrum of compound **11**.

Fig. S16¹³C NMR spectrum of compound 13b.

30 20 10

0 ppm

Fig. S18 ¹H-¹³C gated-decoupled spectrum of compound 13b.

Fig. S19 ¹H NMR spectrum of compound 13a

Fig. S20 ¹³C NMR spectrum of compound 13a.

Fig. S21 DEPT-135 spectrum of compound 13a

Fig. S22 ¹H-¹³C gated-decoupled spectrum of compound **13a**.

Fig. S23 ¹H NMR spectrum of compound 3

Fig. S24 ¹³C NMR spectrum of compound **3**.

Fig. S25 ¹H NMR spectrum of compound **18**.

Fig. S26 ¹³C NMR spectrum of compound 18.

Fig. S27 DEPT-135 spectrum of compound 18.

Fig. S28 ¹H-¹³C gated-decoupled spectrum of compound **18**.

Fig. S29 ¹H NMR spectrum of compound **21**.

Fig. S30³¹P NMR spectrum of compound **21**.

Fig. S34 HMBC spectrum of compound 17.

Fig. S36 ³¹P NMR spectrum of compound **20**.

Fig. S37 ¹H NMR spectrum of compound 16.

Fig. S38 ¹³C NMR spectrum of compound 16.

Fig. S39 DEPT-135spectrum of compound 16.

Fig. S40 ¹H-¹³C gated-decoupled spectrum of compound **16**.

Fig. S42 ¹³C NMR spectrum of compound 19.

Fig. S43 DEPT-135spectrum of compound 19.

Fig. S44 ¹H-¹³C gated-decoupled spectrum of compound **19**.

Fig. S45 ¹H NMR spectrum of compound **22**.

Fig. S46 ³¹P NMR spectrum of compound **22**.

Fig. S47 ¹H NMR spectrum of compound **7**.

Fig. S48 ¹³C NMR spectrum of compound **7**.

