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1. General Experimental Procedures

'"H NMR and *C NMR spectra were recorded on Bruker AV-400 spectrometer, with nominal
frequencies of 400 MHz for proton and 101 MHz for carbon. '"H NMR and *C NMR chemical
shifts are reported in parts per million relative to the residual undeuterated solvent as an internal
reference. All NMR experiments were performed at 298.2 K. The following abbreviations are
used to explain the multiplicities: s, singlet; d, doublet; t, triplet; g, quartet; m, multiple; b, broad.
Unless otherwise noted, all compounds were purified by flash chromatography on silica gel 60,
0.04-0.063 mm, and TLC (Sorbent Technologies). Visualization of spots was effected with UV
light. High-resolution electrospray ionization mass spectrometry (ESI-MS) was recorded on a
Q-Tof Ultima Global mass spectrometer (Micromass) equipped with a Z-spray source.
Electrospray ionization was achieved in the positive mode by 3 kV on the needle. For self-
assembly studies, 5 mM solutions of monomer in acetonitrile with 0.5 equivalents of the
corresponding metal cation, at room temperature, were directly and continuously infused at a
flow rate of 5 yL/min with a syringe pump. The source block temperature was maintained at 60
°C and the desolvation gas was heated to 80 °C. Argon was used as the collision gas and the
cone voltage was set to 35 V. The mass spectrometer was operated in the mass range 0-5000
amu. FT-IR was performed on a Bruker Tensor 27 equipped with Helios Attenuated Total
Reflectance (ATR) with a diamond crystal. UV/Vis absorption spectra were recorded with a
Varian Cary 1E UV-visible spectrophotometer, in quartz cells. Fluorescent experiments were
performed in a Varian Cary Eclipse fluorescence spectrophotometer. Data was processed
using Origin (v. 7), and Microsoft® Excel® for Mac 2011, version 14.1.0. Molecular models
were built and minimized using: AMBER* (MacroModel), Version 9.5, Maestro 9.1.207;

Schrédinger, LLC: New York, 2007, representing chloroform as a continuum solvent.
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2. Synthesis and characterization

General procedure for the Claisen-Schmidt condensation for preparation of 8-chalcone-2’-
deoxyguanosine derivatives

Aqueous NaOH (30%) (0.6 mL, 4.5 mmol) and 8-(m-acetylphenyl)-20-deoxyguanosine (100
mg, 0.26 mmol) were placed in an amber vial and stirred in 3 mL MeOH for 2 min until
completely soluble. The corresponding aldehyde (0.65 mmol) was added and reaction was
monitored with TLC (20% methanol: 80% dichloromethane) until full conversion was observed.
Reaction mixture was diluted with ca. 5 mL water and neutralized with HCI (10%) until pH ~7.
Product was filtered and re-suspended in ether to remove excess aldehyde. Product was
decanted and dried in vacuo to give product as a solid.

General method for esterification and purification of derivatives 1 and 2

Precursor compounds 1a or 2a (0.260 mmol), were pre-dried by suspension in acetonitrile and
solvent evaporation (3x), and finally suspended in anhydrous acetonitrile. To this suspension,
TEA (0.571 mmol), ascetic anhydride (0.571 mmol) and DMAP (0.026 mmol) were added. The
reaction mixture was left stirring overnight. TLC (CH2Cl>:MeOH) showed complete conversion
of starting material. The reaction mixture was quenched by adding excess of MeOH followed
by solvent evaporation. The resulting solid material was dissolved in EtOAc and washed with
10% NaHCO; (2 x 15 ml) and brine (1 x 15 ml). The organic phase was separated, dried over
MgSO, and evaporated into silica gel. Dry loading of the silica column followed by flash
chromatography (CH2Cl,/MeOH; 95:5) affording the target compounds.
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Figure S1. General synthetic scheme for the preparation of derivatives 1 and 2.
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Chemical Formula: C37H35Ng05
Exact Mass: 640.2434
Molecular Weight: 640.6872

(1a)

Bright orange powder, yield 93%. Dec. temp.: 190-193 °C.'H NMR (400 MHz, DMSO-ds): &
10.87 (s, 1H), 8.33 (s, 1H), 8.24 (d, J= 8.0 Hz, 1H), 7.92 (d, J = 7.9 Hz, 1H), 7.83 - 7.69 (m,
5H), 7.37 (dd, J = 8.3, 7.5 Hz, 4H), 7.16 (d, J = 7.4 Hz, 2H), 7.12 (d, J = 7.5 Hz, 5H), 6.91 (d,
J=8.8 Hz, 2H), 6.49 (s, 2H), 6.09 (t, J = 7.3 Hz, 1H), 5.15 (d, J = 3.2 Hz, 1H), 4.96 (s, 1H),
4.32 (d, J= 2.8 Hz, 1H), 3.80 (td, J = 5.3, 3.2 Hz, 1H), 3.67 - 3.58 (m, 1H), 3.58 - 3.50 (m,
1H), 3.23 - 3.12 (m, 1H), 2.05 (ddd, J = 12.8, 6.5, 2.5 Hz, 1H). *C NMR (101 MHz, DMSO) &
188.42, 156.71, 153.20, 152.08, 149.75, 146.30, 146.24, 144.45, 138.22, 133.22, 130.93,
130.57, 129.81, 129.15, 128.90, 127.47, 125.34, 124.43, 120.62, 119.08, 117.25, 87.95,
84.60, 71.16, 62.08, 36.61. IR (Vmax): 3116, 2928, 1678, 1567, 1504, 1487, 1282 cm™".
HRMS (m/z): [M + Na]* calcd for Cs;H32NOsNa, 663.2332; found, 663.2327.

10.5 95 90 85 80 75 70 65 6.0 55 50 45 40 35 3.0 25 20

Figure S2. 'H NMR (400 MHz, DMSO-ds, 298 K) of 1a
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Figure S3. '°C (APT) NMR (100 MHz, DMSO-ds, 298 K) of 1a

H

Chemical Formula: C41H3gNgO7
Exact Mass: 724.2645
Molecular Weight: 724.7605

(1)

Bright orange powder, yield 99%. Dec. temp.: 145-147 °C. 'H NMR (400 MHz, DMSO-ds): &
10.85 (s, 1H), 8.33 (s, 1H), 8.23 (d, J = 7.9 Hz, 1H), 7.90 (d, J = 7.8 Hz, 1H), 7.83 - 7.62 (m,
5H), 7.37 (t, J= 7.9 Hz, 4H), 7.16 (d, J= 7.4 Hz, 2H), 7.12 (d, J = 7.5 Hz, 4H), 6.91 (d, J= 8.7
Hz, 2H), 6.53 (s, 2H), 6.14 (t, J= 7.0 Hz, 1H), 5.42 (dt, J= 7.1, 3.5 Hz, 1H), 4.44 (dd, J =
11.5, 4.6 Hz, 1H), 4.25 (dd, J = 11.5, 7.3 Hz, 1H), 4.19 - 4.13 (m, 1H), 3.59 - 3.41 (m, 1H),
2.39 (ddd, J = 14.0, 7.3, 3.5 Hz, 1H), 1.98 (s, 3H), 1.97 (s, 3H). *C NMR (101 MHz, DMSO-
ds): O 188.49, 170.14, 169.98, 156.65, 153.17, 151.99, 149.76, 146.22, 146.17, 144.42,
138.27, 133.06, 130.58, 130.48, 129.81, 129.28, 129.14, 128.94, 127.45, 125.35, 124.44,
120.58, 119.17, 117.17, 84.78, 81.79, 74.82, 63.73, 39.94, 33.87, 20.57. IR (Vmax): 3119,
1679, 1570, 1488, 1216 cm™. HRMS (m/z): [M + K]* calcd for C41H3sNsO-K, 763.2283;
found, 763.2288.
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Figure S5. '°C (APT) NMR (100 MHz, DMSO-ds, 298 K) of 1
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Figure S6. HMQC (DMSO-ds, 298 K) of 1

Chemical Formula: CogHogNgOs
Exact Mass: 526.1965
Molecular Weight: 526.5432

(2a)

Bright yellow powder, yield 59%. Dec. temp.: 167-170 °C. 'H NMR (500 MHz, DMSO-ds): &
10.78 (s, 1H), 8.32 (s, 1H), 8.26 (d, J= 7.8 Hz, 1H), 8.16 (s, 1H), 8.10 (d, J= 7.7 Hz, 1H),
8.08 (d, J=15.4Hz, 1H),7.91 (d, J=7.7 Hz, 1H), 7.74 (t, J=7.7 Hz, 1H), 7.67 (d, J=15.4
Hz, 1H), 7.57 (d, J=8.0 Hz, 1H), 7.31 (dd, J=8.0 Hz, 7.1 Hz, 1H), 6.44 (s, 2H), 6.13 (t, J=
7.3 Hz, 1H), 5.15 (d, J=4.4 Hz, 1H), 4.95 (t, J= 5.8 Hz, 1H), 4.35 (m, 1H), 3.87 (s, 3H), 3.83
(m, 1H), 3.65 (m, 1H), 3.57 (m, 1H), 3.22 (m, 1H), 2.06 (m, 1H). "*C NMR (101 MHz, DMSO-
ds): © 188.19, 156.84, 153.23, 152.15, 146.58, 139.05, 138.80, 138.08, 136.91, 132.91,
130.83, 129.23, 129.08, 128.59, 125.73, 122.93, 121.66, 120.48, 117.33, 114.99, 111.85,
110.97, 88.07, 84.80, 71.32, 62.18, 36.66, 33.14. IR (vmax): 3304, 2927, 1673, 1637, 1558,
1523, 1373, 1282 cm™. HRMS (m/2): [M + Na]" calcd for CogH2sNeOsNa, 549.1862; found,
549.1845.
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S8



Chemical Formula: C3oH3gNgO-
Exact Mass: 610.2176
Molecular Weight: 610.6166

(2)

Bright yellow powder, yield 36%. Dec. temp.: 140-144 °C.'"H NMR (400 MHz, DMSO-ds): &
10.89 (s, 1H), 8.33 (s, 1H), 8.26 (d, J= 7.8 Hz, 1H), 8.15 (s, 1H), 8.11 (d, J = 6.1 Hz, 1H),
8.08 (d, J=15.2 Hz, 2H), 7.91 (d, J= 7.8 Hz, 1H), 7.75 (t, J= 7.7 Hz, 1H), 7.67 (d, J= 15.4
Hz, 1H), 7.58 (d, J= 8.0 Hz, 1H), 7.33 (t, J = 7.5 Hz, 1H), 7.28 (t, J = 7.9 Hz, 1H), 6.56 (s,
2H), 6.19 (t, J= 6.9 Hz, 1H), 5.50 - 5.41 (m, 1H), 4.46 (dd, J= 11.5, 4.6 Hz, 1H), 4.28 (dd, J =
11.4, 7.3 Hz, 1H), 4.21 (dd, J= 7.2, 3.6 Hz, 1H), 3.87 (s, 3H), 3.55 (dd, J= 17.5, 10.6 Hz,
1H), 2.46 - 2.37 (m, 1H), 1.99 (s, 3H), 1.98 (s, 3H). *C NMR (101 MHz, DMSO-ds): 5 188.13,
170.15, 170.00, 156.71, 153.19, 151.98, 146.32, 139.00, 138.82, 138.04, 136.98, 132.71,
130.50, 129.23, 129.01, 128.54, 125.60, 122.84, 121.48, 120.44, 117.19, 114.99, 111.81,
110.92, 84.81, 81.85, 74.87, 63.72, 33.96, 33.08, 20.69. IR (Vmax): 3109, 1678, 1561, 1524,
1216 cm™. HRMS (m/z): [M + K]* calcd for CapHaoNsO-K, 649.1813; found, 649.1889.
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Figure S9. 'H NMR (500 MHz, DMSO-ds, 298 K) of 2.
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3. Photophysical characterization
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Figure S12. Normalized absorption and emission spectra (2.2 uM CH3CN, degasified) of 1,
showing excitation and emission maxima.
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Figure S13. Normalized absorption and emission spectra (6.4 UM CH3CN; degasified) of 2,
showing excitation and emission maxima.
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Figure S14. Beer-Lambert plot (absorption vs. concentration) for 1 (left) and 2 (right).

A neutral density filter was used when measuring fluorescence intensity of the standard to
match its intensity with that of the samples." This allowed measuring the standard (perylene)
under the same conditions (slit sizes, PMT voltage) for the sample and the standard. The
filter absorbance was measured and the intensity determined for the standard was corrected
using the following equation:

I = 1¢/(T)

Where |, is the real emission intensity, I; is the integrated emission intensity measured using
the filter and T is the transmittance of the filter. The values obtained for I, were used to
produce the graphs for perylene shown in Figures S16 and S17.

Emission spectra of the solutions showing absorbance with less than 0.1 (to avoid inner filter
effects), at the excitation wavelength for 1 (420 nm) and 2 (390 nm), in acetonitrile (n =
1.3441) were recorded. Perylene?, ®= 0.92 in ethanol (nsr= 1.361) was used as the standard
and measurements for the standard were taken at both 390 nm and 420 nm. Plots of the
integrated fluorescence intensity as a function of the absorbance were done, the straight-line
intercept was set to 0 and the slope (Figures S15 and S16) was used to determine the
relative fluorescence quantum yield using the following equation:

®y = Os7 (Slopey/ slopest)(n®x /nsT)

! Arce, R.; Pino, E. F.; Valle, C.; Agreda, J., “Photophysics and Photochemistry of 1-Nitropyrene.” J. Phys. Chem.
A 2008, 112, 10294-10304.

2 Brouwer, A. Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical
Report). Pure Appl. Chem., 2011, 83, 2213-2228.
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Figure S15. Plots of the integrated fluorescence emission intensity vs absorbance used to
determine quantum yield of 1 (left) and perylene standard (right) (excitation wavelength 420
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Figure S16. Plots of the integrated fluorescence emission intensity as a function of
absorbance used to determine quantum vyield of 2 (left) and perylene standard (right)
(excitation wavelength 390 nm; excitation slit 5/emission slit 10; PMT voltage 650 V).

Compound Molar Stokes Stokes shift Quantum
absorptivity shift yield
(M7, ecm™) (cm™) (nm)
1 31,500 7,707 194 0.029
2 25,500 5,233 100 0.053
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4. Self-Assembly studies: NMR
equiv KSCN U
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Figure S17. "H NMR (400 MHz, CDsCN, 298 K) titration of 1 (5 mM) with increasing amounts
of KSCN. (1) no KSCN, loosely bound aggregates (LBA), ~4% octamer; (2) 0.63 mM KSCN,

38% octamer, 34% hexadecamer; (3) 1.25 mM KSCN, 21% octamer, 61% hexadecamer; (4)
1.7 mM KSCN, 89% hexadecamer; and 5) 5.0 mM KSCN, 98% hexadecamer.
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Figure S18. Full 2D NOESY spectrum (400 MHz, CDsCN, 0.5 equiv KSCN) for 1,5 (5 mM in 1).

Labels in magenta for the outer tetrads and in blue for the inner tetrads.
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Figure S19. 'H NMR (400 MHz, CD5CN, 0.5 equiv KSCN) for 1;5 (5 mM in 1). Labels in magenta
for the outer tetrads and in blue for the inner tetrads. Signals assigned based on integrations,
2D NOESY spectrum, proton coupling and our own experience. The 6-9 ppm region of the

spectrum allows different interpretations.
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Figure S20. 'H NMR (400 MHz, CDsCN, 298 K) titration of 2 (5 mM) with increasing amounts
of KSCN. (1) no KSCN, loosely bound aggregates (LBA), ~6% octamer; (2) 0.63 mM KSCN,
91% octamer; (3) 1.25 mM KSCN, 36% octamer, 53% hexadecamer; (4) 1.7 mM KSCN, 26%
octamer, 74% hexadecamer; and 5) 5.0 mM KSCN, 96% hexadecamer.
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Figure S21. Full 2D NOESY spectrum (400 MHz, CDsCN, 0.5 equiv KSCN) for 2,5 (5 mM in 2).
Labels in magenta for the outer tetrads and in blue for the inner tetrads.
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Figure S22. 'H NMR (400 MHz, CD5CN, 0.5 equiv KSCN) for 24 (5 mM in 2). Labels in magenta
for the outer tetrads and in blue for the inner tetrads. Signals assigned based on integrations,
2D NOESY spectrum, proton coupling and our own experience. The 6-9 ppm region of the
spectrum allows different interpretations.
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5. Self-Assembly studies: ESI-Mass spectroscopy
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Figure S23. ESI-Mass spectrum (5 mM; CH3CN, 0.5 equiv KSCN) of 146. Top: Calculated
isotopic patterns and experimental spectra for each of the mayor peaks in the spectrum.
Bottom: Full mass spectrum for 1.
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Figure S24. ESI-Mass spectrum (5 mM; CH3CN, 0.5 equiv KSCN) of 246. Top: Calculated
isotopic patterns and experimental spectra for each of the mayor peaks in the spectrum.
Bottom: Full mass spectrum for 246.
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6. Self-Assembly studies: Fluorescence spectroscopy
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Figure S25. Emission spectra of 1 (ex. wavelength 500 nm, em/ex slit 5, 600V, CHsCN, 5
mM) with increasing amounts of KSCN.
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Figure S26. Excitation spectra of 1 (em. wavelength 620 nm, em/ex slit 5, 600V, CHzCN, 5

mM) with increasing amounts of KSCN. At these concentrations (5mM), the derivatives tend
to aggregate, resulting in a spectrum which is slightly different from the absorption spectrum
measured at 2.2 yM shown in Figure S12.
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Figure S27. Emission spectra of 2 (ex. wavelength 450 nm, em/ex slit 5, 600V, CHsCN, 5
mM) with increasing amounts of KSCN.
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Figure S28. Excitation spectra of 2 (em. wavelength 520 nm, em/ex slit 5, 600V, CHzCN, 5
mM) with increasing amounts of KSCN. At this concentration (5mM), the derivatives tend to
aggregate, resulting in a spectrum which is slightly different from the absorption spectrum
measured at 6.4 yM shown in Figure S13.
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