Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

> Electronic Supplementary Material (ESI) for Org. Biomol. Chem. This Journal is © the Royal Society of Chemistry 2016

SUPPORTING INFORMATION

Transition-metal-free synthesis of 3-(1-pyrrolidinyl)quinolines and 3-(1-pyrrolidinyl)quinoline 1-oxides via one-pot reaction of 3-(1-pyrrolidinyl)crotonates with nitrobenzenes

Robert Bujok, Zbigniew Wróbel, Piotr Cmoch, Krzysztof Wojciechowski

Institute of Organic Chemistry Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland, e-mail: <u>krzysztof.wojciechowski@icho.edu.pl;</u> robert.bujok@icho.edu.pl

1.	GENERAL INFORMATION.	3
2. S	YNTHESIS OF OPTICALLY PURE PYRROLIDINES	3
2	.1. Synthesis of optically pure pyrrolidines (S)-A2, (R)-A2	3
2	.2. Synthesis of optically pure pyrrolidines (S)-B5, (R)-B5	5
3. G	ENERAL PROCEDURE FOR SYNTHESIS OF THE ENAMINES.	8
4. G	ENERAL PROCEDURE FOR SYNTHESIS OF QUINOLINES AND QUINOLINE 1-	
OXI	DES	9
5. ն	ENERAL PROCEDURE FOR HYDROLYSIS / DECARBOXYLATION DOMINO	
REA	ACTION OF COMPOUNDS 2-51	6
с т	ΟΛΝΓΕΩΡΜΑΤΙΩΝ <i>ΤΕΡΤ</i> ΒΙΙΤΥΙ ΕΓΤΕΡΙΝΤΩ ΛΟΙΣ	n
0. 1	KANSFORMATION TERT-DUTTL ESTER INTO ACID.	9
7. S	YNTHESIS OF 4-(5-CHLORO-2-NITRO-PHENYL)-3-PYRROLIDIN-1-YL-BUT-2-	
ENC	DIC ACID TERT-BUTYL ESTER (III)	0

1. General information.

¹H and ¹³C NMR spectra were recorded on a Bruker 500 MHz (500 MHz for ¹H and 125 MHz ¹³C spectra), a Varian-NMR-vnmrs600 (600 MHz for ¹H and 150 MHz ¹³C spectra) instruments. Chemical shifts δ are expressed in ppm referred to TMS (internal standards), and coupling constants in Hertz. Multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), triplet (t), quartet (q) and multiplet (m). Electrospray mass spectra (ESI) were obtained on SYNAPT G2-S HDMS. Infrared spectra are recorded on a Perkin-Elmer Model 1600 FT-IR spectrophotometer.

Materials and Methods: THF was dried using sodium/benzophenone under an argon atmosphere and distilled prior to use. Silica gel (Merck 60, 230-400 mesh) was used for column chromatography. Hexane or hexane/ethyl acetate mixtures were used for elution. TLC analyses were performed on Merck Kieselgel 60 F_{254} Alufolien with hexane/ethyl acetate mixtures. Chemicals were obtained from commercial sources and used directly.

2. Synthesis of optically pure pyrrolidines.

2.1. Synthesis of optically pure pyrrolidines (S)-A2, (R)-A2.

Scheme 1. Synthesis of optically pure 2-benzyloxymethyl pyrrolidines (S)-A2, (R)-A2.

(S)-tert-Butyl 2-(benzyloxymethyl)-pyrrolidine-1-carboxylate (S)-A1.

The compound was obtained according to modified literature method¹ (NaH was added to mixture of *N*-Boc-L-prolinol and benzyl bromide at 0°C) in 86 % yield. Colourless oil, $[\alpha]_D^{22}$

¹ L. M. Havran, D. C. Chong, W. E. Childers, P. J. Dollings, A. Dietrich, B. L. Harrison, V. Marathias, G. Tawa, A. Aulabaugh, R. Cowling, B. Kapoor, W. Xu, L. Mosyak, F. Moy, W.-T. Hum, A. Wood, A. J. Robichaud, *Bioorg. Med. Chem.*, 2009, **17**, 7755

= -56.4 (*c* 0.80, CH₂Cl₂). ¹H NMR spectra is in an agreement with literature data.¹ ¹³C NMR (150 MHz, CDCl₃): δ 154.5, 138.5, 128.3, 127.5, 127.4, 79.1, 73.1, 70.9, 56.5, 46.6, 28.5, 23.3. IR (film): 2974, 2874, 1695, 1454, 1393, 1365, 1254, 1171, 1101, 908, 737, 698 cm⁻¹ MS–EI (*m* / *z*): 291 (0.8, M⁺⁻), 170 (40), 115 (11), 114 (89), 105 (19), 92 (16), 91 (77), 84 (12), 77 (13), 71 (10), 70 (100), 65 (15), 57 (90), 43 (10), 41 (37). HRMS–EI (*m* / *z*): [M] ⁺⁻ calcd for C₁₇H₂₅NO₃ 291.1834; found: 291.1845.

(R)-tert-Butyl 2-(benzyloxymethyl)-pyrrolidine-1-carboxylate (R)-A1.

The compound was obtained according to procedure for (*S*)- enantiomer from commercial *N*-Boc-D-prolinol in 84 % yield, Colourless oil, $[\alpha]_D^{22} = 55.0$ (*c* 0.85, CH₂Cl₂). All spectra are identical with data for (*S*)-A1

(S)-2-(Benzyloxymethyl)-pyrrolidine (S)-A2.

The compound was obtained according to literature method¹ in 98 % yield. Light-yellow oil, $[\alpha]_D^{21} = 4.4$ (*c* 1.0, CH₂Cl₂). IR (film): 3348, 2959, 2868, 1545, 1402, 1203, 1098, 739, 698 cm⁻¹. ¹H NMR (600 MHz, DMSO-*d*₆): δ 7.31 – 7.36 (m, 4H), 7.26 – 7.29 (m, 1H), 4,47 (s, 2H), 3.15 – 3.32 (m, 3H), 2.76 – 2.80 (m, 1H), 2.68 – 2.73 (m, 1H), 1.70 – 1.76 (m, 1H), 1.54 – 1.65 (m, 2H), 1.29 – 1.35 (m, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 138.6, 128.2, 127.4, 127.3, 73.8, 72.1, 57.2, 45.9, 28.3, 24.9. MS–EI (*m* / *z*): 192 (3), 191 (1.2, M⁺), 91 (30), 85 (13), 71 (13), 70 (100), 65 (13).

(*R*)-2-(Benzyloxymethyl)-pyrrolidine (*R*)-A2.

The compound was obtained according to procedure for (*S*)-2-(benzyloxymethyl)-pyrrolidine with 95 % yield. Light-yellow oil, $[\alpha]_D^{23} = -3.9$ (*c* 1.2, CH₂Cl₂). All spectra are identical with data for (*S*)-A2.

2.2. Synthesis of optically pure pyrrolidines (S)-B5, (R)-B5.

Scheme 2. Synthesis of optically pure 3-benzyloxymethyl pyrrolidines (S)-B5 and (R)-B5.

Methyl 5-oxo-1-((S)-1-phenylethyl)pyrrolidine-3-(S)-carboxylate (S)-B1 and Methyl 5oxo-1-((S)-1-phenylethyl)pyrrolidine-3-(R)-carboxylate (R)-B1.

The compounds were obtained in the reaction of methyl itaconate with (*S*)-1phenylethylamine in similar manner to reaction methyl itaconate with (*R*)-1-phenylethylamine². The diastereoisomers were separated by chromatography on silica gel (hexane/AcOEt)

Methyl 5-oxo-1-((S)-1-phenylethyl)pyrrolidine-3-(S)-carboxylate (S)-B1.

Colourless oil, (2.38 g, 34 %), $[\alpha]_D{}^{22} = -78.3$ (*c* 1.15, MeOH), lit.: $[\alpha]_D = -81.3$ (*c* 0.90, MeOH).³ ¹H NMR and IR spectra are in an agreement with literature data.³ ¹³C NMR (125)

² J. Blanchet, M. Pouliquen, M. C. Lasne, J. Rouden, *Tetrahedron Lett.*, 2007, 48, 5727

³ D. R. Johnson, D. L. Szotek, J. M. Domagala, T. M. Stickney, J. Heterocyclic Chem., 1992, 29, 1481

Methyl 5-oxo-1-((S)-1-phenylethyl)pyrrolidine-3-(R)-carboxylate (R)-B1.

White solid (1.90 g, 27 %), mp. 64 – 66°C, lit.: 66.5 – 69.5°C,³ $[\alpha]_D^{22} = -110.7$ (*c* 1.2, MeOH), lit.: $[\alpha]_D = -117$ (*c* 1.1, MeOH).³ ¹H NMR and IR spectra are in an agreement with literature data.³ ¹³C NMR (125 MHz, CDCl₃): δ 173.0, 171.9, 139.5, 128.6, 127.6, 127.0, 52.3, 49.1, 44.6, 36.1, 34.4, 16.2

(3*S*)-1-[(1*S*)-1-phenylethyl]-3-pyrrolidinemethanol (*S*)-B2.

The compound was obtained according to literature method.⁴ The crude product was purified by column chromatography on silica gel (AcOEt then AcOEt / MeOH, 10 / 1) White solid (0.72 g, 43 %), mp. 85 – 87 °C, lit.: 86 – 88 °C, ⁵ $[\alpha]_D^{23} = -66.1$ (*c* 1.1, CHCl₃), lit.: $[\alpha]_D = -71$ (*c* 0.94, CHCl₃).⁶ ¹H NMR spectrum is in an agreement with literature data.⁵

(3*R*)-1-[(1*S*)-1-phenylethyl]-3-pyrrolidinemethanol (*R*)-B2.

The compound was obtained according to procedure for **(S)-B2.** The crude product was used for next step without any purification. Yellow oil (1.35 g, ~93%; purity based on ¹H NMR, ~95 %) $[\alpha]_D^{21} = -43$ (*c* 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃): δ 7.21– 7.35 (m, 5H), 3.69 – 3.76 (m, 1H), 3.51 – 3.55 (m, 1H), 3.16 – 3.21 (m, 1H), 2.65 – 2.81 (m, 2H), 2.56 – 2.63 (m, 1H), 2.46 – 2.49 (m, 1H), 2.25 – 2.35 (m, 2H), 1.91 – 2.00 (m, 1H), 1.61 – 1.69 (m, 1H), 1.39 (d, J=6.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 144.8, 128.4, 127.2, 127.0, 67.7, 65.4, 56.7, 52.7, 38.6, 26.7, 23.1

(S)-tert-butyl 3-(hydroxymethyl)pyrrolidine1-carboxylate (S)-B3.

The compound was obtained according to modified literature method⁴ (the reaction was carried out under atmospheric pressure of hydrogen at room temperature).

Colourless oil (0.510 g, 82 %), $[\alpha]_D^{23} = -17.4$ (*c* 0.9, CHCl₃). IR (film): 3425, 2975, 2936, 2876, 1696, 1674, 1417, 1366, 1254, 1171, 1132, 881, 773 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 3.58 – 3.64 (m, 2H), 3.48 – 3.52 (m, 1H), 3.41 – 3.46 (m, 1H), 3.29 – 3.34 (m, 1H), 3.09 – 3.13 (m, 1H), 2.37 – 2.43 (m, 1H), 1.94 – 2.00 (m, 1H), 1.91 (bs, 1H), 1.63 – 1.71 (m, 1H), <u>1.46 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 154.7, 79.2, 64.4 48.4, 45.2, 40.9, 28.5, 27.7.</u>

⁴ VERTEX PHARMACEUTICALS INCORPORATED; R. L. Makings; B. M. Garcia-Guzman, D. J. Hurley, I. Drutu, G. Raffai, D. M. Bergeron, A. Nakatani, A. P. Termin, A. Silina WO 2007/100670 A1, **2007**

⁵ D. P. Walker, B. A. Acker, E. J Jacobsen, D. G. Wishka, J. Heterocyclic Chem., 2008, 45, 247

⁶ D. P. Walker, D. W. Piotrowski, E. J Jacobsen, B. A. Acker, V. E. Groppi JR, US 2003/232853 A1, 2003

(R)-tert-butyl 3-(hydroxymethyl)pyrrolidine-1-carboxylate (R)-B3.

The compound was obtained according to procedure for (*S*)- enantiomer (*S*)-B3. Colourless oil (1.02 g, 89 %), $[\alpha]_D{}^{20} = 16.3$ (*c* 0.75, CHCl₃), lit.: $[\alpha]_D = 6,5$ (*c* 0.9, CHCl₃; ee = 50 %).⁷ All spectra are identical with spectra for (*S*)-B3.

(S)-tert-Butyl 3-(benzyloxymethyl)-pyrrolidine-1-carboxylate (S)-B4.

The compound was obtained in similar manner to (*S*)-*tert*-Butyl-2-(benzyloxymethyl)-pyrrolidine-1-carboxylate (*S*)-A1.

Colourless oil (0.50 g, 69 %), $[\alpha]_D^{22} = -5.96$ (*c* 1.4, CH₂Cl₂). IR (film): 2975, 2869, 1695, 1404, 1365, 1171, 1103, 884, 738, 698 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.28 – 7.35 (m, 5H), 4.51 (s, 2H), 3.49 – 3.53 (m, 1H), 3.38 – 3.45 (m, 3H), 3.27 – 3.32 (m, 1H), 3.07 – 3.10 (m, 1H), 2.46 – 2.52 (m, 1H), 1.94 – 1.99 (m, 1H), 1.63 – 1.70 (m, 1H), 1.45 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 154.6, 138.2, 128.4, 127.6, 127.5, 79.0, 73.1, 71.9, 48.9, 45.2, 38.7, 28.5, 28.2. MS–EI (*m* / *z*): 292 (0.3), 291 (1.5, M⁺⁻), 236 (10), 235 (41), 232 (11), 218 (16), 190 (28), 144 (25), 129 (36), 100 (33), 92 (15), 91 (82), 85 (36), 84 (22), 82 (21), 68 (13), 65 (15), 57 (100), 56 (15), 55 (18), 43 (28), 41 (36). HRMS–EI (*m* / *z*): [M] ⁺⁻ calcd for C₁₇H₂₅NO₃ 291.1834; found: 291.1848.

(R)-tert-Butyl 3-(benzyloxymethyl)-pyrrolidine-1-carboxylate (R)-B4.

The compound was obtained in similar manner to (S)-*tert*-Butyl-2-(benzyloxymethyl)pyrrolidine-1-carboxylate (S)-A1. Colourless oil (1.084 g, 91 %), $[\alpha]_D^{22} = 5.90$ (c 1.55, CH₂Cl₂). All spectra are identical with data for (S)-B4.

(S)-3-(Benzyloxymethyl)-pyrrolidine (S)-B5.

The compound was obtained in similar manner to (S)-2-(benzyloxymethyl)-pyrrolidine (A2s). Light-yellow oil (0.26 5g, 99 %), $[\alpha]_D{}^{20} = -16.0$ (*c* 1.0, CH₂Cl₂). IR (film): 3388, 2936, 2861, 1534, 1421, 1203, 1098, 739, 699 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.30 – 7.36 (m, 4H), 7.26 – 7.29 (m, 1H), 4,51 (s, 2H), 3.40 – 3.43 (m, 1H), 3.34 – 3.37 (m, 1H), 3.02 – 3.06 (m, 1H), 2.92 – 2.97 (m, 1H), 2.84 – 2.89 (m, 1H), 2.69 – 2.72 (m, 1H), 2.36 – 2.44 (m, 1H), 1.86 – 1.93 (m, 1H), 1.41 – 1.47 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 138.5, 128.3, 127.6, 127.5, 73.4, 73.1, 50.5, 46.9, 39.2, 29.4. HRMS–ESI (*m* / *z*, MeOH): [M+H]⁺ calcd for C₁₂H₁₈NO 192.1388; found: 192.1391.

⁷ R. N. Loy, E. N. Jacobsen, J. Amer. Chem. Soc., 2009, 131, 2786

(*R*)-3-(Benzyloxymethyl)-pyrrolidine (*R*)-B5.

The compound was obtained in similar manner to (S)-enantiomer (S)-B5. Light-yellow oil (0.583 g, 96 %), $[\alpha]_D^{23} = 13.0$ (*c* 0.9, CH₂Cl₂). All spectra are identical with data for (S)-B5.

3. General procedure for synthesis of the enamines.

Scheme 3. Synthesis of the enamines.

(E)-3-Pyrrolidin-1-yl-but-2-enoic acid *tert*-butyl ester 1.

Pyrrolidine (4.9 mL, 4.26 g, 30 mmol) was treated with *tert*-butyl acetoacetate (2.6 mL, 2.26 g, 32 mmol). After 1 min reaction mixture warmed up to ~ 60°C. The reaction mixture was kept at RT for 20 min, then dried under high vacuum for 2h at RT and 30 min at 60°C. The product was pure according to ¹H NMR spectra and it was used to synthesis of quinolines without purification. Light-yellow solid (6.04 g, 95%), mp. 112 – 114 °C. IR (film): 3053, 2976, 2929, 2873, 2851, 1675, 1571, 1429, 1361, 1266, 1129, 1074, 1042, 1028, 906, 863, 787, 738 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 4.41 (s, 1H), 3.27 (bs, 4H), 2.42 (s, 3H), 1.87 – 1.93 (m, 4H), 1.46 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 169.2, 158.8, 85.2, 77.2, 47.5, 28.7, 25.2, 16.5. HRMS–ESI⁺ (*m* / *z*, MeOH): calcd for C₁₂H₂₁NO₂Na [M+Na]⁺, 234.1462; found: 234.1470.

(E)-3-[(2)-(S)-Benzyloxy-pyrrolidin-1-yl]-but-2-enoic acid *tert*-butyl ester (S)-1a.

The compound was obtained in similar manner to (1). Yellow oil (1.96 g, 99%), $[\alpha]_D^{22} = -37.3$ (*c* 0.95, CH₂Cl₂). IR (film): 2973, 2927, 2863, 1680, 1573, 1417, 1362, 1249, 1128, 1065, 795, 738, 698 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.26 – 7.36 (m, 5H), 4,46 – 4.52 (m, 3H), 3.96 – 4.02 (m, 1H), 3.43 – 3.50 (m, 1H), 3.25 – 3.32 (m, 2H), 3.15 – 3.22 (m, 1H), 2.43 (s, 3H), 2.00 – 2.06 (m, 1H), 1.85 – 1.98 (m, 3H), 1.46 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 169.1, 158.4, 138.1, 128.4, 127.7, 127.5, 86.5, 77.4, 73.3, 57.8, 48.2, 28.7,

28.3, 22.6, 16.4. HRMS–ESI⁺ (m / z, MeOH): calcd for C₂₀H₂₉NO₃Na [M+Na]⁺, 354.2045; found: 354.2043

(E)-3-[(2)-(R)-Benzyloxy-pyrrolidin-1-yl]-but-2-enoic acid tert-butyl ester (R)-1a.

The compound was obtained in similar manner to (1). Yellow oil (0.852 g, 99%), $[\alpha]_D^{21} = 36.7$ (*c* 1.2, CH₂Cl₂). All spectra are identical with data for (*S*)-1a.

(E)-3-[(3)-(S)-Benzyloxy-pyrrolidin-1-yl]-but-2-enoic acid *tert*-butyl ester (S)-1b

The compound was obtained in similar manner to (1). Yellow oil (0.329 g, 89%; purity ~ 85 % based on ¹H NMR), $[\alpha]_D^{20} = 13.0$ (*c* 0.50, CH₂Cl₂). IR (film): 2972, 2927, 2858, 1678, 1574, 1427, 1362, 1124, 1067, 792, 738, 699 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.28 – 7.37 (m, 5H), 4.53 (s, 2H), 4.40 (s, 1H), 3.44 –3.47 (m, 2H), 3.35 – 3.40 (m, 2H), 3.21 – 3.30 (m, 1H), 3.06 – 3.12 (m, 1H), 2.51 – 2.57 (m, 1H), 2.40 (s, 3H), 2.00 – 2.06 (m, 1H), 1.69–1.76 (m, 1H), 1.46 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 169.1, 158.7, 138.1, 128.4, 127.7, 127.6, 85.6, 77.3, 73.3, 71.8, 50.9, 47.2, 38.4, 28.7, 28.0, 16.4. HRMS–ESI⁺ (*m* / *z*, MeOH): calcd for C₂₀H₂₉NO₃Na [M+Na]⁺ 354.2045; found: 354.2046

(E)-3-[(3)-(R)-Benzyloxy-pyrrolidin-1-yl]-but-2-enoic acid *tert*-butyl ester (R)-1b.

The compound was obtained in similar manner to (1). Yellow oil (0.83 g, 99%), $[\alpha]_D^{22} = -15.0$ (*c* 0.50, CH₂Cl₂). All spectra are identical with data for (*S*)-1b

4. General procedure for synthesis of quinolines and quinoline 1oxides.

To a solution of the enamine 1 (0.317 g, 1.5 mmol) and HMPA⁸ (0.35 mL, 0.357 g, 2.0 mmol) in dry THF (10 mL) at -70 °C under argon, 2.5 M BuLi in hexane (0.67 mL, 1.67 mmol) was added in portions in 4 min. After the addition was completed, the solution was stirred at -70 °C for 30 min. A solution of the nitroarene (3.0 mmol) in THF (1.7 mL) was added and the resultant mixture was stirred for 10 min at -70 °C. Et₃N (1.0 mL, 0.727 g, 7.2 mmol) was added and then pivaloyl chloride (0.85 mL, 0.833 g, 6.9 mmol) was added in portions (7 min). After the addition was completed, the solution was stirred at -70 °C for 2h (colour changed to yellow; the yellow colour indicates that desire reaction occurred). The cooling bath was

⁸ HMPA is toxic and should be used carefully.

removed, water (10 mL) was added immediately and the mixture was stirred for 5 min. The resultant mixture was extracted with AcOEt (30 mL), dried and evaporated. The products were purified by column chromatography (SiO₂, hexane/AcOEt).

tert-Butyl 6,8-dichloro-3-(1-pyrrolidinyl)quinoline-2-carboxylate (2a).

Yellow solid (0.294 g, 57%), mp. 142 – 144 °C. IR (KBr): 3081, 2982, 2884, 1718, 1595, 1539, 1459, 1433, 1390, 1359, 1316, 1285, 1250, 1167, 1148, 1102, 1082, 1001, 917, 872, 840, 777, 689 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.49 (d, *J* = 2.1 Hz, 1H), 7.44 (d, *J* = 2.1 Hz, 1H), 7.09 (s, 1H), 3.38 – 3.42 (m, 4H), 2.01 – 2.05 (m, 4H), 1.66 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 166.9, 143.3, 140.3, 134.9, 134.8, 132.6, 131.1, 125.7, 123.3, 114.1, 82.9, 50.3 28.1, 25.8. MS–EI (*m* / *z*): 368 (9), 366 (13, M⁺⁺), 312 (10), 310 (16), 293 (13), 269 (12), 268 (18), 267 (66), 266 (40), 265 (100), 264 (25), 240 (14), 239 (28), 238 (25), 237 (39), 199 (12), 198 (12), 197 (19), 196 (15), 70 (19), 57 (17), 41 (21). HRMS–EI (*m* / *z*): [M] ⁺⁻ calcd for C₁₈H₂₀N₂O₂ ³⁵Cl₂, 366.0902; found: 366.0913.

tert-Butyl 6,8-difluoro-3-(1-pyrrolidinyl)quinoline-2-carboxylate (2b).

Light-yellow solid (0.296 g, 61%), mp. 145 – 147 °C. IR (KBr): 3092, 2979, 2876, 2843, 1717, 1635, 1594, 1566, 1485, 1438, 1398, 1324, 1293, 1224, 1170, 1106, 880, 835, 766, 663, 534 cm⁻¹. ¹H NMR (500 MHz, DMSO- d_6): δ 7.42 (bs, 1H), 7.37 – 7.39 (m, 1H), 7.26 – 7.31 (m, 1H), 3.25 – 3.31 (m, 4H), 1.95 – 1.99 (m, 4H), 1.59 (s, 9H). ¹³C NMR (125 MHz, DMSO- d_6): δ 166.4, 159.8 (dd, J = 226 Hz, 12 Hz), 157.8 (dd, J = 242 Hz, 12 Hz), 142.4, 140.0, 131.0 – 131.2 (m), 125.9 (d, J = 13 Hz), 113.6 – 113.7 (m), 104.7 (dd, J = 22 Hz, 5 Hz), 100.7 (dd, J = 30 Hz, 22 Hz), 82.7, 49.6, 27.5, 25.2. HRMS–ESI⁺ (*m* / *z*, MeOH): calcd for C₁₈H₂₀N₂O₂F₂Na [M+Na]⁺, 357.1391; found: 357.1395.

tert-Butyl 8-chloro-6-methoxy-3-(1-pyrrolidinyl)quinoline-2-carboxylate (2c).

Yellow solid (0.362 g, 67%), mp. 171 – 173 °C. IR (KBr): 2976, 2871, 1710, 1600, 1555, 1479, 1441, 1390, 1363, 1287, 1227, 1150, 1099, 1087, 997, 849, 815 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.17 (d, *J* = 2.0 Hz, 1H), 7.05 (s, 1H), 6.65 (d, *J* = 2.0 Hz, 1H), 4.00 (s, 3H), 3.35 – 3.38 (m, 4H), 1.99 – 2.02 (m, 4H), 1.68 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 169.8, 158.9, 144.3, 143.4, 136.1, 134.0, 133.0, 119.1, 116.5, 108.1, 85.3, 58.8, 52.8, 30.8, 28.4. HRMS–ESI⁺ (*m* / *z*, MeOH): calcd for C₁₉H₂₃N₂O₃ ³⁵ClNa [M+Na]⁺, 385.1295; found: 385.1295.

tert-Butyl 6-chloro-8-methyl-3-(1-pyrrolidinyl)quinoline-2-carboxylate (2d).

Yellow solid (0.280 g, 54%), mp. 112 – 115 °C. IR (KBr): 2979, 2879, 1716, 1591, 1470, 1436, 1366, 1316, 1292, 1217, 1160, 1100, 880, 861, 785, 650 cm⁻¹. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.49 (bs, 1H), 7.43 (d, *J* = 1.4 Hz, 1H), 7.34 (s, 1H), 3.31 – 3.34 (m, 4H), 2.42 (s, 3H), 1.95 – 1.98 (m, 4H), 1.60 (s, 9H). ¹³C NMR (125 MHz, DMSO-*d*₆): δ 166.8, 142.4, 139.5, 137.5, 133.4, 131.4, 130.7, 127.1, 124.1, 114.3, 82.3, 49.5, 27.6, 25.2, 21.0. HRMS–ESI⁺ (*m* / *z*, MeOH): calcd for C₁₉H₂₃N₂O₂ ³⁵ClNa [M+Na]⁺ 369.1346; found: 369.1338.

tert-Butyl 6-fluoro-8-methyl-3-(1-pyrrolidinyl)quinoline-2-carboxylate (2e).

Light-yellow solid (0.262 g, 55%), mp. 108 – 109 °C. IR (KBr): 2981, 2875, 2822, 1715, 1633, 1590, 1557, 1485, 1442, 1397, 1372, 1294, 1230, 1103, 855, 784, 693, 664, 585, 520 cm⁻¹. ¹H NMR (600 MHz, DMSO-*d*₆): δ 7.33 – 7.36 (m, 2H), 7.07 (dd, *J* = 11.9 Hz, 1.3 Hz, 1H), 3.30 – 3.33 (m, 4H), 2.42 (s, 3H), 1.96 – 1.97 (m, 4H), 1.59 (s, 9H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 166.7, 156.9 (d, *J* = 253Hz), 142.2, 139.6, 137.7 (d, *J* = 7 Hz), 131.1 (d, *J* = 2 Hz), 127.3 (d, *J* = 13 Hz), 120.5 (d, *J* = 3 Hz), 113.6 (d, *J* = 2 Hz), 111.1 (d, *J* = 18 Hz), 82.4, 49.6, 27.6, 25.2, 21.4. HRMS–ESI⁺ (*m* / *z*, MeOH): calcd for C₁₉H₂₃N₂O₂FNa [M+Na]⁺, 353.1641; found: 353.1635.

tert-Butyl 3-(1-pyrrolidinyl)-6-trifluoromethylquinoline-2-carboxylate 1-oxide (3a).

Yellow solid (0.214 g, 38%), mp. 191 – 194 °C (decomp.). IR (KBr): 3096, 2976, 2884, 1736, 1575, 1489, 1454, 1369, 1346, 1316, 1259, 1153, 1126, 1058, 934, 890, 829, 718 cm⁻¹. ¹H NMR (600 MHz, DMSO– d_6): δ 8.42 (d, J = 9.0 Hz, 1H), 8.32 (bs, 1H), 7.65 (dd, J = 9.0 Hz, 1.7 Hz, 1H), 7.29 (s, 1H), 3.38 – 3.42 (m, 4H), 1.99 – 2.00 (m, 4H), 1.60 (s, 9H). ¹³C NMR (150 MHz, DMSO– d_6): δ 161.6, 139.8, 134.2, 132.6, 129.4, 129.2, 124.8 (q, J = 4 Hz), 123.8 (q, J = 271 Hz), 120.5, 120.4, 106.0, 84.3, 49.0 27.4, 25.1. MS–EI (m / z): 382 (20, M⁺⁻), 281 (10), 266 (31), 265 (100), 264 (11), 263 (12), 237 (12), 196 (20). HRMS–EI (m / z): [M]⁺⁻ calcd for C₁₉H₂₁N₂O₃F₃ 382.1504; found: 382.1512.

tert-Butyl 6-chloro-3-(1-pyrrolidinyl)quinoline-2-carboxylate 1-oxide (3b).

Yellow solid (0.258 g, 50%), mp. 166 – 170 °C (decomp.). IR (KBr): 3089, 3086, 2979, 2873, 1730, 1605, 1575, 1561, 1481, 1446, 1366, 1343, 1286, 1254, 1197, 1175, 1147, 1127, 1069, 929, 864, 813, 790, 604 cm⁻¹. ¹H NMR (500 MHz, DMSO– d_6): δ 8.24 (d, J = 9.5 Hz, 1H), 7.92 (d, J = 2.5 Hz, 1H), 7.41 (dd, J = 9.5 Hz, 2.5 Hz, 1H), 7.04 (s, 1H), 3.36 – 3.39 (m, 4H), 1.96 – 1.98 (m, 4H), 1.59 (s, 9H). ¹³C NMR (125 MHz, DMSO– d_6): δ 161.8, 139.7,

133.9, 131.9, 131.5, 130.9, 125.8, 124.9, 120.8, 104.4, 84.1, 49.0 27.4, 25.1. MS–EI (m / z): 350 (6), 348 (16, M⁺⁻), 248 (18), 247 (14), 233 (47), 232 (37), 231 (100), 230 (10), 162 (17), 57 (12), 42 (19). HRMS–EI (m / z): [M] ⁺⁻ calcd for C₁₈H₂₁N₂O₃ ³⁵Cl₂ 348.1241; found: 348.1253.

tert-Butyl 6-iodo-3-(1-pyrrolidinyl)quinoline-2-carboxylate 1-oxide (3c).

Yellow solid (0.332 g, 50%), mp. 173 – 176 °C (decomp.). IR (KBr): 3097, 2974, 2870, 1730, 1599, 1556, 1477, 1439, 1365, 1343, 1319, 1235, 1194, 1176, 1147, 1126, 910, 867, 812 cm⁻¹. ¹H NMR (600 MHz, DMSO– d_6): δ 8.27 (d, J = 1.8 Hz, 1H), 7.98 (d, J = 9.0 Hz, 1H), 7.66 (dd, J = 9.0 Hz, 1.8 Hz, 1H), 7.01 (s, 1H), 3.35 – 3.38 (m, 4H), 1.95 – 1.98 (m, 4H), 1.59 (s, 9H). ¹³C NMR (150 MHz, DMSO– d_6): δ 161.8, 139.4, 134.6, 133.7, 132.5, 131.6, 131.5, 120.4, 104.1, 96.5, 84.0, 49.0, 27.4, 25.1. HRMS–ESI⁺ (m / z, MeOH): calcd for C₁₈H₂₁N₂O₃INa [M+Na]⁺, 463.0495; found: 463.0486.

tert-Butyl 6-fluoro-3-(1-pyrrolidinyl)quinoline-2-carboxylate 1-oxide (3d).

Yellow solid (0.427 g, 48%), mp. 144 – 146 °C (decomp.). IR (KBr): 2977, 2880, 1732, 1628, 1597, 1569, 1460, 1365, 1344, 1266, 1209, 1154, 1113, 1078, 962, 939, 855, 812 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 8.47 – 8.50 (m, 1H), 7.17 (dd, *J* = 9.0 Hz, 2.5 Hz, 1H), 7.09 – 7.13 (m, 1H), 6.69 (s, 1H), 3.43 – 3.46 (m, 4H), 2.00 – 2.03 (m, 4H), 1.68 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 162.5 (d, *J* = 248 Hz), 162.4, 140.1, 131.9, 131.4, 131.3, 122.4 (d, *J* = 10 Hz), 115.6 (d, *J* = 26 Hz), 109.1 (d, *J* = 23 Hz), 105.2, 84.7, 49.2 27.9, 25.6. HRMS–ESI⁺ (*m*/*z*, MeOH): calcd for C₁₈H₂₁N₂O₃FNa [M+Na]⁺, 355.1434; found: 355.1433.

tert-Butyl 6-phenylsulfanyl-3-(1-pyrrolidinyl)quinoline-2-carboxylate 1-oxide (3e).

Orange solid (0.305 g, 50%), mp. 158 – 162 °C (decomp.). IR (KBr): 2973, 2870, 2840, 1723, 1602, 1574, 1562, 1479, 1439, 1360, 1344, 1322, 1146, 930, 876, 845, 756, 692 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 8.37 (d, J = 9.1 Hz, 1H), 7.46 – 7.47 (m, 2H), 7.33 – 7.40 (m, 4H), 7.20 – 7.22 (m, 1H), 6.61 (s, 1H), 3.39 – 3.44 (m, 4H), 1.97 – 2.04 (m, 4H), 1.68 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 162.5 139.9, 139.1, 133.3, 132.9, 130.7, 129.5, 128.2, 126.7 124.6, 120.2, 105.3, 84.6, 49.3 27.9, 25.6. HRMS–ESI⁺ (*m* / *z*, MeOH): calcd for C₂₄H₂₆N₂O₃SNa [M+Na]⁺, 445.1562; found: 445.1558.

tert-Butyl 6-phenyl-3-(1-pyrrolidinyl)quinoline-2-carboxylate 1-oxide (3f).

Yellow-orange solid (0.427 g, 48%), mp. 145 – 148 °C (decomp.). IR (KBr): 2972, 1735, 1614, 1577, 1566, 1482, 1454, 1428, 1360, 1346, 1235, 1149, 1127, 1094, 939, 862, 840, 795,

698, 603 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 8.54 (d, *J* = 8.5 Hz, 1H), 7.76 (d, *J* = 1.5 Hz, 1H), 7.64 – 7.68 (m, 3H), 7.46 – 7.49 (m, 2H), 738 – 7.41 (m, 1H), 6.87 (s, 1H), 3.46 – 3.49 (m, 4H), 2.02 – 2.04 (m, 4H), 1.71 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 162.6, 141.8, 139.9, 139.6, 133.7, 132.4, 130.5, 128.9, 128.0, 127.3, 125.6, 123.7, 119.9, 106.5, 84.6, 49.3 27.9, 25.6. HRMS–ESI⁺ (*m* / *z*, MeOH): calcd for C₂₄H₂₆N₂O₃Na [M+Na]⁺, 413.1841; found: 413.1832.

tert-Butyl 6-methyl-3-(1-pyrrolidinyl)quinoline-2-carboxylate 1-oxide (3g).

Yellow-orange solid (0.195 g, 40%), mp. 137 – 140 °C (decomp.). IR (KBr): 2981, 2871, 1730, 1619, 1574, 1487, 1446, 1365, 1343, 1240, 1206, 1150, 1126, 1091, 936, 868, 844, 813 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 8.37 (d, *J* = 8.8 Hz, 1H), 7.34 (bs, 1H), 7.22 (dd, *J* = 8.8 Hz, 1.7 Hz, 1H), 6.74 (s, 1H), 3.42 – 3.45 (m, 4H), 1.99 – 2.03 (m, 4H), 1.69 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 162.7, 139.4, 139.1, 132.9, 132.0, 130.3, 128.2, 124.9, 119.1, 106.1, 84.4, 49.3 27.9, 25.6, 21.5. HRMS–ESI⁺ (*m* / *z*, MeOH): calcd for C₁₉H₂₅N₂O₃ [M+H]⁺, 329.1865; found: 329.1862.

tert-Butyl 6-tert-butyl-3-(1-pyrrolidinyl)quinoline-2-carboxylate 1-oxide (3h).

Orange solid (0.185 g, 33%), mp. 179 – 182 °C (decomp.). IR (KBr): 2995, 2839, 1734, 1619, 1573, 1485, 1442, 1367, 1347, 1250, 1182, 1151, 941, 878, 846, 822, 797, 695 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 8.40 (d, J = 9.1 Hz, 1H), 7.46 – 7.51 (m, 2H), 6.81 (s, 1H), 3.42 – 3.47 (m, 4H), 1.99 – 2.04 (m, 4H), 1.69 (s, 9H), 1.38 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 162.8, 152.1, 139.5, 132.9, 132.1, 130.1, 125.0, 121.1, 119.0, 106.7, 84.3, 49.3, 34.9, 31.0, 27.9, 25.6. HRMS–ESI⁺ (m / z, MeOH): calcd for C₂₂H₃₀N₂O₃Na [M+Na]⁺, 393.2154; found: 393.2156.

(*S*)-*tert*-Butyl 3-[(2-benzyloxymethyl)-6, 8-dichloro-1-pyrrolidinyl]quinoline-2carboxylate (4a).

Yellow oil (0.139 g, 37%), $[\alpha]_D^{22} = -264$ (c 0.95, CH₂Cl₂). IR (film): 2977, 2872, 1721, 1595, 1455, 1426, 1367, 1285, 1205, 1165, 1105, 1085, 843, 737, 697 cm⁻¹. ¹H NMR (600 MHz, DMSO-*d*₆): δ 7.86 (d, *J* = 2.1 Hz, 1H), 7.69 (d, *J* = 2.1 Hz, 1H), 7.65 (s, 1H), 7.20 – 7.26 (m, 5H), 4.45 (d, *J* = 12.5 Hz, 1H), 4.43 (d, *J* = 12.5 Hz, 1H), 4.14 – 4.17 (m, 1H), 3.50 – 3.54 (m, 2H), 3.40 – 3.43 (m, 1H), 3.22 – 3.27 (m, 1H), 2.11 – 2.17 (m, 1H), 1.91 – 2.02 (m, 2H), 1.83 – 1.88 (m, 1H), 1.57 (s, 9H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 166.2, 145.2, 139.7, 138.3, 133.9, 133.3, 131.2, 130.8, 128.0, 127.2, 127.1, 125.5, 124.2, 116.5, 82.7, 72.2,

69.8, 58.3, 51.3, 28.3, 27.5, 23.8. HRMS–ESI⁺ (m / z, MeOH): calcd for C₂₆H₂₈N₂O₃³⁵Cl₂Na [M+Na]⁺, 509.1375; found: 509.1362.

(*S*)-*tert*-Butyl 3-[(2-benzyloxymethyl)-1-pyrrolidinyl]-6-chloro-8-methoxy-quinoline-2carboxylate (4b).

Yellow oil (0.251 g, 43%), $[\alpha]_D^{23} = -258$ (c 0.50, CH₂Cl₂). IR (film): 2975, 2926, 2855, 1720, 1602, 1557, 1426, 1364, 1293, 1229, 1147, 1091, 1000, 893, 846, 737, 699 cm⁻¹. ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.54 (s, 1H), 7.39 (d, *J* = 2.0 Hz, 1H), 7.20 – 7.27 (m, 5H), 6.90 (d, *J* = 2.0 Hz, 1H), 4.43 (bs, 2H), 4.09 – 4.14 (m, 1H), 3.95 (s, 3H), 3.47 – 3.54 (m, 2H), 3.36 – 3.39 (m, 1H), 3.17 – 3.21 (m, 1H), 2.11 – 2.17 (m, 1H), 1.81 – 2.01 (m, 3H), 1.55 (s, 9H). ¹³C NMR (125 MHz, DMSO-*d*₆): δ 166.5, 156.0, 143.7, 139.6, 138.3, 132.3, 130.6, 130.0, 128.0, 127.2, 127.1, 116.6, 116.4, 106.0, 82.3, 72.2, 70.0, 58.1, 56.0, 51.4, 28.4, 27.6, 23.8. HRMS–ESI⁺ (*m* / *z*, MeOH): calcd for C₂₇H₃₂N₂O₄³⁵C1 [M+H]⁺, 483.2051; found: 483.2043.

(*S*)-*tert*-Butyl 3-[(3-benzyloxymethyl)-1-pyrrolidinyl]-6-chloro-8-methoxy-quinoline-2carboxylate (4c).

Yellow oil (0.175 g, 57%), $[\alpha]_D^{22} = -57.0$ (c 0.75, CH₂Cl₂). IR (film): 2976, 2935, 2867, 1719, 1602, 1556, 1477, 1439, 1364, 1293, 1233, 1153, 1091, 999, 893, 857, 737, 699 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.27 – 7.35 (m, 5H), 7.16 (d, J = 1.9 Hz, 1H), 7.03 (s, 1H), 6.67 (d, J = 1.9 Hz, 1H), 4.53 (d, J = 12.2 Hz, 1H), 4.51 (d, J = 12.2 Hz, 1H), 4.00 (s, 3H), 3.39 – 3.56 (m, 5H), 3.24 – 3.27 (m, 1H), 2.61 – 2.70 (m, 1H), 2.10 – 2.17 (m, 1H), 1.75 – 1.85 (m, 1H), 1.66 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 167.1, 156.3, 141.8, 140.6, 138.1, 133.5, 131.2, 130.5, 128.4, 127.7, 127.6, 116.5, 114.1, 105.6, 82.8, 73.3, 72.1, 56.2, 53.5, 49.5, 39.1, 28.5, 28.1. HRMS–ESI⁺ (*m* / *z*, MeOH): calcd for C₂₇H₃₂N₂O₄³⁵Cl [M+H]⁺, 483.2051; found: 483.2048.

(*R*)-*tert*-Butyl 3-[(3-benzyloxymethyl)-1-pyrrolidinyl]-6,8-difluoro-quinoline-2carboxylate (4d).

Yellow solid (0.134 g, 40 %), mp. 96 – 99 °C, $[\alpha]_D^{22} = 65.2$ (*c* 0.55, CH₂Cl₂). IR (film): 2978, 2934, 2870, 1719, 1633, 1595, 1568, 1485, 1444, 1399, 1369, 1293, 1234, 1155, 1108, 987, 868, 844, 738, 699 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.28 – 7.36 (m, 5H), 7.11 (s, 1H), 7.01 (d, *J* = 9.4 Hz, 1H), 6.86 – 6.91 (m, 1H), 4.53 (s, 2H), 3.53 – 3.57 (m, 2H), 3.43 – 3.48 (m, 2H), 3.27 – 3.31 (m, 1H), 2.61 – 2.70 (m, 1H), 2.10 – 2.17 (m, 1H), 1.75 – 1.85 (m,

1H), 1.66 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 167.0, 160.8 (dd, J = 219 Hz, 12 Hz), 158.8 (dd, J = 232 Hz, 14 Hz), 142.6, 140.4, 138.1, 131.2 (dd, J = 12 Hz, 3 Hz), 128.4, 127.7, 127.6, 127.5 (d, J = 6 Hz), 113.8 (d, J = 5 Hz), 104.3 (dd, J = 22 Hz, 5 Hz), 101.1 (dd, J = 30 Hz, 22 Hz), 83.1, 73.3, 71.9, 53.5, 49.5, 39.2, 27.5, 25.2. HRMS–ESI⁺ (m / z, MeOH): calcd for C₂₆H₂₈N₂O₃F₂Na [M+Na]⁺, 477.1966; found: 477.1955.

(*S*)-*tert*-Butyl 3-[(2-benzyloxymethyl)-1-pyrrolidinyl]-6-iodo-quinoline-2-carboxylate 1-oxide (5a).

Yellow solid (0.235 g, 35%), mp. 51 – 55 °C , $[\alpha]_D^{22} = -36.1$ (c 0.70, CH₂Cl₂). IR (KBr): 2974, 2868, 1729, 1599, 1555, 1475, 1430, 1366, 1317, 1293, 1237, 1147, 1119, 1090, 912, 839, 813, 736, 697, 601 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 8.19 (d, J = 9.1 Hz, 1H), 7.90 (d, J = 1.1 Hz, 1H), 7.65 (dd, J = 9.1 Hz, 1.1 Hz, 1H), 7.24 – 7.32 (m, 5H), 6.80 (s, 1H), 4.47 (bs, 2H), 4.03 – 4.05 (m, 1H), 3.55 – 3.61 (m, 2H), 3.36 – 3.41 (m, 2H), 2.15 – 2.19 (m, 1H), 1.92 – 2.04 (m, 3H), 1.66(s, 9H). ¹³C NMR (125 MHz, DMSO- d_6): δ 161.9, 139.9, 138.0, 135.0, 134.8, 134.4, 134.1, 131.4, 128.4, 127.8, 127.7, 121.0, 107.7, 95.6, 84.9, 73.3, 70.4, 59.5, 50.8, 29.1, 27.9, 24.1. HRMS–ESI⁺ (*m* / *z*, MeOH): calcd for C₂₆H₂₉N₂O₄INa [M+Na]⁺, 583.1070; found: 583.1072.

(*S*)-*tert*-Butyl 3-[(2-benzyloxymethyl)-1-pyrrolidinyl]-6-fluoro-quinoline-2-carboxylate 1-oxide (5b).

Yellow oil (0.178 g, 41%), $[\alpha]_D^{20} = -29.8$ (c 1.2, CH₂Cl₂). IR (film): 2977, 2872, 1731, 1627, 1586, 1570, 1451, 1367, 1346, 1215, 1153, 1119, 1087, 966, 842, 737, 699 cm⁻¹. ¹H NMR (600 MHz, DMSO- d_6): δ 8.31 – 8.33 (m, 1H), 7.61 (dd, J = 9.6 Hz, 2.4 Hz, 1H), 7.37 – 7.41 (m, 1H), 7.27 (s, 1H), 7.18 – 7.24 (m, 5H), 4.47 (d, J = 12.2 Hz, 1H), 4.43 (d, J = 12.2 Hz, 1H), 4.09 – 4.13 (m, 1H), 3.47 – 3.51 (m, 2H), 3.40 – 3.43 (m, 1H), 3.15 – 3.31 (m, 1H), 2.07 – 2.13 (m, 1H), 1.89 – 2.02 (m, 3H), 1.56 (s, 9H). ¹³C NMR (150 MHz, DMSO- d_6): δ 161.7 (d, J = 246 Hz), 161.5, 139.9, 138.3, 133.0, 131.5, 131.0 (d, J = 11 Hz), 128.0, 127.3, 127.2, 121.8 (d, J = 10 Hz),, 116.2 (d, J = 26 Hz),, 110.0 (d, J = 23 Hz),, 108.0, 83.8, 72.2, 69.4, 58.6, 50.6, 28.0, 27.4, 23.4. HRMS–ESI⁺ (m / z, MeOH): calcd for C₂₆H₂₉N₂O₄FNa [M+Na]⁺, 475.2009; found: 475.2002.

(*R*)-*tert*-Butyl 3-[(2-benzyloxymethyl)-1-pyrrolidinyl]-6-fluoro-quinoline-2-carboxylate 1-oxide (5c). Yellow oil (0.210 g, 40%), $[\alpha]_D^{23} = 26.7$ (c 0.6, CH₂Cl₂). All spectra are identical with data for (5b)

5. General procedure for hydrolysis / decarboxylation domino reaction of compounds 2–5

A suspension of compounds 2–5 (0.2 - 0.4 mmol) in 20 % H₂SO₄ (2–4 mL) was heated to reflux for 3h. The mixture was cooled to RT, diluted with water (15 mL) and solid K₂CO₃ was added to pH=10 in portions. The mixture was extracted with AcOEt (2 x 25 mL), the combined extracts were dried and evaporated. The crude products were washed with pentane or Et₂O. Obtained products were pure according to ¹H NMR.

6,8-Dichloro-3-(1-pyrrolidinyl)quinoline (6a).

Yellow-brown solid (0.065 g, 93%), mp. 147 – 149 °C. IR (KBr): 3036, 2973, 2862, 1602, 1478, 1453, 1426, 1389, 1354, 1328, 1290, 1172, 978, 899, 855, 841, 773. 710, 627 cm⁻¹. ¹H NMR (500 MHz, CD₃OD): δ 8.47 (d, *J* = 2.8 Hz, 1H), 7.62 (d, *J* = 2.1 Hz, 1H), 7.41 (d, *J* = 2.1 Hz, 1H), 7.03 (d, *J* = 2.8 Hz, 1H), 3.41 – 3.46 (m, 4H), 2.07 – 2.11 (m, 4H). ¹³C NMR (125 MHz, CD₃OD): δ 143.9, 142.0, 135.9, 134.7, 133.1, 132.8, 125.4, 125.0, 111.4, 48.5, 26.4. MS–EI (*m* / *z*): 368 (9), 366 (13, M⁺), 312 (10), 310 (16), 293 (13), 269 (12), 268 (18), 267 (66), 266 (40), 265 (100), 264 (25), 240 (14), 239 (28), 238 (25), 237 (39), 199 (12), 198 (12), 197 (19), 196 (15), 70 (19), 57 (17), 41 (21). HRMS–EI (*m* / *z*): [M] ⁺⁻ calcd for C₁₈H₂₀N₂O₂ ³⁵Cl₂ 366.0902; found: 366.0913.

6,8-Difluoro-3-(1-pyrrolidinyl)quinoline (6b).

Light-brown solid (0.083 g, 92%), mp. 148 – 150 °C. IR (KBr): 3077, 3023, 2963, 1631, 1604, 1573, 1501, 1472, 1439, 1404, 1384, 1351, 1270, 1139, 1085, 1008, 850, 774, 664 cm⁻¹. ¹H NMR (600 MHz, DMSO-*d*₆): δ 8.52 (d, *J* = 2.7 Hz, 1H), 7.28 – 7.31 (m, 1H), 7.14 – 7.18 (m, 1H), 7.08 (s, 1H), 3.38 – 3.41 (m, 4H), 1.99 – 2.02 (m, 4H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 159.5 (dd, *J* = 152 Hz, 13 Hz), 157.9 (dd, *J* = 163 Hz, 13 Hz), 142.2, 140.3, 131.3 (dd, *J* = 13 Hz, 4 Hz), 127.0 (d, *J* = 13 Hz), 109.1 (dd, *J* = 5 Hz, 3 Hz), 104.5 (dd, *J* = 22 Hz, 5 Hz), 99.2 (dd, *J* = 30 Hz, 23 Hz), 47.1, 24.9. MS–EI (*m* / *z*): 235 (29), 234 (100, M⁺⁺), 233 (98), 206 (11), 205 (37), 192 (13), 191 (12), 178 (48), 165 (11), 164 (43), 151 (10), 144 (11). HRMS–EI (*m* / *z*): [M]⁺⁻ calcd for C₁₃H₁₂N₂ F₂, 234.0969; found: 234.0965.

6-Chloro-8-methoxy-3-(1-pyrrolidinyl)quinoline (6c).

Beige solid (0.092 g, 91%), mp. 201 – 203 °C. IR (KBr): 2970, 2844, 1601, 1562, 1493, 1452, 1427, 1361, 1294, 1258, 1226, 1138, 1090, 1006, 881, 851, 815, 780. 756 cm⁻¹. ¹H NMR (500 MHz, CD₃OD): δ 8.33 (d, J = 2.5 Hz, 1H), 7.24 (d, J = 2.0 Hz, 1H), 6,99 (d, J = 2.5 Hz, 1H), 6.76 (d, J = 2.0 Hz, 1H), 4.00 (s, 3H), 3.40 – 3.43 (m, 4H), 2.07 – 2.10 (m, 4H). ¹³C NMR (125 MHz, CD₃OD): δ 157.2, 144.0, 139.4, 133.9, 132.8, 131.4, 117.7, 111.6, 105.7, 56.5, 26.4. MS–EI (m / z): 264 (32), 263 (43), 262 (100, M⁺⁻), 261 (88), 235 (19), 234 (13), 233 (61), 232 (13), 231 (14), 227 (12), 73 (12), 44 (21), 43 (17), 42 (11), 41 (18). HRMS–EI (m / z): [M]⁺⁻ calcd for C₁₄H₁₅N₂O ³⁵Cl 262.0873; found: 262.0872.

8-Chloro-6-methyl-3-(1-pyrrolidinyl)quinoline (6d).

Beige solid (0.066 g, 93%), mp. 131 – 134 °C. IR (KBr): 2962, 2841, 1602, 1483, 1435, 1395, 1293, 1223, 1174, 1150, 982, 863, 776, 646 cm⁻¹. ¹H NMR (500 MHz, CD₃OD): δ 8.37 (d, *J* = 2.7 Hz, 1H), 7.35 (bs, 1H), 7.30 (d, *J* = 1.7 Hz, 1H), 6,98 (d, *J* = 2.7 Hz, 1H), 3.37 – 3.41 (m, 4H), 2.42 (s, 3H), 2.06 – 2.09 (m, 4H). ¹³C NMR (125 MHz, CD₃OD): δ 143.5, 140.6, 138.3, 136.0, 132.8, 132.7, 127.5, 125.4, 112.2, 48.5, 26.4, 21.4. MS–EI (*m* / *z*): 248 (33), 247 (41), 246 (100, M⁺⁺), 245 (80), 217 (12), 190 (17), 176 (14). HRMS–EI (*m* / *z*): [M] ⁺⁻ calcd for C₁₄H₁₅N₂³⁵Cl 246.0924; found: 246.0915.

6-Chloro-3-(1-pyrrolidinyl)quinoline 1-oxide (7b).

Yellow-brown solid (0.052 g, 81%), mp. 207 – 210 °C (decomp.). IR (KBr): 3070, 2971, 2849, 1606, 1582, 1496, 1484, 1455, 1427, 1393, 1358, 1327, 1263, 1195, 887, 812, 615, 542 cm⁻¹. ¹H NMR (600 MHz, DMSO– d_6): δ 8.27 – 8.29 (m, 2H), 7.86 (d, J = 2.3 Hz, 1H), 7.32 (dd, J = 9.3 Hz, 2.3 Hz, 1H), 6,80 (bs, 1H), 3.33 – 3.35 (m, 4H), 1.97 – 1.99 (m, 4H). ¹³C NMR (150 MHz, DMSO– d_6): δ 143.0, 133.8, 133.7, 132.5, 126.5, 125.1, 124.9, 121.6, 101.6, 47.9, 25.3. MS–EI (m / z): 250 (33), 249 (22), 248 (100, M⁺⁺), 247 (24), 234 (15), 233 (27), 232 (52), 231 (69), 230 (16), 229 (14), 203 (14), 189 (10), 176 (16), 164 (16), 162 (25), 151 (10), 150 (10), 116 (13), 114 (14). HRMS–EI (m / z): [M] ⁺⁻ calcd for C₁₃H₁₃N₂O³⁵Cl, 248.0716; found: 248.0710.

6-Iodo-3-(1-pyrrolidinyl)quinoline 1-oxide (7c).

Brown solid (0.077 g, 87%), mp. 205 – 209 °C (decomp.). IR (KBr): 2944, 2853, 1602, 1579, 1496, 1451, 1401, 1357, 1323, 1191, 1084, 878, 819, 789 cm⁻¹. ¹H NMR (500 MHz, DMSO– d_6): δ 8.27 (d, J = 1.8 Hz, 1H), 8.21 (d, J = 1.8 Hz, 1H), 8.02 (d, J = 9.2 Hz, 1H), 7.58 (dd, J = 9.2 Hz, 1.8 Hz, 1H), 6,77 (d, J = 1.8 Hz, 1H), 3.31 – 3.34 (m, 4H), 1.97 – 1.99 (m,

4H). ¹³C NMR (125 MHz, DMSO– d_6): δ 142.3, 134.4, 132.9, 132.8 132.4, 126.0, 120.8, 100.8, 95.7, 47.4, 24.8. HRMS–ESI⁺ (m/z, MeOH): calcd for C₁₃H₁₄N₂OI [M+H]⁺, 341.0151; found: 341.0138.

6-Fluoro-3-(1-pyrrolidinyl)quinoline 1-oxide (7d).

Yellow-brown solid (0.068 g, 97%), mp. 193 – 194 °C (decomp.). IR (KBr): 3074, 2967, 2850, 1627, 1592, 1505, 1461, 1435, 1398, 1358, 1331, 1264, 1200, 1148, 957, 895, 868, 806, 613, 542 cm⁻¹. ¹H NMR (500 MHz, CD₃OD): δ 8.38 – 8.42 (m, 1H), 8.21 (d, *J* = 2.1 Hz, 1H), 7.38 – 7.41 (m, 1H), 7.20 – 7.24 (m, 1H), 6,91 (d, *J* = 2.1 Hz, 1H), 3.35 – 3.38 (m, 4H), 2.07 – 2.10 (m, 4H). ¹³C NMR (125 MHz, CD₃OD): δ 163.7 (d, *J* = 247 Hz), 143.8, 134.1 (d, *J* = 11 Hz), 131.6, 127.8, 122.7 (d, *J* = 12 Hz), 116.5 (d, *J* = 27 Hz), 110.5 (d, *J* = 24 Hz), 106.7 (d, *J* = 5 Hz), 48.8, 26.4. MS–EI (*m* / *z*): 233 (15), 232 (100, M⁺⁺), 231 (25), 216 (22), 215 (39), 214 (11), 213 (12), 187 (12) 160 (10), 146 (19), 134 (10), 107 (12) 41 (12). HRMS–EI (*m* / *z*): [M]⁺⁺ calcd for C₁₃H₁₃N₂OF, 232.1012; found: 232.1023.

6-Phenyl-3-(1-pyrrolidinyl)quinoline 1-oxide (7f).

Yellow–brown solid (0.073 g, 84%), mp. 217 – 220 °C (decomp.). IR (KBr): 2968, 2866, 2839, 1612, 1597, 1511, 1481, 1458, 1429, 1398, 1356, 1267, 1218, 1194, 1152, 889, 825, 800, 772, 704 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 8.58 (d, *J* = 9.0 Hz, 1H), 8.30 (d, *J* = 1.6 Hz, 1H), 7.79 (d, *J* = 1.3 Hz, 1H), 7.66 – 7.70 (m, 2H), 7.64 (dd, *J* = 9.0 Hz, 1.6 Hz, 1H), 7.46 – 7.50 (m, 2H), 7.39 – 7.42 (m, 1H), 6.76 (bs, 1H), 3.36 – 3.42 (m, 4H), 2.07 – 2.12 (m, 4H). ¹³C NMR (125 MHz, CDCl₃): δ 141.9, 141.6, 140.0, 133.6, 131.6, 128.9, 128.0, 127.4, 126.6, 125.1 123.7, 119.9, 104.6, 47.8, 25.4. MS–EI (*m* / *z*): 291 (22), 290 (100, M⁺⁻), 275 (15), 274 (71), 273 (57), 272 (16), 271 (13), 245 (10), 218 (12), 204 (19). HRMS–EI (*m* / *z*): [M] ⁺⁻ calcd for C₁₉H₁₈N₂O 290.1419; found: 290.1418.

6-tert-Butyl-3-(1-pyrrolidinyl)quinoline 1-oxide (7h).

Yellow–brown solid (0.053 g, 91%), mp. 175 – 180 °C (decomp.). IR (KBr): 2963, 2865, 1602, 1592, 1506, 1454, 1398, 1356, 1223, 1187, 1170, 897, 870, 789 cm⁻¹. ¹H NMR (600 MHz, DMSO– d_6): δ 8.22 (d, J = 9.1 Hz, 1H), 8.20 (d, J = 2.1 Hz, 1H), 7.68 (d, J = 1.8 Hz, 1H), 7.48 (dd, J = 9.1 Hz, 2.1 Hz, 1H), 6,85 (d, J = 1.8 Hz, 1H), 3.31 – 3.33 (m, 4H), 1.97 – 1.99 (m, 4H), 1.35 (s 9H). ¹³C NMR (150 MHz, DMSO– d_6): δ 150.9, 141.9, 132.3, 130.9, 125.1 123.4, 121.3, 118.4, 102.8, 47.4, 34.6, 30.8, 24.8. MS–EI (m / z): 271 (19), 270 (100, M⁺), 269 (11), 255 (17), 254 (71), 253 (43), 252 (17), 239 (33), 237 (19), 169 (11), 168 (12),

115 (10), 57 (12), 43 (11), 41 (23). HRMS–EI (m / z): [M] ⁺⁻ calcd for C₁₇H₂₂N₂O₂ 270.1732; found: 270.1732.

(S)-3-[2-(Benzyloxymethyl)-1-pyrrolidinyl]-6-iodo-quinoline 1-oxide 8a.

The compound was purified by column chromatography on silica gel (AcOEt, then AcOEt/MeOH, 10 /1). Yellow oil (058 g, 79%), $[\alpha]_D^{22} = -125$ (*c* 0.50, CH₂Cl₂). IR (film): 3370, 3086, 3060, 2855, 1601, 1574, 1495, 1448, 1395, 1358, 1322, 1257, 1223, 1195, 1086, 809, 737, 698 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 8.49 (bs, 1H), 8.20 (d, *J* = 9.0 Hz, 1H), 7.97 (bs, 1H), 7.58 – 7.62 (m, 1H), 7.27 – 7.36 (m, 5H), 6.58 (s, 1H), 4.47 (bs, 2H), 4.03 – 4.05 (m, 1H), 3.55 – 3.61 (m, 2H), 3.36 – 3.41 (m, 2H), 2.15 – 2.19 (m, 1H), 1.92 – 2.04 (m, 3H), 1.66(s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 142.0, 137.9, 134.7, 133.8, 133.7, 132.7, 128.5, 127.8, 127.7, 127.1, 121.1, 102.9, 95.3, 73.4, 70.3, 58.8, 48.7, 29.0, 23.3. HRMS–ESI⁺ (*m* / *z*, MeOH): calcd for C₂₁H₂₂N₂O₂I [M+H]⁺, 461.0726; found: 461.0718.

6. Transformation of *tert*-butyl ester into acid.

To solution of compound **2a** (0.358 mmol) in CH_2Cl_2 (3.8 mL) trifluroacetic acid (1.0 mL) was added and the solution was stirred at RT for 1h. The solvent was evaporated and the crude product was washed with Et_2O . Obtained product was pure according to ¹H NMR.

6,8-Dichloro-3-pyrrolidin-1-yl-quinoline-2-carboxylic acid (9a).

Yellow solid (0.094 g, 80%), mp. 135 – 138 °C (decomp.). IR (KBr): 3217, 2994, 2954, 2884, 2839, 1733, 1594, 1560, 1459, 1422, 1324, 1284, 1133, 1080, 868, 808, 749 cm⁻¹. ¹H NMR (500 MHz, DMSO– d_6): δ 13.85 (bs, 1H), 7.86 (d, J = 2.0 Hz, 1H), 7.63 (d, J = 2.0 Hz, 1H), 7.43 (bs, 1H), 3.35 – 3.37 (m, 4H), 1.96 – 1.98 (m, 4H). ¹³C NMR (125 MHz, DMSO– d_6): δ 168.9, 144.0, 140.0, 133.3, 133.2, 131.2, 31.1, 124.7, 123.9, 113.7, 49.4, 25.3. HRMS–ESI⁺ (m / z, MeOH): calcd for C₁₄H₁₂N₂O₂Cl₂Na [M+Na]⁺, 333.0174; found: 333.0174. Elemental analysis indicated no fluorine presence. Anal. Calcd for: C₁₄H₁₂N₂O₂Cl₂: C, 54.04; H, 3.88; N, 9.00; found: C, 53.65; H, 4.02; N, 9.01.

8-Fluoro-6-methyl-3-pyrrolidin-1-yl-quinoline-2-carboxylic acid (9e).

Light–brown solid (0.078 g, 76%), mp. 116 – 119 °C (decomp.). IR (KBr): 3044, 2963, 2885, 1779, 1702, 1635, 1477, 1366, 1193, 1155, 1122, 862, 782, 672, 521, 453 cm⁻¹. ¹H NMR (500 MHz, DMSO–*d*₆): δ 7.36 (bs, 2H), 7.05 – 7.08 (m, 1H), 3.33 (bs, 4H), 2.42 (s, 3H), 1.95 (bs,

4H). ¹³C NMR (125 MHz, DMSO– d_6): δ 169.1, 157.0 (d, J = 253 Hz), 142.5, 140.0, 137.7 (d, J = 8.0 Hz), 131.2, 127.3 (d, J = 12 Hz), 120.5, 113.4, 111.1 (d, J = 18 Hz), 49.5, 25.3, 21.4. ¹⁹F NMR (470 MHz, DMSO– d_6): δ -75.2 ("1.6 F"; CF₃), -127.1 (1F, C_{arom}–F). HRMS–ESI⁺ (m / z, MeOH): calcd for C₁₅H₁₅N₂O₂FNa [M+Na]⁺, 297.1015; found 297.1011. Anal. Calcd for: C₁₅H₁₅N₂O₂F * 0.5CF₃COOH: F, 14.33; found F, 14.35.

7. Synthesis of 4-(5-chloro-2-nitro-phenyl)-3-pyrrolidin-1-yl-but-2enoic acid tert-butyl ester (III).

The compound was obtained by ONSH reaction of enamine **1** with *p*-chloronitrobenzene with using DDQ as oxidant in 32 % yield. Yellow solid. ¹H NMR (500 MHz, CDCl₃): δ 7.91 – 7.93 (m, 1H), 7.31 – 7.33 (m, 2H), 4.73 (s, 1H), 4.71 (s, 2H), 3.19 (bs, 4H), 1.86 (bs, 4H), 1.42 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): δ 168.3, 156.1, 147.5, 139.9, 135.2, 129.5, 127.3, 126.2, 88.9, 78.1, 47.8, 31.9, 26.5, 25.1. HRMS–EI (*m* / *z*): calcd for C₁₈₁H₂₃N₂O₄Cl [M]⁺⁻, 366.1346; found: 366.1328.