Positive Variation of MRI Signal via Intramolecular Inclusion Complexation of a C-2 functionalized β-Cyclodextrin

Ibrahim Zgani ${ }^{\text {a }}$, Hussein Idriss ${ }^{\text {a,b }}$, Cécile Barbot ${ }^{\text {a }}$, Florence Djedaïni-Pilard ${ }^{\text {c }}$, Samuel Petit ${ }^{\text {d }}$, Marie Hubert-Roux ${ }^{\text {a }}$, François Estour ${ }^{\text {a }}$, Géraldine Gouhier ${ }^{\mathbf{a}^{*}}$

${ }^{a}$ Normandie Univ, COBRA, UMR 6014, FR 3038, INSA Rouen, CNRS, IRIB, IRCOF 1 rue Tesnière 76821 Mont-Saint-Aignan, France
Phone: 33-235522909; Fax:33-235522959; E-mail: geraldine.gouhier@univ-rouen.fr
${ }^{b}$ Lebanese International University, Biological and Chemical Sciences, P.O. Box: 146404 Mazraa, Mousaytbeh -Beyrouth, Lebanon
${ }^{c}$ University of Picardie Jules Verne, LG2A UMR CNRS 7378, France
${ }^{\mathrm{d}}$ Normandie Univ, SMS, EA 3233, Place E. Blondel, 76821 Mont-Saint-Aignan, France

1. General S2
2. Experimental procedures for the synthesis of compounds $\mathbf{6 , 7 , 3}, \mathbf{3}(\mathbf{G d}), \mathbf{3}(\mathbf{E u})$ S3
3. Routine NMR analysis S17
3.1. ${ }^{1} \mathrm{H}$ NMR spectrum of 7 S17
$3.2{ }^{13} \mathrm{C}$ NMR spectrum of 7 S18
3.3 COSY NMR spectrum of 7 S19
3.4 HMQC NMR spectrum of 7 S20
3.5 HMBC NMR spectrum of 7 S21
$3.6{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ S21
$3.7{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}$ S22
$3.8{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 + 5}$ S22
3.9 COSY NMR spectrum of 2 S23
$3.10{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 + 4}$ S24
$3.11^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}(\mathbf{L a})+\mathbf{4}$ S24
3.12 ROESY spectrum of 2(La)+4 S25
$3.13{ }^{1} \mathrm{H}$ NMR study of $\mathbf{3}$ function of the concentration S25
4. MRI analysis of $\mathbf{1}(\mathbf{G d}), \mathbf{2}(\mathbf{G d}), \mathbf{3}(\mathbf{G d}), \mathbf{2}(\mathbf{G d})+\mathbf{4}, \mathbf{1}(\mathbf{G d})+\mathbf{4}$ S26

1. General

All solvents and reagents were purchased from commercial sources and used without further purification. Reactions were monitored by thin-layer chromatography (TLC) on a plate of silica gel $60 \mathrm{~F}_{254}$ (E. Merck, Darmstadt, Germany) and detection by charring with sulfuric acid. Column chromatographies were performed on silica gel 60 ($0.063-0.200 \mathrm{~mm}$, E. Merck). ${ }^{1} \mathrm{H}(300$ $\mathrm{MHz})$ and ${ }^{13} \mathrm{C}(75.5 \mathrm{MHz})$ NMR spectra were recorded on Bruker AVANCE 300. Chemical shifts in NMR spectra are reported in parts per million from TMS. IR spectra were recorded on a Perkin-Elmer IRFT 1650 spectrometer. ESI-MS data were acquired using a HCT Ultra Ion Trap mass spectrometer (Bruker Daltonics, Bremen, Germany) or using a LCT Premier XE (Waters, Manchester, UK) for the complexes. Accurate mass measurements (HR-MS) were realized using a Synapt G2 HDMS (Waters, Manchester, UK) equipped with a lockspray electrospray (ESI) source. Experiments were achieved in positive or negative ion mode using protonated or deprotonated molecule of bombesine as internal reference $(\mathrm{m} / \mathrm{z} 1619.8229$ and 1617.8073 respectively). Circular dichroism spectral measurements were performed in a conventional quartz cell (light path 0.1) on a DC III Jobin Yvon spectropolarimeter equipped with a temperature controller. The temperature of the cell was kept constant at $25^{\circ} \mathrm{C}$. Equimolar solutions of gadolinium complexes and guest were prepared in water. Circular dichroism spectra were measured at $0.2 \mu \mathrm{~mol} / \mathrm{dm}^{-3}$.

2. General procedure for the synthesis of compounds $\mathbf{6 , 7 , 3}$

Compound $\mathbf{6}$ was synthetized according to the following:

Scheme 1 Synthesis of functionalized flexible spacer arm 6

1 Q. Chen, P. Rao, E. Knaus, Bioorg. Med. Chem., 2006, 14, 7898-7909.
2 F. Balavoine, D. Madec, C. Mioskowski, Tetrahedron Lett., 1999, 40, 8351-8354.
3-(4-aminophenyl)propanoic acid 9

$\mathrm{Pd} / \mathrm{C} 10 \%(100 \mathrm{mg})$ was added to a solution of 4-nitrocinnamic acid $\mathbf{8}(700 \mathrm{mg}, 3.63 \mathrm{mmol})$ in methanol (40 mL), and the reaction mixture was stirred under hydrogen atmosphere (1 atm) at $55^{\circ} \mathrm{C}$ for 4 hours. The catalyst was filtered through celite and the filtrate was concentrated to give a brown solid ($580 \mathrm{mg}, 95 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{MeOD}$) $\delta: 6.99$ (d, $\left.J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}\right), 6.68$ (d, $\left.J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}\right), 2.78$ ($\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3$), $2.52(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2) .{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{MeOD}\right) \delta: 177.2$ (C=O),
146.0 (C-Ar), 132.4 (C-Ar), 129.9 (2C, C-Ar), 117.2 (2C, C-Ar), 37.4 (C-3), 31.4 (C-2). HRMS (ESI, m / z) calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{NO}_{2}[\mathrm{M}-\mathrm{H}]:$: 164.0706; found: 164.0720.

3-(4-iodophenyl)propanoic acid 10

To a solution of 3-(4-aminophenyl)propanoic acid $9 \quad(1.63 \quad \mathrm{~g}, \quad 10 \mathrm{mmol})$ in 10 mL of water and 2 mL of concentrated sulfuric acid, a solution of sodium nitrite ($828 \mathrm{mg}, 12$ mmol) in water (3 mL) was added dropwise under stirring at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 30 minutes prior to the addition of a cooled solution of potassium iodide (3.32 g , $20 \mathrm{mmol})$ in water $(12 \mathrm{~mL})$. The reaction was maintained under stirring for 3 hours at $0^{\circ} \mathrm{C}$. The dark brown mixture was extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic phases were washed with 5% aqueous $\mathrm{HCl}(20 \mathrm{~mL})$, then with saturated aqueous sodium thiosulfate solution (50 mL). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel (cyclohexane/acetone, 3/1, v/v) to give a white powder ($1.93 \mathrm{~g}, 70 \%$ yield).
$\mathrm{Rf}=0.28 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.63(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 6.97(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}-\mathrm{Ar}), 2.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3), 2.65(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס: 179.1 (C=O), 139.8 (C-Ar), 137.7 (2 C, C-Ar), 130.5 (2 C, C-Ar), 91.7 (C-Ar), 35.4 (C-3), 30.1 (C-2). IR (ATR-D) $\nu_{\max }\left(\mathrm{cm}^{-1}\right): 3400(\mathrm{O}-\mathrm{H}), 1732(\mathrm{C}=\mathrm{O})$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{I}[\mathrm{M}-\mathrm{H}]:$: 274.9563; found: 274.9573 .

Methyl 3-(4-(3-hydroxyprop-1-ynyl)phenyl)propanoate 11

Cuprous iodide ($15 \mathrm{mg}, 0.08 \mathrm{mmol}$) and dichlorobis(triphenylphosphine)palladium ($27 \mathrm{mg}, 0.04$ mmol) were added under nitrogen atmosphere to a solution of 3-(4-iodophenyl)propanoic acid $\mathbf{1 0}$
($356 \mathrm{mg}, 1.29 \mathrm{mmol}$) and propargyl alcohol $(108 \mathrm{mg}, 1.93 \mathrm{mmol})$ in trimethylamine $(8 \mathrm{~mL})$. The reaction was stirred for 18 hours at $50^{\circ} \mathrm{C}$. After cooling to $25^{\circ} \mathrm{C}$, triethylamine was removed under reduced pressure to give a black oil. The crude product was dissolved in a mixture of methanol (5 mL) and tetrahydrofuran (5 mL). N, N^{\prime}-Dicyclohexylcarbodiimide (0.48 g , 2.34 mmol) and 1-hydroxybenzotriazol hydrate ($0.32 \mathrm{~g}, 2.34 \mathrm{mmol}$) were then added. The mixture was stirred at room temperature for 24 hours. The solvent was evaporated under reduced pressure and the residue was purified by flash chromatography on silica gel (cyclohexane/ethyl acetate, $9 / 1, \mathrm{v} / \mathrm{v}$) to give a yellow oil ($196 \mathrm{mg}, 70 \%$ yield).
$\mathrm{Rf}=0.18 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right) \delta: 7.31(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.07(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-$ Ar), 4.45 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-11$), $3.62(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-1), 2.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-4), 2.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3$ $\mathrm{H}, \mathrm{H}-3) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 173.4(\mathrm{C}=\mathrm{O}), 140.9$ (C-5, C-Ar), 131.8 (2 C, C-Ar), 128.3 (2 C, C-Ar), 120.6 (C-8, C-Ar), 87.3, 85.2, 51.8, 51.3, 35.3 (C-4), 30.7 (C-3). IR (ATR-D) $\nu_{\max }\left(\mathrm{cm}^{-1}\right): 3400(\mathrm{O}-\mathrm{H}), 2200$ (C-alcyne). Elemental analysis: Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3}$: C, 71.54; H, 6.47. Found: C, 70.91; H, 6.24.

Methyl 3-(4-(3-hydroxypropyl)phenyl)propanoate 12

120 mg of $\mathrm{Pd} / \mathrm{C}(10 \%)$ were added to a solution of methyl 3-(4-(3-hydroxyprop-1ynyl)phenyl)propanoate $\mathbf{1 1}(775 \mathrm{mg}, 3.55 \mathrm{mmol})$ in methanol (40 mL), and the reaction mixture was stirred under hydrogen atmosphere (1 atm) at $55^{\circ} \mathrm{C}$ for 4 hours. The catalyst was filtered through celite, and the filtrate was concentrated to give a white solid ($2.98 \mathrm{mmol}, 84 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.12(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 3.66\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{OCH}_{3}\right), 2.92$ ($\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4$), $2.64(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-9), 1.87(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-10) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \quad \delta: \quad 173.5 \quad(\mathrm{C}=\mathrm{O}), \quad 139.8 \quad(\mathrm{C}-5, \quad \mathrm{C}-\mathrm{Ar}), \quad 137.9 \quad(\mathrm{C}-\mathrm{Ar}), \quad 128.6 \quad(2 \mathrm{C}$, C-Ar), 128.3 (2 C, C-Ar), 62.2 (C-11), 51.7 (C-1), 35.8 (C-4), 34.2 (C-9), 31.6 (C-10), 30.5
(C-3). IR (ATR-D) $v_{\max }\left(\mathrm{cm}^{-1}\right): 3400(\mathrm{O}-\mathrm{H}), 1732(\mathrm{C}=\mathrm{O}), 1509(\mathrm{C}=\mathrm{C})$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 245.1148$; found: 245.1149.

Methyl 3-(4-(3-bromopropyl)phenyl)propanoate 6

A solution of bromine ($0.18 \mathrm{~mL}, 3.51 \mathrm{mmol}$) in dry methylene chloride (4 mL) was added dropwise under stirring at $0^{\circ} \mathrm{C}$ under nitrogen atmosphere to a solution of triphenylphosphine ($920 \mathrm{mg}, 3.51 \mathrm{mmol}$) in methylene chloride $(5 \mathrm{~mL})$. The reaction mixture was stirred for 30 minutes prior to the addition of methyl 3-(4-(3-hydroxypropyl)phenyl)propanoate 12 (650 mg , 2.93 mmol) in methylene chloride (5 mL). The reaction mixture was stirred for 3 hours at room temperature. The solvent was evaporated under reduced pressure and the residue was purified by flash chromatography on silica gel (cyclohexane/ethyl acetate, 95/5, v/v) to give a yellow oil ($537 \mathrm{mg}, 65 \%$ yield).
$\mathrm{Rf}=0.14 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.13(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 3.67(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-1), 3.39(\mathrm{t}, J=6.5$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-11$), $2.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4), 2.77(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-9), 2.62(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}-3), 2.15(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-10) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 173.4$ (C=O), 138.5 (2 C, C-Ar), 128.7 (2 C, C-Ar), 128.4 (2 C, C-Ar), 51.7 (C-1), 35.7 (C-4), 34.2 (C-11), 33.5 (C-9), 33.2 (C10), 30.5 (C-3). IR (ATR-D) $v_{\max }\left(\mathrm{cm}^{-1}\right): 2952,1729(\mathrm{C}=\mathrm{O}), 1433$ (C=C). Elemental analysis:

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrO}_{2}$: C, 54.75; H, 6.01; found: C, 55.17; H, 6.24 .

2^{I}-O-methyl 3-(4-(3-propyl)phenyl)propanoate- β-cyclodextrin 7

Sodium hydride ($35 \mathrm{mg}, 0.88 \mathrm{mmol}, 60 \%$ in mineral oil) was added under nitrogen atmosphere, to a solution of β-cyclodextrin ($1 \mathrm{~g}, 0.88 \mathrm{mmol}$) in anhydrous dimethyl sulfoxide (5 mL). The mixture was stirred for 14 hours at room temperature and a solution of electrophile reagent 6 (0.88 mmol) in anhydrous dimethyl sulfoxide (3 mL) was added. The solution was stirred at room temperature for 9 hours. The crude product was then precipitated in acetone (1000 mL), filtered off and chromatographed. The residue was purified by flash chromatography on silica gel (ethyl acetate/isopropanol/water, $12 / 7 / 4, \mathrm{v} / \mathrm{v} / \mathrm{v}$) to give a white powder ($211 \mathrm{mg}, 18 \%$ yield).
m.p. $>260^{\circ} \mathrm{C} . \mathrm{Rf}=0.3 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta: 7.00(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 4.97(\mathrm{~s}, 7 \mathrm{H}, \mathrm{H}-1)$, 3.73-3.52 (m, $47 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-3, \mathrm{H}-2, \mathrm{OCH}_{3}, 1 \times \mathrm{CH}_{2}$), 2.79 ($\mathrm{m}, 2 \mathrm{H}, 1 \times \mathrm{CH}_{2}$), 2.67-2.55 ($\mathrm{m}, 4 \mathrm{H}, 2 \times \underline{\mathrm{H}}_{2}$), $1.86\left(2 \mathrm{H}, 1 \times \underline{\mathrm{H}}_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta: 175.3(\mathrm{C}=\mathrm{O})$, $139.6(\mathrm{C}-\mathrm{Ar})$, 138.3 (C-Ar), 128.1 (C-Ar), 127.9 (C-Ar), 102.0 ($6 \times \mathrm{C}-1$), 100.9 (C'-1), 82.5 ($7 \times \mathrm{C}-4$), 82.1 ($\mathrm{C}^{\prime}-2$), $72.9,73.3(\mathrm{C}-3,6 \times \mathrm{C}-2), 71.8(7 \times \mathrm{C}-5), 71.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 59.8(\mathrm{C}-6), 52.3\left(\mathrm{O}-\mathrm{CH}_{3}\right)$, 38.7, 35.9, 31.5, 30.1 (4 $\left.\mathrm{CH}_{2}-\mathrm{Ar}\right)$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{55} \mathrm{H}_{86} \mathrm{O}_{37} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 1361.4740; found: 1361.4733.

$2^{\mathrm{I}}-\mathrm{O}$-methyl-3-(4-(3-propyl)phenyl)propanoate-heptakis-(6-O-carboxymethyl-2,3-di-O-methyl)- β-cyclodextrin 3

Compound $\mathbf{3}$ was synthetized according to the following pathway:

2^{I}-O-methyl-3-(4-(3-propyl)phenyl)propanoate-heptakis-(6-O-tert-butyldimethylsilyl)- β cyclodextrin 3a

Under nitrogen atmosphere, a solution of 2^{I} - O-methyl-3-(4-(3-propyl)phenyl)propanoate- β cyclodextrin $7(1.606 \mathrm{~g}, 0.001 \mathrm{~mol})$ was dissolved in 7 mL of anhydrous pyridine and tertbutyldimethylsilyl chloride ($2.3 \mathrm{~g}, 0.015 \mathrm{mmol}$) was added. The solution was stirred at room temperature for 5 hours. The reaction was quenched with 3 mL of water and the solution was evaporated under reduced pressure. The compound was purified by flash chromatography on silica gel (methylene chloride/methanol, $95 / 5, \mathrm{v} / \mathrm{v}$) to give a white powder ($641 \mathrm{mg}, 30 \%$ yield).
m.p. $>260^{\circ} \mathrm{C} . \mathrm{Rf}=0.14 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 7.38-7.21(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 5.12(\mathrm{~m}, 7 \mathrm{H}$, H-1), 4.57-3.82 (m, $47 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-3, \mathrm{H}-2, \mathrm{CH}_{3}, \mathrm{CH}_{2}$), $3.00\left(\mathrm{t}, J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), $2.81\left(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.56\left(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.12(\mathrm{~s}, 63 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}\right), 0.17\left(\mathrm{~s}, 42 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{Si}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 171.2(\mathrm{C}=\mathrm{O})$, 138.6 (C-Ar), 137.1 (C-Ar), 127.6 (C-Ar), 126.6 (C-Ar), 101.4 (C-1), 81.3 (C-4), 72.8 (C-3), 72.7, 72.3 (C-2, $\left.\mathrm{C}-5), 71.5(\mathrm{C}-\mathrm{a}), 61.1(\mathrm{C}-6), 51.9\left(\mathrm{CH}_{3}\right), 34.6,30.4,29.6,28.8\left(4 \mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}\right), 17.3$ $\left.\left(\mathrm{CH}_{3}\right)_{3}-\underline{\mathrm{C}}\right)$, -6.1 $\left.\left(\underline{\mathrm{C}}_{3}\right)_{2}-\mathrm{Si}\right)$. HRMS $\left(\mathrm{ESI}, \mathrm{m} / \mathrm{z}\right.$) calcd for $\mathrm{C}_{97} \mathrm{H}_{184} \mathrm{O}_{37} \mathrm{Si}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 2160.0793$; found: 2160.0762 .

2^{1}-O-methyl-3-(4-(3-propyl)phenyl)propanoate-heptakis-(6-O-tert-butyldimethylsilyl-2,3-di-O-methyl)- β-cyclodextrin 3b

Under nitrogen atmosphere, 2^{I} - O-methyl-3-(4-(3-propyl)phenyl)propanoate-heptakis-(6-O-tert-butyldimethylsilyl)- β-cyclodextrin 3a ($560 \mathrm{mg}, 0.26 \mathrm{mmol}$) was dissolved in anhydrous tetrahydrofuran (12 mL). Sodium hydride dispersed in mineral oil (60%) ($280 \mathrm{mg}, 7.02 \mathrm{mmol}$) was slowly added at $0^{\circ} \mathrm{C}$. Iodomethane ($1 \mathrm{~mL}, 15.23 \mathrm{mmol}$) was added dropwise over 1 hour period and the reaction mixture was further stirred for 18 hours at room temperature. The excess of sodium hydride was decomposed by addition of methanol (7 mL). Solvents were removed under reduced pressure. The crude product was purified by flash chromatography on silica gel (methylene chloride/methanol, $99 / 1, \mathrm{v} / \mathrm{v}$) to give a white powder ($507 \mathrm{mg}, 85 \%$ yield).
m.p. $>260^{\circ} \mathrm{C} . \mathrm{Rf}=0.1 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.06(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 5.19(\mathrm{~d}, J=9 \mathrm{~Hz}, 7$ H, H-1), 4.24-3.35 (m, $82 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-3,{ }^{2} \mathrm{O}-\mathrm{CH}_{3},{ }^{3} \mathrm{O}-\mathrm{CH}_{3}, \mathrm{CO}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2}$), 3.05 (dd, $J=$ $9 \mathrm{~Hz}, J=3 \mathrm{~Hz}, 7 \mathrm{H}, \mathrm{H}-2), 2.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.89(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.85\left(\mathrm{~s}, 63 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}\right), 0.01\left(\mathrm{~s}, 42 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{Si}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: 139.9 (C-Ar), 138.7 (C-Ar), 128.4 (C-Ar), 128.2 (C-Ar), 98.1 (C-1), 82.1, 72.3, 72.0, 71.2 (C-4, $\mathrm{C}-3, \mathrm{C}-2, \mathrm{C}-5), 71.5\left(\mathrm{CH}_{2}-\mathrm{a}\right), 66.4,62.3,61.4,58.5\left(\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CO}, \mathrm{C}-6,{ }^{2} \mathrm{O}-\mathrm{CH}_{3},{ }^{3} \mathrm{O}^{-}-\mathrm{CH}_{3}\right), 31.9$, 31.6, 29.7, $\left.\left.22.7\left(4 \mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}\right), 18.2\left(\mathrm{CH}_{3}\right)_{3}-\underline{\mathrm{C}}\right)$, $-5.2\left(\mathrm{CH}_{3}\right)_{2}$-Si). HRMS (ESI, m / z) calcd for $\mathrm{C}_{109} \mathrm{H}_{208} \mathrm{O}_{37} \mathrm{Si}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 2328.2671$; found: 2328.2554 .

$\mathbf{2}^{\mathrm{I}}$ - O-methyl-3-(4-(3-propyl)phenyl)propanoate-heptakis-(2,3-di- O-methyl)- β-cyclodextrin 3c

Under nitrogen atmosphere, ammonium fluoride ($216 \mathrm{mg}, 5.85 \mathrm{mmol}$) was added at room temperature to a solution of 2^{I} - O-methyl-3-(4-(3-propyl)phenyl)propanoate-heptakis-(6-O-tert-butyldimethylsilyl-2,3-di- O-methyl)- β-cyclodextrin $\mathbf{3 b}$ ($507 \mathrm{mg}, 0.22 \mathrm{mmol}$) in 16 mL of methanol. The mixture was stirred at $75^{\circ} \mathrm{C}$ for 24 hours. Further addition of ammonium fluoride $(0.86 \mathrm{~g}, 23 \mathrm{mmol})$ was then added, and the mixture was stirred at $75^{\circ} \mathrm{C}$ for 24 hours. The solvent was evaporated under reduced pressure and the residue was dissolved in 100 mL of methylene chloride. The white precipitate obtained was filtered off and discarded. The solvent from the residual filtrate was evaporated under reduced pressure to give the desired compound as a white powder ($316 \mathrm{mg}, 95 \%$ yield).
m.p. $>260^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , MeOD) $\delta: 7.00(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}-\mathrm{Ar}$), $5.13(\mathrm{~s}, 7 \mathrm{H}, \mathrm{H}-1), 3.83-3.23$ (m, $82 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-3,{ }^{2} \mathrm{O}-\mathrm{CH}_{3},{ }^{3} \mathrm{O}-\mathrm{CH}_{3}, \mathrm{CO}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2}$), 3.10 (d, J = $12 \mathrm{~Hz}, 7 \mathrm{H}, \mathrm{H}-2$), $2.80\left(\mathrm{t}, J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.66\left(\mathrm{t}, J=12 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.48\left(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.89$ (m, $2 \mathrm{H}, \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{MeOD}$) $\delta: 176.0(\mathrm{C}=\mathrm{O}), 139.6$ (C-Ar), 138.2 (C-Ar), 128.1 (C-Ar), 127.7 (C-Ar), 98.0 (C-1), 82.8 (C-4), 79.1, 71.9, 72.0, (C-2, C-3, C-5), $71.5\left(\mathrm{CH}_{2}-\mathrm{a}\right)$, $69.5,60.6,60.3,57.4\left(\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CO}, \mathrm{C}-6,{ }^{2} \mathrm{O}^{-}-\mathrm{CH}_{3},{ }^{3} \mathrm{O}-\mathrm{CH}_{3}\right), 31.6,31.2,30.4,29.2\left(4 \mathrm{CH}_{2}\right)$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{67} \mathrm{H}_{109} \mathrm{O}_{37}[\mathrm{M}-\mathrm{H}]^{-}: 1505.6642$; found: 1505.6610 .

$\mathbf{2}^{\mathrm{I}}$-O-methyl-3-(4-(3-propyl)phenyl)propanoate-heptakis-(6-O-ethoxycarboxymethyl -2,3-di- O-methyl)- β-cyclodextrin 3d

Under nitrogen atmosphere, 2^{I} - O-methyl-3-(4-(3-propyl)phenyl)propanoate-heptakis-(2,3-di- O -methyl)- β-cyclodextrin $\mathbf{3 c}$ ($140 \mathrm{mg}, 0.093 \mathrm{mmol}$) was dissolved in 18 mL of dry methylene chloride and ethyl diazoacetate ($105 \mathrm{mg}, 0.929 \mathrm{mmol}$) was added. A solution of $\mathrm{HBF}_{4} 54 \%$ ethereal was diluted in methylene chloride ($5 \mu \mathrm{~L}$ dissolved in 0.5 mL of methylene chloride) and added. Bubbles of N_{2} were observed. The reaction mixture was stirred at room temperature for 24 hours, 0.3 mL of 5% aqueous NaHCO_{3} was added and the mixture was stirred for 5 minutes. The organic phase was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and it was evaporated under reduced pressure. The crude product was purified by chromatography on silica gel (ethyl acetate/methylene chloride/methanol, 50/50/4, v/v/v) to give a white powder ($70 \mathrm{mg}, 36 \%$ yield).
m.p. $>260^{\circ} \mathrm{C} . \mathrm{Rf}=0.21 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.12(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 5.17(\mathrm{~s}, 7 \mathrm{H}, \mathrm{H}-1)$, 4.19-4.15 (m, $28 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CO}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$), 3.94-3.35 (m, $82 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-3,{ }^{2} \mathrm{O}-\mathrm{CH}_{3}$, ${ }^{3} \mathrm{O}_{-\mathrm{CH}_{3}}, \mathrm{CO}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2}$), $2.91\left(\mathrm{t}, J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.70\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.92\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.25\left(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 21 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{MeOD}\right) \delta: 175.7(\mathrm{C}=\mathrm{O}), 169.2(\mathrm{C}=\mathrm{O})$, 139.2 (C-Ar), 136.6 (C-Ar), 127.6 (C-Ar), 128.2 (C-Ar), 98.1 (C-1), 81.0 (C-4), 79.1 (C’-2), 69.8, 69.4, $69.1(\mathrm{C}-3, \mathrm{C}-2, \mathrm{C}-5), 68.8\left(\mathrm{CH}_{2}-\mathrm{a}\right), 67.5,60.8,60.3,59.4\left(\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CO}, \mathrm{C}-6,{ }^{2} \mathrm{O}-\mathrm{CH}_{3}\right.$, $\left.{ }^{3} \mathrm{O}-\mathrm{CH}_{3}\right), 57.3\left(\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right) 34.4,30.7,29.3$, $28.4\left(4 \mathrm{CH}_{2}\right), 13.2\left(\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$. LRMS (ESI): $\mathrm{m} / \mathrm{z} 2107.8$ [M-H].

$\mathbf{2}^{\mathrm{I}}$ - O -methyl-3-(4-(3-propyl)phenyl)propanoate-heptakis-(6-O-carboxymethyl-2,3-di-O-methyl)- β-cyclodextrin 3

Under nitrogen atmosphere, 2^{I} - O-methyl-3-(4-(3-propyl)phenyl)propanoate-heptakis-(6- O -ethoxycarboxymethyl-2,3-di- O-methyl)- β-cyclodextrin 3d ($60 \mathrm{mg}, 0.028 \mathrm{mmol}$) was dissolved in methanol (5 mL) and a solution of sodium hydroxide ($0.6 \mathrm{~mL}, 0.570 \mathrm{mmol}$) was added. The reaction mixture was stirred for 18 hours at room temperature. Solvents were evaporated, water $(3 \mathrm{~mL})$ was added, and the solution was filtered on Dowex 50WX8-100 $\left(\mathrm{H}^{+}\right)$. Lyophilization of the solution gave the desired product as a white powder ($50 \mathrm{mg}, 92 \%$ yield).
m.p. $>260^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta: 7.13(\mathrm{dd}, J=6 \mathrm{~Hz}, J=9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 5.18(\mathrm{~s}, 7$ $\mathrm{H}, \mathrm{H}-1), 4.18\left(\mathrm{dd}, J=18 \mathrm{~Hz}, J=6 \mathrm{~Hz}, 14 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CO}\right), 3.77-3.18(\mathrm{~m}, 86 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-$ $\left.3, \mathrm{H}-2,{ }^{2} \mathrm{O}-\mathrm{CH}_{3},{ }^{3} \mathrm{O}^{-} \mathrm{CH}_{3}, \mathrm{CH}_{2}\right), 2.82\left(\mathrm{t}, J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.70\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.62(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta: 174.7(\mathrm{C}=\mathrm{O}), 173.8(\mathrm{C}=\mathrm{O}), 140.6(\mathrm{C}-\mathrm{Ar}), 137.6(\mathrm{C}-\mathrm{Ar})$, 128.6 (C-Ar), 128.1 (C-Ar), 98.6 (C-1), 81.4 (C-4), 79.6 (C’-2), 70.9, 69.6, 67.8 (C-3, C-2, $\mathrm{C}-5), 67.9\left(\mathrm{CH}_{2}-\mathrm{a}\right), 60.7,59.1,58.1,57.8\left(\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CO}, \mathrm{C}-6,{ }^{2} \mathrm{O}-\mathrm{CH}_{3},{ }^{3} \mathrm{O}-\mathrm{CH}_{3}\right), 36.2,31.6,31.4$, $30.8\left(4 \mathrm{CH}_{2}\right)$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{81} \mathrm{H}_{123} \mathrm{O}_{51}[\mathrm{M}-\mathrm{H}]:$: 1911.7026; found: 1911.7043.

$\mathbf{2}^{\mathrm{I}}$ - O -methyl-3-(4-(3-propyl)phenyl)propanoate-heptakis-(6-O-carboxymethyl-2,3-di- O -methyl)- β-cyclodextrin gadolinium 3(Gd)

To a solution of 2^{1} - O-methyl-3-(4-(3-propyl)phenyl)propanoate-heptakis-(6- O-carboxymethyl -2,3-di- O-methyl)- β-cyclodextrin $3(25 \mathrm{mg}, 0.013 \mathrm{mmol}$) in 1.7 mL of deionized water (7.64 $\mathrm{mM})$, a solution of $\mathrm{GdCl}_{3} .6 . \mathrm{H}_{2} \mathrm{O}(3.42 \mathrm{mg}, 0.013 \mathrm{mmol})$ in 0.43 mL of deionized water (30.23 mM) was added in three portions. The pH was adjusted to 7.0 after each addition using a 1 M sodium hydroxide solution. The reaction mixture was stirred at room temperature for 18 hours. The pH was then adjusted to 8.5 . The residual lanthanide was precipitated, centrifuged and filtered through a $0.2 \mu \mathrm{~m}$ membrane. The resulting solution was lyophilized to give quantitatively the desired product as a light yellow product (98% yield).

LRMS (ESI, m / z) $1031.2[\mathrm{M}-5 \mathrm{H}+\mathrm{Gd}]^{2-}$.

$\mathbf{2}^{\mathrm{I}}$ - O -methyl-3-(4-(3-propyl)phenyl)propanoate-heptakis-(6-O-carboxymethyl-2,3-di-O-methyl)- β-cyclodextrin europium 3(Eu)

To a solution of 2^{I} - O-methyl-3-(4-(3-propyl)phenyl)propanoate-heptakis-(6- O-carboxymethyl -2,3-di- O-methyl)- β-cyclodextrin 3 ($25 \mathrm{mg}, 0.013 \mathrm{mmol}$) in 1.7 mL of deionized water (7.64 $\mathrm{mM})$, a solution of $\mathrm{EuCl}_{3} \cdot 6 . \mathrm{H}_{2} \mathrm{O}(3.35 \mathrm{mg}, 0.013 \mathrm{mmol})$ in 0.43 mL of deionized water (30.23 mM) was added in three portions. The pH was adjusted to 7.0 after each addition using a 1 M sodium hydroxide solution. The reaction mixture was stirred at room temperature for 18 hours. The pH was then adjusted to 8.5 . The residual lanthanide was precipitated, centrifuged and filtered through a $0.2 \mu \mathrm{~m}$ membrane. The resulting solution was lyophilized to give quantitatively the desired product as a light yellow product (98% yield).

HRMS (ESI, m / z) calcd for $\mathrm{C}_{70} \mathrm{H}_{106} \mathrm{O}_{49} \mathrm{Eu}[\mathrm{M}-4 \mathrm{H}+\mathrm{Eu}]^{-}$: 1883.5009; found: 1883.5078. LRMS $(\mathrm{ESI}, m / z) 1883.61[\mathrm{M}-4 \mathrm{H}+\mathrm{Eu}]^{-}$.

3. Routine NMR analysis

3.1. ${ }^{1} \mathrm{H}$ NMR spectrum of 7

$3.2{ }^{13} \mathrm{C}$ NMR spectrum of 7

3.3 COSY NMR spectrum of 7

[^0]
$\operatorname{COSY}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ spectrum of 7
The corresponding carbons ($\mathrm{C}^{\prime}-1, \mathrm{C}^{\prime}-2$ and $\mathrm{C}^{\prime}-3$) were designed thanks to NMR HMQC analysis.

HMQC of compound 7

	2- \boldsymbol{O}-benzyl- $\boldsymbol{\beta}$-cyclodextrin	3- \boldsymbol{O}-benzyl- $\boldsymbol{\beta}$-cyclodextrin
$\Delta \mathbf{C}-\mathbf{1}$	-1.6 ppm	-0.7 ppm
$\Delta \mathbf{C}-\mathbf{2}$	+7.3 ppm	+6.2 ppm
$\Delta \mathbf{C}-\mathbf{3}$	-0.6 ppm	+7.0 ppm

Variations of shift in function of the substitution position. ${ }^{\text {a }}$
${ }^{\text {a }}$ N. Masurier, O, Lafont, R. Le Provost, D. Lesur, P. Masson, F. Djedaini-Pilard, F. Estour, Chem. Commun. 2009, 589-591.
3.4 HMQC NMR spectrum of 7

3.5 HMBC NMR spectrum of 7

$3.6{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$

$3.7{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}$

$3.8{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 + 5}$

Zoom of the aromatic part

3.9. COSY NMR spectrum of $\mathbf{2}$

Internal protons (H_{3} and H_{5}) of oligosaccharide 2 were attributed by a COSY ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} N M R$. ${ }^{\mathrm{b}}$

${ }^{\text {b }}$ H. Idriss, F. Estour, I. Zgani, C. Barbot, A. Biscotti, S. Petit, C. Galaup, M. Hubert-Roux, L. Nicol, P. Mulder, G. Gouhier, RSC Adv. 2013, 3, 4531-4534.

COSY ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2}, 25^{\circ} \mathrm{C}, \mathrm{D}_{2} \mathrm{O}$
3.10. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 (L a) + 4}$

${ }^{1} \mathrm{H}$ NMR of compound $2(\mathrm{La})$ in presence of 0.12 (spectrum a), 1 (spectrum 2) and 1.5 equivalents (spectrum 3) of hydrocinnamic acid $4, \mathrm{PBS}, 25^{\circ} \mathrm{C}, \mathrm{pH} 7.4$
$3.11{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}(\mathbf{L a})+\mathbf{4}$

3.12 ROESY NMR spectrum of 2(La)+4

Zoom of methyl proton area of NMR ROESY spectrum of inclusion complex 2(La)+4, $25^{\circ} \mathrm{C}, \mathrm{pH} 7.4, \mathrm{D}_{2} \mathrm{O}$
$3.13{ }^{1} \mathrm{H}$ NMR study of $\mathbf{3}$ function of the concentration

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3}$ without and with adamantane carboxylic acid $\mathbf{5}$ in various concentrations, $25^{\circ} \mathrm{C}, \mathrm{pH} 7.4$

4. Relaxivity measurements

Contrast agents $\mathbf{1}(\mathbf{G d}), \mathbf{2 (G d})$ or $\mathbf{3}(\mathbf{G d})$ were diluted ($1,0.5,0.25,0.125,0.0625 \mathrm{mM}$) in TRIS buffer (10 mM TRIS, $154 \mathrm{mM} \mathrm{NaCl}, \mathrm{pH} 7.4$). $\mathbf{2 (G d) + \mathbf { 4 }}$ and $\mathbf{1}(\mathbf{G d})+\mathbf{4}$ were prepared in TRIS buffer. The guest was completely soluble in TRIS buffer after the addition of contrast agents and stirred for 30 min . Water proton relaxation times $\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)$ were measured on a minispec mq20 (Bruker, Germany) spectrometer operating at 20 MHz and the relaxivity values were calculated by plotting the curves of $1 / \mathrm{T}$ as function of the concentration. Relaxation values were measured three times and the average has been calculated. The temperature was kept at $37^{\circ} \mathrm{C}$ with a Julabo ED Heating Immersion Circulators (uncertainty $\pm 0.1^{\circ} \mathrm{C}$).

Structures	$\mathbf{r l}_{1}\left(\mathrm{mM}^{-1} . \mathrm{s}^{-1}\right)$	$\mathbf{r}_{2}\left(\mathrm{mM}^{-1} \cdot \mathrm{~s}^{-1}\right)$
	4.74 ${ }^{\text {b }}$	$5.86{ }^{\text {b }}$
	$6.53{ }^{\text {b }}$	8.09 ${ }^{\text {b }}$
	5.72	7.05

	10.26	12.47
	5.92	6.96

Relaxivity measurements realized at 0.5 T in a TRIS buffer $\left(\mathrm{pH} 7.4,37^{\circ} \mathrm{C}\right)$.

[^0]: ${ }^{1} \mathrm{H}$ NMR showed four pics at $4.98 \mathrm{ppm}\left(\mathrm{H}^{\prime}-1\right), 3.81 \mathrm{ppm}\left(\mathrm{H}^{\prime}-3\right)$, and $3.22 \mathrm{ppm}\left(\mathrm{H}^{\prime}-2\right)$ attributed on the basis of COSY NMR analysis.

