Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Synthetic minimalistic tryptophan zippers as chiroptical switch

V. Haridas,^a* Sandhya Sadanandan,^a Sameer Dhawan,^a Rituraj Mishra,^a Ishani Jain,^b Gaurav Goel,^b Yuan Hu,^c SandeepPatel^c*

^aDepartment of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016

^b Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi-110016

^cDepartment of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 USA

Structural analysis of 1a	S3-S7
UV absorption spectra of 1a-1c	S8
CD melting experiment on 1c	S9
Titration and complexation studies studies with anions	S10-S22
Conformational analysis and titration studies of 1b-1c	S23-S28
CD studies of 1d-1f	S28-S29
SEM, AFM and TEM analysis	S30
MD simulation data	S30
NMR and mass spectral data	S31-S41
References	S42

2D NMR spectroscopy

COSY, ROESY, and NOESY were recorded on a Bruker Avance 300 at 25°C. COSY spectrum of **1a-1c** was recorded by collecting 1024 complex data points in the t_2 domain by averaging 16scans and 2048 increments in the t_1 domain with a mixing time 800ms. NOESY spectrum was recorded by collecting 1024 complex data points in the t_2 domain by averaging 16 scans and 1024 increments in the t_1 domain with a mixing time 1000ms.

Figure S1. COSY (CD₃CN, 300MHz) spectrum of 1a

and the second second second second

Figure S2. Selected region of COSY (CD₃CN, 300MHz) spectrum of 1a

Figure S3. NOESY (CD₃CN, 300MHz) spectrum of 1a

Figure S4. Selected region of NOESY (CD₃CN, 300MHz) spectrum of 1a

Figure S5.Selected region of NOESY (CD₃CN, 300MHz) spectrum of 1a

Figure S6. UV absorption spectra of a) 1a (6.3 μ M) showing absorption maximum coincides with zero coss-over point of CD, b) 1b (6.3 μ M), c) 1c (6.3 μ M).

Figure S7. Thermal denaturation curve for **1c** at 235 nm (blue circle and red circle represents the forward and reverse melting curves respectively)

Figure S8. CD measurements to establish the intermolecular association in **1a** (a) at different concentrations (b) In different solvent systems (c) at different proportions of ACN: water solvent mixture.

Figure S9. Chemical shift of NHs versus % of DMSO added (v/v) to a solution of 1ain CD₃CN

Figure S10. The NH strtetching region in the solution FT-IR spectrum of **1a**.Spectra presented are in acetonitrile after subtraction of the spectrum of pure acetonitrile.

Figure S11.^IH NMR (CD₃CN, 300MHz) overlay spectra of 1aupon the addition of varying amounts of H_2PO_4 -

Figure S12. COSY (CD₃CN, 300MHz) spectrum of 1a -H₂PO₄-complex

Figure S13a. NOESY (CD₃CN, 300MHz) spectrum of 1a -H₂PO₄-complex

Figure S13b. Selected region of NOESY (CD₃CN, 300MHz) spectrum of 1a -H₂PO₄-complex

Figure S14a. Job plot of **1a** binding with H_2PO_4 - by UV spectroscopy

Figure S14b. Job plot of 1a binding with HSO₄⁻ by UV spectroscopy

Figure S15a. Job plot for **1c** binding with H₂PO₄-by UV spectroscopy

Figure S15b. Job plot for 1c binding with HSO₄- by UV spectroscopy

Figure S15c. Job plot for 1c binding with Cl⁻ by UV spectroscopy

Figure S16.CD titration of 1a in acetonitrile with a) HSO₄⁻, b) Cl⁻, c) Br⁻, d) I⁻

Figure S17. Expected intermolecular H-bonding pattern in 1a and 1a-H₂PO₄- complex

Figure S18. Demonstration of chiroptical property of 1a by CD. Addition of $H_2PO_4^-$ reverses the chirality and the water addition further revert it back to the original state.

Figure S19. Changes in a) fluorescence spectra b) UV spectra of 1aupon the addition of H₂PO₄-

Figure S20a. Temperature dependent fluorescence spectra of **1a** (a) upon heating from 10 °C to 70°C (b) upon cooling from 70 °C to 10 °C.

Figure S20b. Temperature dependent fluorescence spectra of **1b** (a) upon heating from10 °Cto70 °C (b) upon cooling from 70 °Cto10 °C

Figure S20c. Temperature dependent fluorescence spectra of **1c** (a) upon heating from10 °C to70 °C (b) upon cooling from 70 °C to10 °C

Figure S21. COSY (CD₃CN, 300MHz) spectrum of 1c

Figure S22. Selected region of COSY (CD₃CN, 300MHz) spectrum of 1c

Figure S23. NOESY (CD₃CN, 300MHz) spectrum of 1c

Figure S24. Selected region of NOESY (CD₃CN, 300MHz) spectrum of 1c

Figure S25. CD titration of 1b in acetonitrile with $H_2PO_4^-$

Figure S26. CD titration of 1c in acetonitrile with a) HSO₄-, b) Cl⁻, c) Br⁻, d) I⁻

Figure S27. CD Titration of 1d with H_2PO_4 -

Figure S28. CD Titration of 1e with H₂PO₄-

Figure S29. CD Titration of 1f with H₂PO₄-

Figure S30. a) SEM b) AFM c) TEM and d) AFM cross sectional analysis of 1c

Figure S31. Dihedral angle distribution of **1a** obtained using MD simulations OPLS-AA.^{1,2} Magnitude of dihedral angles is plotted.

Figure S33. ¹³C NMR (CDCl₃, 300MHz) spectrum of 1a

Figure S35. ¹HNMR (CDCl₃, 300MHz) spectrum of Z-Trp-Leu-OMe

Figure S36. ¹³C NMR (CDCl₃, 300MHz) spectrum of Z-Trp-Leu-OMe

Figure S38. ¹H NMR (CD₃CN, 300MHz) spectrum of 1b

Figure S39. HRMS of 1b

Figure S41. ¹³C NMR (CDCl₃, 300MHz) spectrum of Z-Leu-Trp-Ome

Figure S42. HRMS of Z-Leu-Trp-Ome

Figure S43. ¹HNMR (CD₃CN, 300MHz) spectrum of 1c

Figure S44. ¹³C NMR (DMSO-*d*₆, 75MHz) spectrum of 1c

Figure S45. HRMS of 1c

Figure S47.¹³C NMR (CD₃CN, 75MHz) spectrum of 1d

Figure S49. ¹H NMR (DMSO-*d*₆, 300MHz) spectrum of 1e

Figure S50.¹³C NMR (DMSO- d_6 , 75MHz) spectrum of 1e

Figure S51. HRMS of 1e

Figure S53.13C NMR (CDCl₃, 75MHz) spectrum of 1f

References

- Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. J. Am. Chem. Soc. 1996, 118, 11225-11236.
- Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen, W. L. J. Phys. Chem. B, 2001, 105, 6474-6487.