Supporting Information

Asymmetric synthesis of 4-aryl-1,2,5-thiadiazolidin-3-one 1,1- dioxides by Pd-catalyzed hydrogenation of cyclic ketimines
Zhou-Hao Zhu, Meng-Lin Chen, Guo-Fang Jiang
Email: gfjiang@hnu.edu.cn
Table of Contents

1. General S1
2. General Procedure for Synthesis of Cyclic Ketimines 1 S1-2
3. Screen of Optimizations for the Acid Additives 53
4. General Procedure for Asymmetric Hydrogenation S3-5
5. Gram Scale Experiment S5
6. Determination of the Absolute Configuration of 2a S6
7. References S6
8. Copy of NMR and HPLC for the Compounds S7-57

1. General

All reactions were carried out under an atmosphere of nitrogen using the standard Schlenk techniques, unless otherwise noted. Commercially available reagents were used without further purification. Solvents were treated prior to use according to the standard methods. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR ${ }^{31} \mathrm{P}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded at room temperature in CDCl_{3} on 400 MHz instrument with tetramethylsilane (TMS) as internal standard. Optical rotations were measured with JASCO P-1010 polarimeter. Flash column chromatography was performed on silica gel (200300 mesh). All reactions were monitored by TLC analysis.

2. General Procedure for Synthesis of Cyclic Ketimines 1

Cyclic ketimines 1 can be conveniently synthesized according to the known literature procedures. ${ }^{1}$ Among them, 1a, $\mathbf{1 d}$ and $\mathbf{1 g - h}$ are the known compounds.

Following a known literature procedure, ${ }^{1}$ to a solution of sulfamide ($1.920 \mathrm{~g}, 20 \mathrm{mmol}$) in ethanol (30 mL) was slowly added sodium ethoxide $(1.360 \mathrm{~g}, 20 \mathrm{mmol})$ in ethanol $(5 \mathrm{~mL})$. The suspension was stirred at room temperature for 15 min and then ethyl arylglyoxylate (20 mmol) in ethanol (15 mL) was added. After stirring for 15 min , the mixture was refluxed overnight and concentrated on arotary evaporator. The residue was suspended in diethyl ether for 0.5 h and the resulting white solid was filtered, which was used for the next reaction without further purification. To a suspension of the above white solid (5.0 mmol) in dimethylforamide (10 mL) was added alkyl halide (7.5 mmol), and the mixture was stirred at room temperature for 24 h . Water was added to the mixture and it was extracted with ethyl acetate. The organic extracts were washed with water, brine, dried over anhydrous sodium sulfate, filtered, and concentrated on a rotary evaporator. The residue was subjected to column chromatography on silica gel with hexanes/ethyl acetate (100:1) to give the product 1.

2-ethyl-4-phenyl-1,2,5-thiadiazol-3(2H)-one 1,1-dioxide (1b): unknown compound, white solid,
 $\delta 164.6,156.1,136.4,132.3,129.5,127.1,37.6,13.2$. HRMS Calculated for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ $(\mathrm{M}+\mathrm{H})^{+}$239.0485, found: 239.0483.

2-benzyl-4-phenyl-1,2,5-thiadiazol-3(2H)-one 1,1-dioxide (1c): unknown compound, white

2-methyl-4-(m-tolyl)-1,2,5-thiadiazol-3(2H)-one 1,1-dioxide (1e): New compound, white solid,
 m.p. $=119-120^{\circ} \mathrm{C}$, yield: $26 \%, \mathrm{R}_{\mathrm{f}}=0.48$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.0,156.3,139.6,137.5,132.5,129.8,129.5,126.9$, 26.4, 21.5. HRMS Calculated for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$239.0485, found: 239.0481 .

2-methyl-4-(o-tolyl)-1,2,5-thiadiazol-3(2H)-one 1,1-dioxide (1f): New compound, yellow solid,
 m.p. $=123-124^{\circ} \mathrm{C}$, yield: $22 \%, \mathrm{R}_{\mathrm{f}}=0.28$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.36(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.44-7.35 (m, 2H), 3.33 ($\mathrm{s}, 3 \mathrm{H}$), 2.67 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $166.1,156.6,143.0,134.9,134.3,132.7,126.5,125.2,26.5,22.7$. HRMS Calculated for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$239.0485, found: 239.0486.

4-(4-bromophenyl)-2-methyl-1,2,5-thiadiazol-3(2H)-one 1,1-dioxide (1i): New compound,
 yellowish solid, m.p. $=202-203{ }^{\circ} \mathrm{C}$, yield: $37 \%, \mathrm{R}_{\mathrm{f}}=0.51$ (petroleum ether/ethyl acetate $10: 1) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.45(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.1,156.0,133.5$, 133.1, 132.9, 125.8, 26.5. HRMS Calculated for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$302.9434, found: 302.9433.

4-(4-methoxyphenyl)-2-methyl-1,2,5-thiadiazol-3(2H)-one 1,1-dioxide (1j): New compound,
 greenish yellow solid, m.p. $=169-170{ }^{\circ} \mathrm{C}$, yield: $16 \%, \mathrm{R}_{\mathrm{f}}=0.33$ (petroleum ether/ethyl acetate $10: 1) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.62(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.03(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.9,163.3,156.9,135.3,119.6,115.3,56.1,26.3$. HRMS Calculated for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$255.0434, found: 255.0435 .

2-methyl-4-(naphthalen-2-yl)-1,2,5-thiadiazol-3(2H)-one 1,1-dioxide (1k): New compound,
 yellow solid, m.p. $=209-210^{\circ} \mathrm{C}$, yield: $21 \%, \mathrm{R}_{\mathrm{f}}=0.42$ (petroleum ether/ethyl acetate $10: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.44(\mathrm{~s}, 1 \mathrm{H}), 8.37-8.28(\mathrm{~m}, 1 \mathrm{H})$, 8.04 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.96$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.71(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.4,156.5,137.2,137.1,132.7,130.9,130.9,129.7,128.3,127.8,125.3,124.4$, 26.5. HRMS Calculated for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$275.0485, founCd: 275.0485 .

3. Screen of Optimizations for the Acid Additives

Ar	Acid additives TFE, $\mathrm{H}_{2}(600 \mathrm{psi}), 40^{\circ} \mathrm{C}$	
$\mathrm{Ar}=4-\mathrm{BrC}_{6} \mathrm{H}_{4}$		
Acid additives	Yield (\%)	Ee (\%)
L-CSA	96	94
TFA	23	92
PhCOOH	41	92

4. General Procedure for Asymmetric Hydrogenation

$\operatorname{Pd}\left(\mathrm{OCOCF}_{3}\right)_{2}(1.3 \mathrm{mg}, 0.004 \mathrm{mmol})$ and $\left(R_{c}, R_{p}\right)$-Walphos $(4.5 \mathrm{mg}, 0.0048 \mathrm{mmol})$ were placed in a dried Schlenk tube under nitrogen atmosphere, and degassed anhydrous acetone was added. The mixture was stirred at room temperature for 1 h , then, the solvent was removed under vacuum to give the catalyst. In a glove box, to $\mathbf{1}(0.20 \mathrm{mmol})$ was added the above catalyst with 3.0 mL TFE. The hydrogenation was performed at $40^{\circ} \mathrm{C}$ under hydrogen gas (600 psi) in a stainless steel autoclave for 12 h . After carefully releasing the hydrogen, the autoclave was opened and the reaction mixture was evaporated in vacuo. Flash chromatography on silica gel using dichloromethane/methanol 100:1 as the eluent gave the products 2.
(\boldsymbol{R})-2-methyl-4-phenyl-1,2,5-thiadiazolidin-3-one 1,1-dioxide (2a): known compound, ${ }^{2}$ yellow solid, m.p. $=69-70{ }^{\circ} \mathrm{C},>99 \%$ yield, 98% ee, $[\alpha]^{20}{ }_{\mathrm{D}}=-3.7\left(c 0.90, \mathrm{CHCl}_{3}\right), \mathrm{R}_{\mathrm{f}}=0.48$ (petroleum
 ether/ethyl acetate 3:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.33(\mathrm{~m}, 5 \mathrm{H}), 5.78$ (s, 1 H), $5.16(\mathrm{~s}, 1 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.6,133.5,129.6$, 129.3, 127.3, 64.1, 25.8. HPLC (AD-H column, ${ }^{i} \mathrm{PrOH} /$ hexane $15 / 85,0.7 \mathrm{~mL} / \mathrm{min}$, $220 \mathrm{~nm}, 30{ }^{\circ} \mathrm{C}$): $\mathrm{t}_{1}=11.9 \mathrm{~min}, \mathrm{t}_{2}=13.4 \mathrm{~min}$ (major). HRMS Calculated for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$227.0485, found: 227.0486.
(\boldsymbol{R})-2-ethyl-4-phenyl-1,2,5-thiadiazolidin-3-one 1,1-dioxide (2b): known compound, ${ }^{2}$ yellow solid, m.p. $=94-95{ }^{\circ} \mathrm{C}, 98 \%$ yield, 96% ee, $[\alpha]^{20} \mathrm{D}=+2.2\left(c 0.94, \mathrm{CHCl}_{3}\right), \mathrm{R}_{\mathrm{f}}=0.40$ (petroleum
 ether/ethyl acetate $3: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.35(\mathrm{~m}, 5 \mathrm{H}), 5.34(\mathrm{~s}$, $1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3,133.6,129.8,129.5,127.4,63.9,36.9,13.6$. HPLC (IC column, ${ }^{\mathrm{P}} \mathrm{PrOH} /$ hexane $\left.10 / 90,0.7 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 30^{\circ} \mathrm{C}\right): \mathrm{t}_{1}=11.5 \mathrm{~min}, \mathrm{t}_{2}=12.6$ \min (major). HRMS Calculated for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 241.0641$, found: 241.0643 .
(\boldsymbol{R})-2-benzyl-4-phenyl-1,2,5-thiadiazolidin-3-one 1,1-dioxide (2c): New compound, white solid, m.p. $=82-83{ }^{\circ} \mathrm{C}, 94 \%$ yield, 94% ee, $[\alpha]^{20}{ }_{\mathrm{D}}=+19.4\left(c \quad 1.14, \mathrm{CHCl}_{3}\right), \mathrm{Rf}=0.48$ (petroleum ether/ethyl acetate 3:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53-7.28(\mathrm{~m}, 10 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{~s}$,

1H), 4.74 (s, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.6, 134.0, 133.4, 129.7, 129.4, 129.0, 129.0, 128.8, 127.3, 63.7, 45.1. HPLC (AD-H column, ${ }^{i} \mathrm{PrOH} /$ hexane $15 / 85$, $0.7 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 30^{\circ} \mathrm{C}$): $\mathrm{t}_{1}=18.5 \mathrm{~min}, \mathrm{t}_{2}=19.6 \mathrm{~min}$ (major). HRMS Calculated for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})+303.0798$, found: 303.0796.
(\boldsymbol{R})-2-methyl-4-(p-tolyl)-1,2,5-thiadiazolidin-3-one 1,1-dioxide (2d): New compound, yellow solid, m.p. $=103-104{ }^{\circ} \mathrm{C},>99 \%$ yield, 97% ee, $[\alpha]^{20}{ }_{\mathrm{D}}=+3.5\left(c 0.95, \mathrm{CHCl}_{3}\right), \mathrm{R}_{\mathrm{f}}=0.52$
 (petroleum ether/ethyl acetate 3:1). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H})$, $2.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.7,139.9,130.4,130.2,127.3$, 64.2, 25.9, 21.4. HPLC (AD-H column, ${ }^{i} \mathrm{PrOH} /$ hexane $15 / 85,0.7 \mathrm{~mL} / \mathrm{min}, 220$ $\mathrm{nm}, 3{ }^{\circ} \mathrm{C}$): $\mathrm{t}_{1}=12.7 \mathrm{~min}, \mathrm{t}_{2}=14.5 \mathrm{~min}$ (major). HRMS Calculated for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$241.0641, found: 241.0642.
(\boldsymbol{R})-2-methyl-4-(\boldsymbol{m}-tolyl)-1,2,5-thiadiazolidin-3-one 1,1-dioxide (2e): New compound, yellow solid, m.p. $=81-82^{\circ} \mathrm{C}, 98 \%$ yield, 98% ee, $[\alpha]^{20}{ }_{\mathrm{D}}=-2.4\left(c \quad 0.95, \mathrm{CHCl}_{3}\right), \mathrm{R}_{\mathrm{f}}=0.61$ (dichloro-
 methane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.18(\mathrm{~m}$, $3 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.6,139.5,133.3,130.6$ 129.4, 128.0, 124.5, 64.4, 25.9, 21.6. HPLC (AD-H column, ${ }^{i} \mathrm{PrOH} /$ hexane $15 / 85,0.7 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 30^{\circ} \mathrm{C}$): $\mathrm{t}_{1}=$ $12.1 \mathrm{~min}, \mathrm{t}_{2}=13.8 \mathrm{~min}$ (major). HRMS Calculated for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 241.0641$, found: 241.0641 .
(R)-2-methyl-4-(o-tolyl)-1,2,5-thiadiazolidin-3-one 1,1-dioxide (2f): New compound, yellow solid, m.p. $=145-146{ }^{\circ} \mathrm{C}, 99 \%$ yield, 80% ee, $[\alpha]^{20}{ }_{\mathrm{D}}=+28.6\left(c 0.94, \mathrm{CHCl}_{3}\right), \mathrm{R}_{\mathrm{f}}=0.60$ (dichloro-
 methane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.21(\mathrm{~m}, 4 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~s}$, $1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.0,137.5$, 131.8, 131.6, 130.1, 127.4, 127.3, 61.9, 26.0, 19.6. HPLC (AS-H column, ${ }^{i} \mathrm{PrOH} /$ hexane $30 / 70,0.7 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 30{ }^{\circ} \mathrm{C}$): $\mathrm{t}_{1}=13.1 \mathrm{~min}$ (major), $\mathrm{t}_{2}=$ 16.6 min. HRMS Calculated for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 241.0641$, found: 241.0643.
(R)-4-(4-fluorophenyl)-2-methyl-1,2,5-thiadiazolidin-3-one 1,1-dioxide (2g): New compound, yellow solid, m.p. $=108-109{ }^{\circ} \mathrm{C}, 99 \%$ yield, 97% ee, $[\alpha]^{20}{ }_{\mathrm{D}}=-7.9\left(c 0.96, \mathrm{CHCl}_{3}\right), \mathrm{R}_{\mathrm{f}}=0.20$
 (dichloromethane). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.06(\mathrm{~m}$, 2H), $5.42(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.2$, $163.5\left(\mathrm{~d}, J_{\mathrm{FC}}=249.4 \mathrm{~Hz}\right), 129.3\left(\mathrm{~d}, J_{\mathrm{FC}}=8.5 \mathrm{~Hz}\right), 129.1\left(\mathrm{~d}, J_{\mathrm{FC}}=3.3 \mathrm{~Hz}\right), 116.5(\mathrm{~d}$, $\left.J_{\mathrm{FC}}=22.0 \mathrm{~Hz}\right), 63.5,26.0 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-111.5$. HPLC (AD-H column, ${ }^{i} \mathrm{PrOH} /$ hexane $\left.15 / 85,0.7 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 30^{\circ} \mathrm{C}\right): \mathrm{t}_{1}=11.8 \mathrm{~min}, \mathrm{t}_{2}=13.3$ \min (major). HRMS Calculated for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$245.0391, found: 245.0391.
(R)-4-(4-chlorophenyl)-2-methyl-1,2,5-thiadiazolidin-3-one 1,1-dioxide (2h): New compound, yellow solid, m.p. $=100-101{ }^{\circ} \mathrm{C}, 99 \%$ yield, 96% ee, $[\alpha]^{20}{ }_{\mathrm{D}}=-5.9\left(c 0.97, \mathrm{CHCl}_{3}\right), \mathrm{R}_{\mathrm{f}}=0.26$
 (dichloromethane). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.33(\mathrm{~m}, 4 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H})$, $5.23(\mathrm{~s}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.0,135.8,131.8$, 129.6, 128.6, 63.4, 26.0. HPLC (AD-H column, ${ }^{i} \mathrm{PrOH} /$ hexane $10 / 90,0.7 \mathrm{~mL} / \mathrm{min}$, $220 \mathrm{~nm}, 30^{\circ} \mathrm{C}$): $\mathrm{t}_{1}=18.0 \mathrm{~min}, \mathrm{t}_{2}=19.8 \mathrm{~min}$ (major). HRMS Calculated for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$261.0095, found: 261.0095 .
(R)-4-(4-bromophenyl)-2-methyl-1,2,5-thiadiazolidin-3-one 1,1-dioxide (2i): New compound,

yellow solid, m.p. $=95-96^{\circ} \mathrm{C}, 96 \%$ yield, 94% ee, $[\alpha]^{20}{ }_{\mathrm{D}}=-5.7\left(c 1.21, \mathrm{CHCl}_{3}\right)$, $\mathrm{R}_{\mathrm{f}}=0.21(\mathrm{DCM}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 166.0,132.5,132.3,128.9,124.0,63.4,26.0$. HPLC (AD-H column, ${ }^{i} \mathrm{PrOH} /$ hexane $\left.10 / 90,0.7 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 30^{\circ} \mathrm{C}\right): \mathrm{t}_{1}=19.8 \mathrm{~min}, \mathrm{t}_{2}=21.4 \mathrm{~min}$ (major). HRMS Calculated for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+} 304.9590$, found: 304.9591.
(R)-4-(4-methoxyphenyl)-2-methyl-1,2,5-thiadiazolidin-3-one 1,1-dioxide (2j): New compound, yellow solid, m.p. $=111-112{ }^{\circ} \mathrm{C}, 98 \%$ yield, $97 \% \mathrm{ee},[\alpha]^{20}{ }_{\mathrm{D}}=+8.1\left(c 0.80, \mathrm{CHCl}_{3}\right), \mathrm{R}_{\mathrm{f}}=0.50$
 (dichloromethane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.93$ 257.0591, found: 257.0594 .
(R)-2-methyl-4-(naphthalen-2-yl)-1,2,5-thiadiazolidin-3-one 1,1-dioxide (2k): New compound, yellow solid, m.p. $=153-154{ }^{\circ} \mathrm{C}, 95 \%$ yield, 93% ee, $[\alpha]^{20} \mathrm{D}=+2.0\left(c 1.04, \mathrm{CHCl}_{3}\right), \mathrm{R}_{\mathrm{f}}=0.42$
 (dichloromethane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.88-7.80(\mathrm{~m}$, $3 \mathrm{H}), 7.56-7.44(\mathrm{~m}, 3 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.4,133.7,133.2,130.6,129.6,128.4,128.0,127.3,127.1$, 124.0, 64.5, 26.0. HPLC (OJ-H column, ${ }^{i} \mathrm{PrOH} /$ hexane $30 / 70,0.7 \mathrm{~mL} / \mathrm{min}$, $220 \mathrm{~nm}, 30^{\circ} \mathrm{C}$): $\mathrm{t}_{1}=37.6 \mathrm{~min}$ (major), $\mathrm{t}_{2}=46.2 \mathrm{~min}$. HRMS Calculated for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$ 277.0641, found: 277.0641 .

5. Gram Scale Experiment

$\operatorname{Pd}\left(\mathrm{OCOCF}_{3}\right)_{2}(8.3 \mathrm{mg}, 0.025 \mathrm{mmol})$ and $\left(R_{c}, R_{p}\right)$-Walphos $(28 \mathrm{mg}, 0.030 \mathrm{mmol})$ were placed in a dried Schlenk tube under nitrogen atmosphere, and degassed anhydrous acetone was added. The mixture was stirred at room temperature for 1 h , then, the solvent was removed under vacuum to give the catalyst. In a glove box, to the mixture of $\mathbf{1 a}(1.121 \mathrm{~g}, 5.0 \mathrm{mmol})$ and L-CSA $(0.116 \mathrm{~g}$, 0.5 mmol) was added the above catalyst with 25 mL TFE. The hydrogenation was performed at 40 ${ }^{\circ} \mathrm{C}$ under hydrogen (600 psi) in a stainless steel autoclave for 2.5 d . After carefully releasing the hydrogen, the autoclave was opened and the reaction mixture was evaporated in vacuo. Flash chromatography on silica gel using dichloromethane/methanol 100:1 as the eluent gave the product 2a with 97% yield and 97% ee.

6. Determination of the Absolute Configuration of 2a

To a suspension of $\mathrm{LiAlH}_{4}(30 \mathrm{mg}, 0.8 \mathrm{mmol}, 2.0$ equiv) in THF (2 mL), a solution of $\mathbf{2 a}$ (93 $\mathrm{mg}, 0.4 \mathrm{mmol}, 1.0$ equiv) in THF (4 mL) was added dropwise at $0{ }^{\circ} \mathrm{C}$. After stirring for 10 min , the mixture was cooled, quenched with ice water and 10% sodium hydroxide was then added. The aqueous layer was extracted with ethyl acetate, washed with brine, dried over sodium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromategraphy to afford compound $\mathbf{3 a}$.
(\boldsymbol{R})-2-Amino- N-methyl-2-phenylacetamide: $30 \mathrm{mg}, 45 \%$ yield, 95% ee, $[\alpha]^{20}{ }_{\mathrm{D}}=-104.16(c$ $0.60, \mathrm{MeOH}),\left[\right.$ lit. ${ }^{3}:[\alpha]^{25}=+93.56(c 0.79, \mathrm{MeOH})$ for the (S)-enantiomer], known compound, ${ }^{3}$ MeHN NH_{2} yellow oil, $\mathrm{R}_{\mathrm{f}}=0.20$ (dichloromethane/methanol $15 / 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.43-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.21(\mathrm{brs}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 3 \mathrm{H})$, 2.65 (brs, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.5,140.7,129.0,128.2,127.1$, 59.7, 26.2. HPLC (AS-H column, ${ }^{i} \mathrm{PrOH} /$ hexane $30 / 70,0.7 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}, 30^{\circ} \mathrm{C}$): $\mathrm{t}_{1}=16.3 \mathrm{~min}$ (major), $\mathrm{t}_{2}=23.3 \mathrm{~min}$.

7. References

[1]. Nishimura, T.; Ebe, Y.; Fujimoto, H.; Hayashi, T. Chem. Commun. 2013, 49, 5504.
[2]. Unterhalt, B.; Hanewacker, G.-A. Arch. Pharm. (Weinheim) 1988, 321, 749.
[3]. Reichard, G. A.; Stengone, C.; Paliwal, S.; Mergelsberg, I.; Majmundar, S.; Wang, C.; Tiberi, R.; McPhail, A. T.; Piwinski, J. J.; Shih, N.-Y. Org. Lett. 2003, 5, 4249.
8. Copy of NMR and HPLC for the Compounds

1H NMR ZZ-1-15A in CDCl3

13C NMR ZZ-1-15A in CDCI3

1b ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

13C NMR ZZ-1-16B in CDCl3

1H NMR ZZ-1-33B in CDCl3

```
#
\% \
```

13C NMR ZZ-1-33B in CDCl3

1e ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1H NMR ZZ-1-52B in CDCl3

13C NMR ZZ-1-52B in CDC13

1f ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1H NMR ZZ-1-26B in CDCl3

13C NMR ZZ-1-26B in CDCl3

$\begin{array}{lllllll}134.5 & 134.0 & 133.5 & \begin{array}{l}133.0 \\ \mathrm{fl}(\mathrm{ppm})\end{array} & 132.5 & 132.0 & 131.5\end{array}$

13C NMR ZZ-1-23B in CDCl3

$1 \mathbf{j}{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1H NMR ZZ-1-51B in CDCl3

1k ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

13C NMR ZZ-1-51B in CDCl3

1k ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	$\stackrel{\circ}{0}$	$\stackrel{8}{8}$

1H NMR ZZ-1-17 in CDCl3

13C NMR ZZ-1-17 in CDCl3

2a ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1H NMR ZZ-1-32 in CDCl3

13C NMR ZZ-1-32 in CDCl3

2b ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1H NMR ZZ-1-34 in CDCl3

13C NMR ZZ-1-34 in CDCl3

2c ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

											1	1					
30	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10

1H NMR ZZ-1-35 in CDCl3

13C NMR ZZ-1-35 in CDCl3

1H NMR ZZ-1-48 in CDCl3

$\begin{aligned} & \stackrel{\ddot{4 ⿻ 日 禸}}{0} \end{aligned}$	咢		\％	${ }_{8}^{8}$

13C NMR ZZ－1－48 in CDCl3

2e ${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

	T	1	，	1	1	，	1	1	1	1	，	，	，	T	1	，	
30	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

-1~3

1H NMR ZZ-1-58 in CDCl3

$\begin{aligned} & \mathscr{\circ} \\ & \stackrel{y}{\otimes} \\ & \stackrel{\oplus}{\dagger} \end{aligned}$		$\stackrel{8}{8}$	$\xrightarrow{8}$

13C NMR ZZ-1-58 in CDCl3

2f ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1H NMR ZZ-1-41 in CDCl3

ㄴ․․

$\stackrel{8.8}{\stackrel{9}{5}}$

13C NMR ZZ-1-41 in CDCl3

2g ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

19F NMR ZZ-1-41 in CDCl3

2g ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\stackrel{\circ}{6}}{\stackrel{9}{1}}$

1H NMR ZZ-1-27 in CDCl3

13C NMR ZZ-1-27 in CDCI3

2h ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1H NMR ZZ-1-39 in CDCl3

13C NMR ZZ-1-39 in CDCl3

1 H NMR ZZ-1-36 in CDCl3

13C NMR ZZ-1-36 in CDCI3

2j ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1H NMR ZZ-1-56 in CDCl3

13C NMR ZZ-1-56 in CDCI3

13C NMR ZZ-1-75 in CDCl3

3a ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Data File C: $\mathrm{CHRM} 32 \backslash 1 \backslash \mathrm{DATA}$ ZHOU-16\YZ010558.
Sample Name: $Z Z-1-7(+-)$

Data File C: \backslash CHEM32\1\DATA $\mathrm{ZHOU}-16 \backslash \mathrm{YZNO} 00867 . \mathrm{D}$
Sample Name:
ZZ-1-32A $(+-)$

Sorted Bv Multiplier:	:	Simal			
Nilution:		!	1.0000 1.0000		
Use Multiplier \& Dilution Factor with ISTDs					
Signal 1: VWD 1 A, Wavelength= 220 nm					
$\begin{aligned} & \text { Peak Retrime Type } \\ & \vdots \text { Iminl } \end{aligned}$	$\begin{aligned} & \text { Width } \\ & \text { Tmin } \end{aligned}$	$\operatorname{madU}_{\mathrm{m}_{\mathrm{s}}}^{\text {Area }}$	$\underset{\text { Height }}{\substack{\text { Hat }}}$	$\begin{gathered} \text { Area } \\ \vdots \end{gathered}$	EtN ${ }^{\text {NH}}$
111.402 BB	0.2356	1867.08289	118.89330		
212.712 BB	0.3109	1879.10205	89.86385	50.1604	
Totals :		3746.18494	208.75715		(+/-)-2b

*** End of Report ***

deripher adition fortor whing
Sigmal 1: VID 1 A, Wavelength=220 nim

> Totals : $\quad 5632.06715 \quad 256.69456$
> $(+)-2 b$

Data File C: $:$ CHRM 3211 DATA
Sample Name: $Z Z-1-34 \AA(+-)$

Data File C:\CHEM32\1\DATA\ZHOU-16\YZ010286.D
Sample Name: $Z Z-1-34 \mathrm{D}$

Acc. Operator Acq. Instrument	Instrument 1	Location: Vial 1
Iniection Date	4/7/2016 8:09:29 AM	
Acq. Method	C: $\$ HPCHEM $1 \backslash$ METHODS $\$ DEF LC.M & \hline Last chanced & 4/7/2016 7:43:26 AM by \dagger (modified after loading	
Analvsis Method Last changed		

Sample Amount:
Use Multiplijer

(+)-2c
$===================$
$\pi=$ End of Report π
π

Data File C: \backslash CHEM32\11DATA
Sample Nam-16\YZ010307.D

Acc. Operator Acq. Instrument	\dagger Instrument 1	Location: Vial 1
Iniection Date	4/9/2016 5:59:39 AM	
Acq. Method	C: $\$ HPCHEM $1 \backslash$ METHODS $\$ DEF LC.M & \hline Last chanced & 4/9/2016 5:10:22 AM by \dagger (modified after loading	
Analvsis Method Last changed		


```
Sorted Bv \ : Simal
Multiplier: \
```

Sample Amount:
Use Multiplier

$\begin{aligned} & \text { Peak RetTime Type } \\ & \text { \# [min] } \end{aligned}$	$\begin{gathered} \text { Width } \\ {[\min]} \end{gathered}$	$\operatorname{midU}_{\text {min }_{3}^{\text {Area }}}$	$\underset{[\boldsymbol{m i d U}}{\text { Height }}$	${ }^{\text {Area }}$
12.676 ve	0.2339	203.76875	. 31237	1.6
14.544 BB	0.2668	1.21924e4	701.49585	98.35
Totals :		1.23961e4	714.80	

(+/-)-2e

Instrument 1 5/9/2016 3:58:13 pM
Page 1 of

Data File C: \backslash CHEM32\1\DATA $\mathrm{ZHOU}-16 \backslash \mathrm{YZNO} 01248 . \mathrm{D}$
Sample Name:
ZZ-1-58A $(+-)$

Sorted By					
Multiplier:	:	$\stackrel{\text { Samal }}{ }$	1.0000		
Use Multiplier \& Dilution Factor with IsTDs					
Sigmal 1: VID 1 A , Wavelengthe 220 nm					
	Width $[$ min	${ }_{\text {mad }}^{\text {Area }}{ }_{\pi_{3}}^{\text {and }}$	$\begin{gathered} \text { Height } \\ \lceil\text { ImAU } \end{gathered}$	$\stackrel{\text { Area }}{\stackrel{y}{z}}$	Me
123.127 BB		6583.14404	281.85156		
$\begin{array}{ll}2 & 16.606\end{array}$	0.4712	6621.63623	${ }_{215.98576}^{210}$	50.1458	
Totals :		1.32048e4	497.83733		(+/--2f

*** End of Report ***

Acc. Operator Acq. Instrument	Instrument 1	Location: Vial 1
Injection Date	5/5/2016 3:44:16 PM	
Acq. Method	C: \CHEM32\1) Method S\DEF_LC.M	
Last chanced	5/5/2016 3:00:42 PM	
Analvsis Method Last changed		

Multiplier: : Simal 0000
Dilution:
Use Multiplier \& Dilution Factor with ISTDs
Signal 1: VWD 1 A , Wavelength=220 nim

Totals :
$3260.94174 \quad 139.37651$
$(+)-2 f$
$==================$
$\star * *$
$\pi=1$

Sorted Ev	:	Simal				
Multiplier:			1.0000			
Dilution:		:	1.0000			
Sample Amount: Use Multiplier a	ilution	Factor with	${ }_{\text {l }}^{\text {1.00000 }}$ ISTDs ${ }^{\text {a }}$	/u1] ((not used in calc.)	
Use Multiplier \& Dilution Factor with ISTDs						
Signal 1: VID 1 A , wavelength $=220 \mathrm{nim}$						
	$\begin{gathered} \text { width } \\ {[\min]} \end{gathered}$	$\operatorname{madV}_{\text {mas }^{\text {Area }}}$	$\underset{[\text { meid }}{\left[\begin{array}{l} \text { Het } \\ \hline \end{array}\right]}$	Area		
111.689 by	0.2215	1753.58655	120.96341	48.5493		
213.241 VB	0.2595	1858.38196	108.51495	51.4507		
Totals :		3611.96851	229.47836			(+/-)-2g

$================$
$\pi=\#$ End of Report $\pi * *$

Data File C: \backslash CHRM $32 \backslash 1 \backslash$ Data
Sample Nou-16\YZO10321.D

Acc. Operator Acq. Instrument	Instrument 1	Location
Injection Date	4/10/2016 11:56:20 AM	
Acq. Method	C: \HPCHEM 1 \METHODS def $^{\text {LC.M }}$	
Last chanced	4/10/2016 11:31:46 AM by (modified after loading)	
Analysis Method :		
Last changed	(modified after loading)	
mpl		

$\begin{array}{llcl}\text { Sorted BV } & : & \text { Siomal } & \\ \text { Mu1tiplier: } & & \vdots & 1.0000 \\ \text { Dilution: } & & \vdots & 1.0000\end{array}$

Sigmal 1: VID 1 A , Wavelength $=220 \mathrm{nim}$

Data File C: $\$ CHEM32\1\DATA\ZHOU-16\YZ0
Sample Name: $Z Z-1-40$

Data File C: CHEM32\11DATA\ZHOU-16\YZ010312.D
Sample Name: $Z Z-1-36 A(+-)$

icmal 1: VID 1 A , Wavelength $=220 \mathrm{~nm}$

$1.41132 \mathrm{e} \quad 638.27728$

Data File C: \backslash CHRM32\1\DATA
Sample Nau- $16 \backslash \mathrm{Y}$

$: 5 / 9 / 20163: 47:$
(inodified afte
ast changed
mble

Area Per

Sorted By Multipliplier: Dilution:
 Dilution: Sample Amount:

Sample Amount:
Use Multiplier $\& ~ D i l u t i o n ~ F a c t o r ~$
iignal 1: VIDP 1 A, Wavelength $=220$

 Totals : \qquad

** End of Report **

Data File C: $\$ CHEM32111DATA\ZHOU-16
Sample Name: $Z 2-1-56 \mathrm{~B}$

Acq. Instrument : Instrument 1

(madified af
$\left.\begin{array}{l}\text { Analvsis Method } \\ \text { Last changed } \\ \text { CilitMM321) } \\ 5 / 9 / 2016 \\ 4: 0\end{array}\right)$
List changed inified af
WWOTA, Wavelenght=220 nm (ZHO

Sorted Bv

Multiplier: | Dillution: |
| :--- |
| Use Multiplier \& Dilution Fact |

$(+)-2 k$

Si gmal 1: पुD $1 \AA$, wavelength= 2

$\begin{array}{lllll}1 & 37.551 \\ 2 & 46.177 & \mathrm{BB} & \begin{array}{llll}0.9139 & 2.67 \\ 1.1755 & 1006\end{array} & \end{array}$
Totals:

Data File C: $:$ CHEM $32 \backslash 1 \backslash$ ATA \backslash ZHOU-16\YzNOO2636.D
Sample Name: $Z Z-1-74(+-)$

Totals :

$$
\begin{array}{ll}
1.52630 e 4 & 297.77051
\end{array}
$$

Data File C: \CHEM32\1\DATA\ZHOU-16Y
Sample Name: \quad ZZ-1-75
 $\begin{array}{l:l}\text { Acq. Tnstrument } \\ \text { In iection Date } & \text { Instrument } \\ & 10, / 23 / 2016 \\ \text { In }\end{array}$
 Last chanced : $10 / 23 / 20166$ (modified aft

(-)-3a

Sorted By
Multiplip1er:
Dilution
dition (Hpher \& Dilution Facto
 Totals :
====

