Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

The evaluation of 5-amino- and 5-hydroxyuracil derivatives as potential quadruplexforming agents

Gábor Paragi, ^{[a,c]1} Zoltán Kupihár, ^[b] Gábor Endre, ^[b] Célia Fonseca Guerra, *^[a] Lajos Kovács * ^[b]

Supporting Information

Table SI-1. Stacking energies between two layers in octamers without central cation	2
Tables SI-26. Coordinates of optimized tetramer structures	2-4
Tables SI-78. Coordinates of X_8 and $(ho^5U)_8$ octamer structures with NH_4^+ ion	5-6
Figures SI-13. ¹ H and ¹³ C NMR spectra of 1-benzyl-5-bromouracil	7-9
Figures SI-45. ¹ H and ¹³ C NMR spectra of 1,3-dibenzyl-5-bromouracil	10-11
Figures SI-68. ¹ H and ¹³ C NMR spectra of 1-benzyl-5-hydroxyuracil	12-14
Figure SI-9. Zoomed nano-ESI-MS spectrum of 1-benzyl-5-hydroxyuracil clusters in	the
presence of strontium ions	15

¹ [a] Dr. G. Paragi, Dr. C. Fonseca Guerra. Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Vrije Universiteit Amsterdam (VU). De Boelelaan 1083, 1081 HV Amsterdam (The Netherlands) E-mail: c.fonsecaguerra@vu.nl

[[]b] Dr. Z. Kupihár, G. Endre, Dr. L. Kovács. Department of Medicinal Chemistry, University of Szeged. Dóm tér 8, 6720 Szeged (Hungary). E-mail: kovacs.lajos@med.u-szeged.hu

[[]c] Dr. G. Paragi. MTA-SZTE Supramolecular and Nanostructured Materials Research Group, University of Szeged. Dóm tér 8, 6720 Szeged (Hungary)

Table SI-1. Stacking energies between layers (in kcal/mol) based on ho⁵U andX units (without cation) in different geometries. The geometries were taken fromScheme 1 in the manuscript according to arrangements O4-O9

Geometry	04	O5	O6	07	08	O9
Stacking energy	-48.4	-50.0	-48.1	-47.9	-49.7	-51.1

Table SI-2. Coordinates (in Å) of optimized X₄ tetram in C(4h) symmetry							
number	atom	X	y V	Z			
1	N	4 887	4 879	0 000			
2	N	-4 887	-4 879	0,000			
3	N	4 879	-4 887	0.000			
4	N	-4 879	4 887	0.000			
5	N	3 369	1 1 1 9	0.000			
6	N	-3.369	-1 119	0.000			
7	N	1 1 1 9	-3.369	0.000			
8	N	-1 119	3 369	0.000			
q	N	5 329	2 4 5 1	0.000			
10	N	-5.329	-2 451	0.000			
11	N	2 451	-5.329	0.000			
12	N	-2 451	5 329	0.000			
13	N	2.401	4 747	0.000			
14	N	-2.631	-4 747	0.000			
15	N	4 747	-2 631	0.000			
16	N	-4 747	2.631	0.000			
17	0	5 464	0 149	0.000			
18	Õ	-5 464	-0 149	0.000			
19	õ	0.404	-5 464	0.000			
20	Õ	-0 149	5 464	0.000			
20	0	1 227	1 967	0.000			
21	0	-1 227	-1 967	0.000			
22	0	1 067	-1.227	0.000			
23	0	-1 967	1 227	0.000			
25	ц	3.646	6.635	0.000			
26	н	-3 646	-6.635	0.000			
20	н Н	-5.040	-0.000	0.000			
28	н	-6 635	3 646	0.000			
20	н	2 040	0.166	0.000			
20	н	-2 940	-0.166	0.000			
31	н	0 166	-2 940	0.000			
32	н	-0.166	2 040	0.000			
33	C	3 115	3 448	0.000			
34	C	3 727	5 556	0.000			
35	Č	2 4 4 7	2 185	0.000			
36	C	4 502	3 568	0.000			
37	C	-3 115	-3 448	0.000			
38	Č	-3 727	-5.556	0.000			
30	C	-2 447	-2.185	0.000			
40	Ċ	-4 502	-3 568	0.000			
40 41	C	3 448	-3.115	0.000			
42	Ċ	5 556	-3 727	0.000			
43	Č	2 185	-2 447	0.000			
43	Ċ	3 568	-4 502	0.000			
45	Ċ	6 800	2 572	0.000			
46	Č	-6.800	-2 572	0.000			
47	č	2 572	-6 800	0.000			
48	C	-2 572	6 800	0.000			
40	й	1 620	5 010	0.000			
	H	-1 620	-5 010	0.000			
50	н Н	5 010	-1 620	0.000			
52	H	_5 010	1 620	0.000			
52	Ċ	-3.013	3 115	0.000			
54	č	-5.440	3 727	0.000			
55	C C	-2 185	2 4 4 7	0.000			
00	5	2.100	<u> </u>	0.000			

56	С	-3.568	4.502	0.000
57	С	4.756	1.176	0.000
58	С	-4.756	-1.176	0.000
59	С	1.176	-4.756	0.000
60	С	-1.176	4.756	0.000
61	Н	-7.047	-3.634	0.000
62	Н	-7.212	-2.085	-0.889
63	Н	-7.212	-2.085	0.889
64	Н	-2.085	7.212	0.889
65	Н	-3.634	7.047	0.000
66	Н	-2.085	7.212	-0.889
67	Н	7.212	2.085	0.889
68	Н	7.047	3.634	0.000
69	Н	7.212	2.085	-0.889
70	Н	3.634	-7.047	0.000
71	Н	2.085	-7.212	-0.889
72	Н	2.085	-7.212	0.889

Table SI-3	. Coordinate	es (in A) of op C(4h) symmet	timized nºU ₄ rv	tetramer
number	atom	X	V	z
1	H	-4.873	5.775	0.887
2	Н	5.081	6.262	0.000
3	н	-4.873	5.775	-0.887
4	н	6.262	-5.081	0.000
5	N	2.567	2.611	0.000
6	N	-2.567	-2.611	0.000
7	N	2.611	-2.567	0.000
8	N	-2.611	2.567	0.000
9	N	3.882	4.543	0.000
10	N	-3.882	-4.543	0.000
11	N	4.543	-3.882	0.000
12	N	-4.543	3.882	0.000
13	N	0.294	5.482	0.000
14	IN NI	-0.294	-3.462	0.000
10	N	5.462	-0.294	0.000
10	Ň	4 883	2 4 7 5	0.000
18	Ő	-4 883	-2 475	0.000
19	õ	2 475	-4 883	0.000
20	õ	-2 475	4 883	0.000
21	Õ	0.272	2.677	0.000
22	Ō	-0.272	-2.677	0.000
23	0	2.677	-0.272	0.000
24	0	-2.677	0.272	0.000
25	Н	-6.262	5.081	0.000
26	Н	5.775	4.873	-0.887
27	Н	5.775	4.873	0.887
28	н	4.873	-5.775	-0.887
29	Н	2.534	1.578	0.000
30	Н	-2.534	-1.578	0.000
31	н	1.578	-2.534	0.000
32	Н	-1.578	2.534	0.000
33	C	1.461	4.766	0.000
34	H	6.390	-2.871	0.000
30	C	1.340	5.295	0.000
30	C	2.715	3.310	0.000
30	С ц	-1.401	-4.700	0.000
30	C	-0.330	-3 203	0.000
40	C	-2 715	-5.316	0.000
41	č	4 766	-1 461	0.000
42	Ĥ	-2.871	-6.390	0.000
43	С	3.293	-1.348	0.000
44	C	5.316	-2.715	0.000
45	С	5.211	5.178	0.000
46	С	-5.211	-5.178	0.000
47	С	5.178	-5.211	0.000
48	С	-5.178	5.211	0.000
49	Н	-0.625	5.032	0.000
50	Н	0.625	-5.032	0.000
51	н	5.032	0.625	0.000
52	Н	-5.032	-0.625	0.000
53	C	-4./66	1.461	0.000
54	Н	4.8/3	-5.//5	0.887
55 56		-3.293	1.348	0.000
00 57		-2.310	2./15	0.000
52	Ċ	3.040	3.10Z	0.000
50	C C	-3.040 3.162	-3.102	0.000
60	Č	_3 162	3 846	0.000
61	й	-5 081	-6 262	0.000
62	н	-5 775	-4 873	-0.887
63	Н	-5.775	-4.873	0.887
64	H	2.871	6.390	0.000
65	H	-0.315	-6.490	0.000
66	Н	6.490	-0.315	0.000
67	Н	0.315	6.490	0.000
68	Н	-6.490	0.315	0.000

Table S	SI-4. Coord	linates (in Å) of	f optimized I	no⁵U₄
number	atom	v	v	7
1	H	_1 978	7 184	0.887
2	н	7 140	3 531	0.007
3	н	-1.978	7 184	-0.887
4	н	3 531	-7 140	0.000
5	N	3 326	1 275	0.000
6	N	-3.326	-1 275	0.000
7	N	1 275	-3.326	0.000
8	N	-1 275	3 326	0.000
9	N	5 328	2 474	0.000
10	N	-5 328	-2 474	0.000
11	N	2.474	-5.328	0.000
12	N	-2.474	5.328	0.000
13	0	2.561	4.863	0.000
14	Ō	-2.561	-4.863	0.000
15	Ō	4.863	-2.561	0.000
16	Ō	-4.863	2.561	0.000
17	Ō	5.353	0.165	0.000
18	0	-5.353	-0.165	0.000
19	0	0.165	-5.353	0.000
20	0	-0.165	5.353	0.000
21	0	1.272	2.284	0.000
22	0	-1.272	-2.284	0.000
23	0	2.284	-1.272	0.000
24	0	-2.284	1.272	0.000
25	Н	-3.531	7.140	0.000
26	Н	7.184	1.978	-0.887
27	Н	7.184	1.978	0.887
28	Н	1.978	-7.184	-0.887
29	Н	2.863	0.347	0.000
30	Н	-2.863	-0.347	0.000
31	Н	0.347	-2.863	0.000
32	Н	-0.347	2.863	0.000
33	С	3.226	3.678	0.000
34	Н	4.580	-5.161	0.000
35	С	2.506	2.403	0.000
36	С	4.590	3.657	0.000
37	С	-3.226	-3.678	0.000
38	Н	-4.580	5.161	0.000
39	C	-2.506	-2.403	0.000
40	C	-4.590	-3.657	0.000
41	C	3.678	-3.226	0.000
42	Н	-5.161	-4.580	0.000
43	C	2.403	-2.506	0.000
44		3.057	-4.590	0.000
45		0.803	2.493	0.000
40		-0.003	-2.493	0.000
47	Č	2.495	-0.003	0.000
40	с ц	-2.493	4 759	0.000
49	LI H	-1.570	-4.758	0.000
50	н	4 758	-1.570	0.000
52	н	-4 758	1 570	0.000
53	Ċ	-3.678	3 226	0.000
54	н	1 978	-7 184	0.000
55	C	-2 403	2 506	0.007
56	č	-3 657	4 590	0.000
57	č	4 709	1 229	0 000
58	č	-4 709	-1 229	0 000
59	č	1,229	-4.709	0.000
60	č	-1.229	4,709	0.000
61	Ĥ	-7,140	-3.531	0.000
62	H	-7.184	-1.978	-0.887
63	H	-7.184	-1.978	0.887
64	H	5.161	4.580	0.000

Table S tetramer in definition	Table SI-5. Coordinates (in A) of optimized ho^5U_2 - X_2 tetramer in C(4h) symmetry and in T2 arrangement. Thedefinition of T2 arrangement can be found in Scheme 1in the manuscript								
1	Н	5.084	-5.121	0.000					
2	2 N 4.435 5.024 0.000								
3	3 N -5.284 3.997 0.000								
4	Н	-1.063	-5.217	0.000					

te	Table SI-6. Coordinates (in Å) of optimized ho ⁵ U ₂ -X ₂ tetramer in C(4h) symmetry and in T3 arrangement. The definition of T3 arrangement can be found in Scheme 1 in the manuscript								
	1	Н	6.369	4.451	0.000				
	2	Н	5.052	5.284	-0.889				
	3	Ν	6.523	1.962	0.000				
	4	N	-6.523	-1.962	0.000				
	5	Ν	2.518	-2.756	0.000				
	6	Ν	-2.518	2.756	0.000				
	7	Ν	2.485	2.266	0.000				
	8	Ν	-2.485	-2.266	0.000				
	9	Ν	3.686	-4.777	0.000				

-3.686

4.547

-4.547

0.105

-0.105

5.405

-5.405

4.833

-4.833

2.539 -2.539

0.231

-0.231

2.282 -2.282 5.550

5.052

7.548

-7.548

2.522

-2.522

1.454

-1.454

1.266

5.550

1.256

2.469

-1.266

4.760

-1.256 -2.469

4.454

6.615

3.025

5.178

4.968

-4.968 5.307

-5.307

-0.702

0.702

5.205

-5.205 -4.454

-6.615

-3.025

-5.178

3.745

-3.745

3.150

-3.150 -4.760

-5.550

-5.550 -5.052

-6.369

-5.052

2.528

-2.528

0.000

0.000 0.000 0.000

0.000

0.000

0.000

0.000

0.000

0.000 0.000

0.000

0.000

0.000 0.000

0.888

0.889 0.000 0.000

0.000

0.000 0.000

0.000

0.000

-0.888

0.000

0.000

0.000 0.000

0.000

0.000 0.000 0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000 0.000

0.000 0.000 0.000

0.000

0.000

0.000 0.000

0.000

0.000

0.000

0.000

0.888 -0.888 -0.889

0.000

0.889

0.000

0.000

4.777

3.435

-3.435 -5.522

5.522

-0.002

0.002

-2.777

2.777

4.570

-4.570

-2.662

2.662

-0.029 0.029

-5.243

5.284

0.072

-0.072

-1.708

1.708

2.346

-2.346

-4.820

-5.243

-3.355

-5.462

4.820

-6.579 3.355

5.462

1.007

0.622

0.969

2.198

-5.507

5.507

4.700

-4.700

-4.937

4.937

-1.021

1.021

-1.007

-0.622

-0.969

-2.198

-3.390

3.390

3.489

-3.489

6.579

5.243

5.243

-5.284

-4.451

-5.284

-6.545

6.545

2	N	4.435	5.024	0.000	2	н
3	N	-5.284	3.997	0.000	3	N
4	H	-1.063	-5.217	0.000	4	N
5	IN N	-3.150	-1.906	0.000	5	IN N
0	IN N	3.290 1.307	1.142	0.000	0	IN N
8	N	1 633	-3 572	0.000	8	N
9	N	-5.026	-3 307	0.000	9	N
10	N	5 1 1 8	2 654	0.000	10	N
11	N	-2 913	4 672	0.000	10	N
12	N	2.999	-5.464	0.000	12	N
13	0	-2.042	-5.409	0.000	13	0
14	N	2.203	4.670	0.000	14	0
15	N	-4.933	1.766	0.000	15	Ν
16	0	5.145	-2.500	0.000	16	Ν
17	0	-5.300	-1.023	0.000	17	0
18	0	5.459	0.364	0.000	18	0
19	0	-0.638	5.031	0.000	19	0
20	0	0.700	-5.685	0.000	20	0
21	0	-1.010	-2.721	0.000	21	0
22	0	1.002	1.755	0.000	22	0
23	0	2.052	-1 445	0.000	23	0
25	й	-2 736	6 581	0.889	25	н
26	H	3 029	6 650	0.000	26	н
27	H	-6.912	2.593	0.000	27	Н
28	Н	-2.736	6.581	-0.889	28	H
29	н	-2.767	-0.936	0.000	29	Н
30	Н	2.992	0.151	0.000	30	Н
31	Н	-0.402	2.524	0.000	31	Н
32	н	0.672	-3.185	0.000	32	Н
33	С	-2.817	-4.296	0.000	33	С
34	Н	4.954	-1.525	0.000	34	Н
35	C	-2.227	-2.955	0.000	35	C
30	C	-4.176	-4.413	0.000	30	C
37	C	2.012	3.423 5.502	0.000	37	
30	C	3.214 2.274	2 102	0.000	30	п С
40	C	4 183	3 681	0.000	40	C
41	č	-3 688	2 371	0.000	40	č
42	č	-5.845	2.777	0.000	42	č
43	Č	-2.367	1.825	0.000	43	Č
44	С	-3.943	3.740	0.000	44	С
45	С	-6.492	-3.477	0.000	45	С
46	С	6.569	2.920	0.000	46	С
47	С	-3.180	6.123	0.000	47	С
48	С	3.144	-6.933	0.000	48	С
49	н	-4.653	-5.387	0.000	49	н
50	н	1.179	4.834	0.000	50	н
51	н	-5.095	0.740	0.000	51	Н
52		-0.924	-3.000	-0.000	52	п С
53 54	Ц	-4.022	-3.200	0.000	53	C
55	C	2 690	-2 663	0.000	55	C
56	č	4 117	-4 629	0.000	56	č
57	č	-4.535	-2.010	0.000	57	č
58	С	4.673	1.326	0.000	58	С
59	С	-1.589	4.225	0.000	59	С
60	С	1.706	-4.953	0.000	60	С
61	Н	6.709	4.002	0.000	61	Н
62	Н	7.027	2.476	-0.889	62	Н
63	H	7.027	2.476	0.889	63	H
64	H	2.663	-7.356	0.888	64	н
60	H	4.207	-7.181	0.000	65	н
00 67	H L	2.003	-1.350	-U.888 0.880	66 67	H L
68	п	-0.924 _6 720	-3.000	0.000	07 68	п
00	11	-0.720	-4.040	0.000	00	11

Table SI-	7. Coordin	ates (in Å) of c	ptimized X ₈	3 + NH4 ⁺	76 77	0	5.061 -5.061	2.050	1.606
number	atom	v	V	7	78	ŏ	-2.043	5.001	1.476
1	N	-3 485	0 782	-1.386	79	0	2.043	-5.001	1.476
2	N	0.796	3.447	-1.430	80	N	2.504	6.389	1.326
3	Ν	-0.796	-3.447	-1.430	81	0	1.962	-1.316	2.131
4	Ν	5.537	-1.890	-1.809	82	0	-1.962	1.316	2.131
5	N	-5.537	1.890	-1.809	03 84	0	1.340	1.940	2.144
6	N	1.898	5.504	-1.836	85	Н	5 986	-4 605	1 269
/ 9	IN N	-1.898	-5.504	-1.830	86	H	-5.986	4.605	1.269
9	N	-3 094	4 448	-1.632	87	Н	4.611	5.966	1.309
10	N	4.473	3.087	-1.561	88	Н	-4.611	-5.966	1.309
11	Ν	-4.473	-3.087	-1.561	89	н	2.828	1.024	2.038
12	0	5.451	0.404	-1.534	90	H	-2.828	-1.024	2.038
13	0	-5.451	-0.404	-1.534	91	N H	-2.504	-0.369	1.320
14	0	-0.405	5.400	-1.630	93	Н	1.017	-2.768	1.961
15	0	0.405	-5.400	-1.030	94	C	4.257	-1.914	1.756
10	0	-1 466	1 856	-1.074	95	С	5.637	-3.591	1.413
18	ŏ	1.867	1.434	-1.081	96	С	3.162	-1.028	1.961
19	Ō	-1.867	-1.434	-1.081	97	С	5.563	-1.460	1.563
20	Н	4.277	-6.210	-1.937	98	C	-4.257	1.914	1.756
21	Н	-4.277	6.210	-1.937	99	C	-5.037	3.591	1.413
22	н	6.232	4.286	-1.827	100	C	-5.563	1.020	1.901
23	H	-6.232	-4.286	-1.827	102	Ň	3.578	0.316	1.922
24 25	п	2.900	-0.123	-1.240	103	C	1.919	4.229	1.750
20	H	-0.106	2 950	-1 299	104	С	3.596	5.613	1.431
27	H	0.106	-2.950	-1.299	105	С	1.033	3.137	1.940
28	С	3.440	-3.107	-1.600	106	С	1.463	5.528	1.520
29	С	4.251	-5.131	-1.851	107	C	7.250	0.360	1.268
30	С	2.688	-1.934	-1.342	108	C	-7.250	-0.360	1.208
31	C	4.823	-3.077	-1.801	109	C C	0.365	-7 194	1 160
32	C	-3.440	3.107 5.131	-1.600	111	Ĥ	3.520	-3.943	1.669
34	C	-4.251	1 934	-1.342	112	Н	-3.520	3.943	1.669
35	č	-4.823	3.077	-1.801	113	N	-3.578	-0.316	1.922
36	Č	3.127	3.419	-1.570	114	Н	3.958	3.504	1.734
37	С	5.151	4.249	-1.772	115	Н	-3.958	-3.504	1.734
38	С	1.953	2.651	-1.347	116	C	-1.919	-4.229	1.750
39	C	3.090	4.798	-1.785	117	C	-3.590	-3.137	1.431
40	C	7.009	-1.897	-1.971	119	č	-1.463	-5.528	1.520
41	Č	-7.009	6 974	-1.971	120	Ċ	4.853	0.826	1.689
43	c C	-1 907	-6 974	-2.010	121	С	-4.853	-0.826	1.689
44	Ĥ	2.132	-4.824	-1.551	122	С	-0.821	4.798	1.589
45	Н	-2.132	4.824	-1.551	123	C	0.821	-4.798	1.589
46	Н	4.857	2.130	-1.467	124		-0.310	3.520	1.847
47	Н	-4.857	-2.130	-1.467	125	H	-7.935	-1 206	1.459
48		-3.127	-3.419	-1.570	127	H	-7.315	-0.671	0.221
49 50	C C	-1.953	-4.249	-1.347	128	н	0.686	-7.239	0.115
51	č	-3.090	-4.798	-1.785	129	Н	-0.463	-7.883	1.331
52	C	4.864	-0.693	-1.580	130	Н	1.205	-7.433	1.815
53	С	-4.864	0.693	-1.580	131	Н	7.315	0.671	0.221
54	C	0.699	4.823	-1.638	132	п	7.935	-0.407	1.459
55	C	-0.699	-4.823	-1.638	134	Н	0 463	7 883	1 331
50 57	н	-7.278	2.749	-2.597	135	N	0.310	-3.526	1.847
58	H	-7.311	0.961	-2 441	136	н	-1.205	7.433	1.815
59	H	-0.945	-7.279	-2.421	137	Н	-0.686	7.239	0.115
60	Н	-2.719	-7.234	-2.691	138	N	5.878	-0.110	1.555
61	Н	-2.077	-7.453	-1.040	139	N	-5.878	0.110	1.555
62	Н	7.311	-0.961	-2.441	140	N	3.400 5.327	-0.762 -4 334	-1.300
63	н	7.278	-2.749	-2.597	142	N	-5.327	4 334	-1.951
64 65	H L	7.482	-2.000 7.004	-0.990	143	N	4.346	5.315	-1.905
66	Н	2.719	7 453	-2.091	144	Ν	-4.346	-5.315	-1.905
67	н	0.945	7.279	-2.421	145	Ν	0.000	0.000	0.538
68	N	6.421	-2.502	1.352	146	Н	-0.535	-0.639	1.147
69	Ν	-6.421	2.502	1.352	147	H	-0.631	0.551	-0.064
70	N	0.111	5.828	1.466	148	н	0.031	0 620	-0.064 1 1/7
71	N	-0.111	-5.828	1.466	143	11	0.000	0.009	1.141
12 73	IN N	4.33U .4 330	-3.29/ 3.207	1.050					
74	N	3.304	4.308	1.688					
75	Ν	-3.304	-4.308	1.688					

Tat	ble SI-8.	. Coordinates (in Å)	of optimiz	zed		76	С	-2.192
number	r) aton	$10^{\circ}U_{8} + NH_{4}^{+}$ octan	ner.	7		78	Ö	0.159
1	H	7.832	-1.241	2.137		79	0	5.422
2	Н	7.558	-0.140	0.749		80	Н	-5.434
3	н	6.228	-2.823	1.715		82		3.299
4	H	-0.500	7.328	2.267		83	ŏ	2.787
5	N	2.508	3 4 9 3	1.400		84	С	5.416
7	N	3.576	-0.157	1.562		85	Н	-4.503
8	Н	2.811	6.198	1.580		86	0	0.027
9	С	1.501	3.045	1.404		07 88	C	2.049 -4.675
10 11	N	0.758	5.751 -0.761	1.663		89	č	5.552
12	C	2.091	5.387	1.573		90	Н	5.482
13	č	4.131	-2.481	1.523		91	С	-3.483
14	0	3.835	3.821	1.314		92	С н	3.408
15	0	3.842	-3.803	1.377		94	Н	-2.319
10	п С	0.100	7.449 -1.453	0.591		95	Н	1.728
18	õ	-1.461	5.091	1.635		96	Н	4.890
19	0	5.192	1.471	1.709		97	Н	-6.594
20	С	5.432	-2.087	1.678		90 90	н	-5.120 -6.491
21	Н	1.203	1 825	1.970		100	н	5.003
22	0	1.888	-1 661	1.230		101	С	0.991
24	č	0.365	7.175	1.620		102	N	2.255
25	С	7.250	-0.393	1.770		103	N H	-2.759
26	Н	7.398	0.470	2.420		104	C	0.998
27	C	-0.252	4.801	1.013		106	Ň	3.410
29	н	4.085	2.873	1.496		107	Ν	-4.789
30	Н	-0.565	2.788	1.464		108	C	2.192
31	н	2.884	0.613	1.474		109		-4.744
32	Н	2.878	-4.029	1.508		110	ŏ	-5.422
34 34	Н	-7 558	0 140	0 750		112	Н	5.434
35	H	-6.228	2.823	1.715		113	С	-3.299
36	Н	0.500	-7.328	2.266		114 115	0	4.557
37	C	-2.508	-4.091	1.458		115	C C	-5.416
38	N N	-0.191	-3.493 0.157	1.527		117	Ĥ	4.503
40	Н	-2.811	-6.198	1.580		118	0	-0.027
41	С	-1.501	-3.045	1.404		119	0	-2.549
42	N	-0.758	-5.751	1.663		120	C	4.075
43 44	N C	-5.818 -2.091	0.761	1.771		122	Ĥ	-5.482
45	c	-4.131	2.481	1.523		123	С	3.483
46	0	-3.835	-3.821	1.314		124	С	-3.408
47	0	-3.842	3.803	1.377		125	н	-0.994 2.319
48	H C	-0.108	-7.449	0.591		120	н	-1.728
49 50	õ	1.461	-5.091	1.635		128	Н	-4.890
51	Ō	-5.192	-1.471	1.709		129	N	0.000
52	С	-5.432	2.087	1.678		130	н	0.270
53	Н	-1.203	-1.782	1.970		132	н	-0.270
55 55	0	-1.730	-1.020 1.661	1.250	_	133	Н	-0.787
56	č	-0.365	-7.175	1.620				
57	С	-7.250	0.393	1.770				
58	H	-7.398	-0.470	2.420				
59 60	C	-4 889	-4.001	1.613				
61	Ĥ	-4.085	-2.873	1.496				
62	Н	0.565	-2.788	1.464				
63	Н	-2.884	-0.613	1.474				
04 65	H	-2.010 6.594	4.029	1.508 -1 707				
66	Н	5.128	5.508	-2.077				
67	Н	6.491	2.279	-1.344				
68	Н	-5.003	5.336	-0.397				
69 70	N	-0.991 -2 255	4.072 2.651	-1.550 -1 748				
71	N	2.759	2.353	-1.799				
72	Н	-2.230	6.404	-1.431				
73	С	-0.998	3.226	-1.655				
/4 75	N N	-3.410 4 780	4.075 3.482	-1.612 -1.620				
15		1.100	0.402	1.020	015			

5.326

1.063

5.384

-0.099

4.996

1.085

2.664

4.650

2.253

6.468

2.501

0.085

5.422

4.735

5.050

3.289

3.573

4.882

1.616

2.426 -0.915

-4.555

-5.508

-2.278

-5.336

-4.672

-2.651

-2.353

-6.404

-3.226

-4.675

-3.482

-5.326

-1.063

-5.384

0.099

-4.996

-1.085

-2.664

-4.650

-2.253

-6.468

-2.501

-0.085

-5.422

-4.735

-5.050

-3.289

-3.573

-4.882 -1.616

-2.426

0.915

0.000

0.795

-0.307

-0.795

0.307

-1.538

-1.488

-1.383

-1.268

-2.096

-1.637

-1.657

-1.752

-1.485

-1.696

-1.645

-1.612

-1.438

-1.435 -0.388

-1.672

-1.727

-1.599

-1.757 -1.839

-1.485

-1.707

-2.077

-1.344

-0.397

-1.556

-1.748

-1.799

-1.431

-1.655

-1.612

-1.620

-1.537

-1.488

-1.383

-1.268

-2.096

-1.637 -1.657

-1.752

-1.485

-1.696

-1.645

-1.612

-1.438

-1.435

-0.388

-1.672

-1.727 -1.599

-1.757

-1.839

-1.485

-0.194

-0.789

0.398

-0.789

0.398

Figure SI-1. ¹H NMR spectrum of 1-benzyl-5-bromouracil in DMSO-d₆

7/29/2015 4:57:03 PM

Formula C ₁₁ H ₉ BrN ₂ O ₂	FW 28	31.1054							
Acquisition Time (sec)	1.6384	Comment	proton	Date	29 Jul 2015	13:16:16		Date Stamp	29 Jul 2015 13:16:16
File Name	E:\NMR\KL	939\1\fid		Frequency (MHz)	500.13	Nucleus	1H	Number of Transients	64
Origin	spect	Original Points Count	16384	Owner	root	Points Count	16384	Pulse Sequence	zg30
Receiver Gain	181.00	SW(cyclical) (Hz)	10000.00	Solvent	DMSO-d6	Spectrum Offset (Hz)	3068.6233	Spectrum Type	STANDARD
Sweep Width (Hz)	9999.39	Temperature (degree C) 25.000						

¹H NMR (500 MHz): δ = 4.80 (s, 2H, M01), 7.05 - 7.48 (m, 5H, M02), 8.30 (s, 1H, M03), 11.81 (br. s., 1H, M04) ppm

Figure SI-2. ¹H NMR spectrum of 1-benzyl-5-bromouracil in DMSO-d₆ after deuteration

Formula $C_{11}H_9BrN_2O_2$	FW 28	1.1054							
Acquisition Time (sec)	1.6384	Comment	proton	Date	30 Jul 2015	09:23:44		Date Stamp	30 Jul 2015 09:23:44
File Name	E:\NMR\KL	939D2O\1\fid		Frequency (MHz)	500.13	Nucleus	1H	Number of Transients	64
Origin	spect	Original Points Count	16384	Owner	root	Points Count	16384	Pulse Sequence	zg30
Receiver Gain	181.00	SW(cyclical) (Hz)	10000.00	Solvent	DMSO-d6	Spectrum Offset (Hz)	3077.1682	Spectrum Type	STANDARD
Sweep Width (Hz)	9999.39	Temperature (degree C	25.000						

¹H NMR (500 MHz): δ = 4.83 (s, 2H, M01), 7.04 - 7.28 (m, 3H, M02), 7.28 - 7.49 (m, 2H, M03), 8.26 (s, 1H, M04) ppm

Figure SI-3. ¹	¹³ C NMR spectrum	of 1-benzyl-5-bromourac	il
---------------------------	------------------------------	-------------------------	----

$\textit{Formula} \ C_{11}H_9BrN_2O_2$	FW 28	31.1054							
Acquisition Time (sec)	1.1108	Comment	jmod	Date	29 Jul 2015	13:20:32		Date Stamp	29 Jul 2015 13:20:32
File Name	E:\NMR\KL	939\2\fid		Frequency (MHz)	125.76	Nucleus	13C	Number of Transients	316
Origin	spect	Original Points Count	32768	Owner	root	Points Count	32768	Pulse Sequence	jmod
Receiver Gain	5792.60	SW(cyclical) (Hz)	29498.53	Solvent	CHLOROF	ORM-d		Spectrum Offset (Hz)	14093.9150
Spectrum Type	APT	Sweep Width (Hz)	29497.63	Temperature (degree	C) 25.000			••••••	
Image: Non-	$\frac{5.92.60}{\text{APT}}$ Hz): $\delta = 5$	SW(cyclical) (Hz) Sweep Width (Hz) 0.8 (M01), 95.2 (M M05(s M03 M04 C-2 (C-3; 5 M07(s,6) C-6 C-1 C-1 C-1 C-1 C-1 C-1 C-1 C-1	29498.53 29497.63 02), 127.: 10,12) m,9,13) H(s,11) ; C-6* C-5* 99 5221	Solvent Temperature (degree 5 (M03), 127.8 (N	CHLOROPC (2) 25.000 104), 128.7	(M05), 136.5 (1	M06), 145.2	CH2	14093.9150
		42 .53			102(o E)				
M	109(s,4) M08	ы B(s,2) M06(s,8)		M	iu2(S,5)			- 50	
		(i)						0.76	
							L		
L							M01((br. s.,7)	
168	160 152	2 144 136 1	28 120	112 104	96 88 Chemical Shift	80 72 (ppm)	64 56	48 40 32	24 16 8

Formula C ₁₈ H ₁₅ BrN ₂ O ₂		FW	371.2279						
Acquisition Time (sec)	1.6384	Comment	proton	Date	29 Jul 2015	13:56:48		Date Stamp	29 Jul 2015 13:56:48
File Name	E:\NMR\EG111 2\1\fid			Frequency (MHz)	500.13	Nucleus	1H	Number of Transients	64
Origin	spect	Original Points Cour	nt 16384	Owner	root	Points Count	16384	Pulse Sequence	zg30
Receiver Gain	161.30	SW(cyclical) (Hz)	10000.00	Solvent	DMSO-d6	Spectrum Offset (Hz)	3086.9338	Spectrum Type	STANDARD
Sweep Width (Hz)	9999.39	Temperature (degree	e C) 25.000						

¹H NMR (500 MHz): δ = 4.96 (s, 2H, M01), 5.02 (s, 2H, M02), 7.14 - 7.38 (m, 10H, M03), 8.50 (s, 1H, M04) ppm

Figure SI-5. ¹³C NMR spectrum of 1,3-dibenzyl-5-bromouracil in DMSO-d₆

7/29/2015 5:31:07 PM

Formula C ₁₈ H ₁₅ BrN ₂ O ₂		FW 3	71.2279						
Acquisition Time (sec)	1.1108	Comment	jmod	Date	29 Jul 2015	5 13:58:56		Date Stamp	29 Jul 2015 13:58:56
File Name	E:\NMR\EG	111 2\2\fid		Frequency (MHz)	125.76	Nucleus	13C	Number of Transients	437
Origin	spect	Original Points Count	32768	Owner	root	Points Count	32768	Pulse Sequence	jmod
Receiver Gain	5792.60	SW(cyclical) (Hz)	29498.53	Solvent	CHLOROF	ORM-d		Spectrum Offset (Hz)	14093.9150
Spectrum Type	APT	Sweep Width (Hz)	29497.63	Temperature (degree C) 25.000				

¹³C NMR (126 MHz): δ = 45.1 (M01), 52.1 (M02), 94.5 (M03), 127.3 (M04), 127.6 (M05), 127.7 (M06), 127.9 (M07), 128.4 (M08), 128.7 (M09), 136.3 (M10), 136.6 (M11), 144.2 (M12), 150.6 (M13), 158.8 (M14) ppm

Figure SI-6. ¹H NMR spectrum of 1-benzyl-5-hydroxyuracil in DMSO-d₆

12 of 15

Figure SI-7. ¹H NMR spectrum of 1-benzyl-5-hydroxyuracil in DMSO-d₆ after deuteration

Formula C11H10N2O3 FW 218.2087 Acquisition Time (sec) 1.6384 Comment proton Date 30 Jul 2015 09:13:04 Date Stamp 30 Jul 2015 09:13:04 File Name E:\NMR\EG121D2O\1\fid 500.13 Nucleus 1H Number of Transients 64 Frequency (MHz) Origin **Original Points Count** 16384 Owner Points Count 16384 Pulse Sequence spect zg30 psm Receiver Gain 161.30 SW(cyclical) (Hz) 10000.00 Solvent DMSO-d6 Spectrum Offset (Hz) 3087.5444 Spectrum Type STANDARD Sweep Width (Hz) 9999.39 Temperature (degree C) 25.000 ¹H NMR (500 MHz): $\delta = 4.77$ (s, 2H, M01), 7.17 (s, 1H, M02), 7.20 - 7.37 (m, 5H, M03) ppm 0.70 EG121_D2O_BN1HO5URA_1H.ESP 0.65 0.60 0.55 HN 0.50 M01(s,7) 0.45 CH2 M03(m,9,10,11,12,13) 0.40 1 Absolute Intensity M02(s,6) 0.35-H-6 arom. CHs 0.30 2 0.25 7.33 0.20 0.15 0.10 residual NH after deuteration residual OH after deuteration 11.48 0.05 8.83 0 0.00 5.01 1.08 0.05 2.00 ____ 4.0 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 Chemical Shift (ppm)

13 of 15

Figure SI-8. ¹³C NMR spectrum of 1-benzyl-5-hydroxyuracil in DMSO-d₆

7/30/2015 11:14:24 AM

14 of 15

Figure SI-9. Zoomed nano-ESI-MS spectrum of 1-benzyl-5-hydroxyuracil (ho⁵U, M = 218) in the presence of 100 μ M Sr(NO₃)₂. The calcium and sodium adducts are contaminants from previous measurements