Electronic Supplementary Information:

Stereocontrolled Semi-Syntheses of Deguelin and Tephrosin

 David R. Spring*a
${ }^{\text {a Department }}$ of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2
1EW, UK
*Email: spring@cam.ac.uk

Contents:
Experimental procedures
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for all compounds
Alternative version of Scheme 2

Experimental Procedures

General Methods

($6 a S, 12 a S, 5^{\prime} R$)-Rotenone 3 (95% purity) was purchased from Molekula Fine Chemicals as an off-white amorphous solid, which was crystallised from ethanol three times to give colourless plates (m.p. $162-163^{\circ} \mathrm{C}$, (lit. $163^{\circ} \mathrm{C}$))..$^{5 \mathrm{a}}$ All other solvents and reagents were used as obtained from commercial sources. Thin layer chromatography retention factors $\left(R_{f}\right)$ are quoted to the nearest 0.05 . Flash column chromatography was carried out according to the method of Still. ${ }^{14}$ Yields refer to chromatographically and spectroscopically pure compounds, for which full analytical data are given. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance 500 Cryo Ultrashield (500 MHz) spectrometer at 298 K . Optical rotations were recorded on an Anton-Paar MCP 100 polarimeter. [$\alpha]_{D}$ values are reported in $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$ at 598 nm , concentration (c) is given in $\mathrm{g}(100 \mathrm{~mL})^{-1}$. Melting points for crystalline compounds were obtained using a Büchi Melting Point B-545 melting point apparatus. Infrared spectra were recorded on a Perkin-Elmer Spectrum One spectrometer. Low-resolution mass spectra (LRMS) were recorded using an LCMS system (Agilent series LC with an ESCi Multi-Mode lonisation Waters ZQ spectrometer using MassLynx 4.1 software). High-resolution mass spectra (HRMS) were recorded using a Micromass Q-TOF.

The nomenclature and numbering systems used for the assignments in this manuscript are well established in this natural product family. ${ }^{1 \mathrm{c}}$ See also ESI Figure 1:

ESI Figure 1: Representative numbering schemes for rotenone 3, rot-2'-enonic acid 5 and deguelin 1.

Hydrogen bromide ($32 \mathrm{~mL}, 33$ \% solution in acetic acid) was added dropwise over a period of 20 min to a suspension of ($6 \mathrm{aS}, 12 \mathrm{aS}, 5^{\prime} R$)-rotenone $\mathbf{3}(4.00 \mathrm{~g}, 10.2 \mathrm{mmol})$ in acetic acid. The deep red reaction mixture was stirred at room temperature for a further 0.5 h (the product began to precipitate after approx. 10 min). Water (200 mL) was then added and the mixture was stirred vigorously for 0.5 h while an off-white precipitate formed, which was collected by filtration and dried in vacuo overnight. The precipitated solid was crystallised from chloroform-methanol to afford ($6 \mathrm{aS}, 12 \mathrm{a} S, 5^{\prime} R$)-rotenone hydrobromide 6 as white needles ($4.20 \mathrm{~g}, 87 \%$). m.p. 127$128{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f} 0.30$ (hexane-ethyl acetate; 2:1); $[\alpha]_{\mathrm{D}}{ }^{20}-134$ (c 0.1 in CHCl_{3}); $v_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1} 1676 \mathrm{~m}(\mathrm{C}=0)^{\text {ketone }}, 1608 \mathrm{~m}, 1593 \mathrm{~m}, 1502 \mathrm{~m}, 1456 \mathrm{~m}, 1344 \mathrm{~m}, 1307 \mathrm{~m}$, $1263 \mathrm{~m}, 1232 \mathrm{~m}, 1213 \mathrm{~m}, 1197 \mathrm{~m}, 1092 \mathrm{~m}, 1010 \mathrm{~m}, 821 \mathrm{~m}, 751 \mathrm{~m} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $1.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(7^{\prime}\right) \underline{H}_{3}\right), 1.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(8^{\prime}\right) \underline{H}_{3}\right), 3.20\left(1 \mathrm{H}, \mathrm{dd}, J 8.0,16.5 \mathrm{~Hz}, \mathrm{C}\left(4^{\prime}\right) \underline{\mathrm{H}} \mathrm{H}^{\prime}\right), 3.30$ (1H, dd, J 9.5, $\left.16.5 \mathrm{~Hz}, \mathrm{C}\left(4^{\prime}\right) \mathrm{H} \underline{H}^{\prime}\right), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(2^{\prime}\right) \underline{H}_{3}\right), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(3^{\prime}\right) \underline{H}_{3}\right), 3.85(1 \mathrm{H}$, d, J $4.5 \mathrm{~Hz}, \mathrm{C}(12 \mathrm{a}) \underline{\mathrm{H}}), 4.19\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.0 \mathrm{~Hz}, \mathrm{C}(6) \underline{\mathrm{H}} \mathrm{H}^{\prime}\right), 4.63(1 \mathrm{H}, \mathrm{dd}, J 3.0,12.0 \mathrm{~Hz}$, $\left.\mathrm{C}(6) \mathrm{H} \underline{H}^{\prime}\right), 4.74\left(1 \mathrm{H}, \mathrm{dd}, J 8.0,9.5 \mathrm{~Hz}, \mathrm{C}\left(5^{\prime}\right) \underline{\mathrm{H}}\right), 4.95(1 \mathrm{H}, \mathrm{ddd}, J 1.0,3.0,4.5 \mathrm{~Hz}, \mathrm{C}(6 \mathrm{a}) \underline{\mathrm{H}})$, 6.45 (1H, s, C(4) \underline{H}), $6.49(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5 \mathrm{~Hz}, \mathrm{C}(10) \underline{\mathrm{H}}), 6.76(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(1) \underline{H}), 7.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5$ $\mathrm{Hz}, \mathrm{C}(11) \underline{\mathrm{H}}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 28.5\left(\underline{\mathrm{C}}\left(7^{\prime}\right) \mathrm{H}_{3}\right), 30.1\left(\underline{\mathrm{C}}\left(4^{\prime}\right) \mathrm{H}_{2}\right), 30.5\left(\underline{(C}\left(8^{\prime}\right) \mathrm{H}_{3}\right), 44.6$ $(\underline{C}(12 a) \mathrm{H}), 55.9\left(\underline{\mathrm{C}}\left(3^{\prime}\right) \mathrm{H}_{3}\right), 56.3\left(\underline{\mathrm{C}}\left(2^{\prime}\right) \mathrm{H}_{3}\right), 65.8\left(\underline{\mathrm{C}}\left(6^{\prime}\right)\right), 66.2\left(\underline{\mathrm{C}}(6) \mathrm{H}_{2}\right), 72.2(\underline{\mathrm{C}}(6 \mathrm{a}) \mathrm{H}), 91.2$
 113.5 ($(\mathbf{C}(11 \mathrm{a})), 130.0(\underline{C}(11) \mathrm{H}), 143.7(\underline{C}(2)), 147.4(\underline{C}(3)), 149.5(\underline{C}(4 a)), 157.7(\underline{C}(7 a))$, 167.0 (C(9)), 188.9 (C(12)); LRMS m/z found 475.0 and $477.0, \mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{6}{ }^{79} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$ requires 475.1 and $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{6}{ }^{81} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$requires 477.1; $\mathrm{HRMS} \mathrm{m} / \mathrm{z}$ found 475.0768 and $477.0737, \mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{6}{ }^{79} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$requires 475.0756 and $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{6}{ }^{81} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$ requires 477.0736.
(6aS,12aS)-Rot-2'-enonic acid 5

Activated zinc dust ($5.47 \mathrm{~g}, 84.2 \mathrm{mmol}$) was added to a suspension of ($6 \mathrm{aS}, 12 \mathrm{aS}, 5^{\prime} R$)rotenone hydrobromide $6(4.00 \mathrm{~g}, 8.42 \mathrm{mmol})$ and ammonium chloride ($1.80 \mathrm{~g}, 33.7$ mmol) in THF (96.0 mL) and water (16.0 mL). The reaction mixture was stirred at room temperature for 48 h . The reaction mixture was then decanted from the coagulated zinc; diethyl ether (200 mL) was added, followed by water (200 mL) and aqueous hydrochloric acid ($3.0 \mathrm{M}, 10 \mathrm{~mL}$). The two phases were mixed vigorously for 0.5 h . The organic phase was separated, washed with brine (200 mL), dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo. The crude pale yellow solid obtained was crystallised from methanol to afford ($6 a S, 12 a S$)-rot-2'-enonic acid $\mathbf{5}$ as white needles ($2.63 \mathrm{~g}, 79 \%$). m.p. 206-208 ${ }^{\circ} \mathrm{C}$ from methanol (lit. m.p. 207-208 ${ }^{\circ} \mathrm{C}$ from methanol); $\mathrm{R}_{f} 0.15$ (hexane-ethyl acetate; 2:1); $[\alpha]_{\mathrm{D}}{ }^{20}+29$ (c 0.1 in CHCl_{3}) (lit. $[\alpha]_{\mathrm{D}}{ }^{27}+28$ (c 2.0 in CHCl_{3})); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3600-3300 \mathrm{w}$ br, $1652 \mathrm{~m}(\mathrm{C}=\mathrm{O})^{\text {ketone }}$,
$1594 \mathrm{~m}, 1510 \mathrm{~m}, 1453 \mathrm{~m}, 1440 \mathrm{~m}, 1348 \mathrm{~m}, 1299 \mathrm{~m}, 1275 \mathrm{~m}, 1214 \mathrm{~m}, 1196 \mathrm{~m}, 1155 \mathrm{~m}$, $1090 \mathrm{~m}, 1005 \mathrm{~m}, 916 \mathrm{~m}, 829 \mathrm{~m} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(4^{\prime}\right) \underline{H}_{3}\right), 1.80(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(5^{\prime}\right) \underline{H}_{3}\right), 3.36\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.5,16.0 \mathrm{~Hz}, \mathrm{C}\left(1^{\prime}\right) \underline{\mathrm{H}} \mathrm{H}^{\prime}\right), 3.45\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.5,16.0 \mathrm{~Hz}, \mathrm{C}\left(1^{\prime}\right) \mathrm{H}^{\prime}\right)$, $3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(2^{\prime \prime}\right) \underline{H}_{3}\right), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(3^{\prime \prime}\right) \underline{H}_{3}\right), 3.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.0 \mathrm{~Hz}, \mathrm{C}(12 \mathrm{a}) \underline{\mathrm{H}}), 4.18(1 \mathrm{H}, \mathrm{d}$, J $\left.12.0 \mathrm{~Hz}, \mathrm{C}(6) \underline{\mathrm{H}}{ }^{\prime}\right), 4.62\left(1 \mathrm{H}, \mathrm{dd}, J 3.0,12.0 \mathrm{~Hz}, \mathrm{C}(6) \mathrm{H} \underline{H}^{\prime}\right), 4.91(1 \mathrm{H}, \mathrm{dd}, J 3.0,4.0 \mathrm{~Hz}$, $\mathrm{C}(6 \mathrm{a}) \underline{\mathrm{H}}), 5.21\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5 \mathrm{~Hz}, \mathrm{C}\left(2^{\prime}\right) \underline{\mathrm{H}}\right), 6.06(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(9) \mathrm{OH}), 6.44(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(4) \underline{\mathrm{H}}), 6.50$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5 \mathrm{~Hz}, \mathrm{C}(10) \underline{H})$, $6.78(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(1) \underline{\mathrm{H}}), 7.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5 \mathrm{~Hz}, \mathrm{C}(11) \underline{\mathrm{H}})$; $\delta_{\mathrm{C}}(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 17.9\left(\underline{\mathrm{C}}\left(5^{\prime}\right) \mathrm{H}_{3}\right), 22.1\left(\underline{\mathrm{C}}\left(1^{\prime}\right) \mathrm{H}_{2}\right), 25.8\left(\underline{\mathrm{C}}\left(4^{\prime}\right) \mathrm{H}_{3}\right), 44.2$ ($\left.\mathrm{C}(12 \mathrm{a}) \mathrm{H}\right), 55.8$ $\left(\underline{\mathrm{C}}\left(3^{\prime \prime}\right) \mathrm{H}_{3}\right), 56.3\left(\underline{\mathrm{C}}\left(2^{\prime \prime}\right) \mathrm{H}_{3}\right), 66.3\left(\underline{\mathrm{C}}(6) \mathrm{H}_{2}\right), 72.2$ ($\left.\underline{\mathrm{C}}(6 \mathrm{a}) \mathrm{H}\right), 100.9(\underline{\mathrm{C}}(4) \mathrm{H}), 104.7$ ($\left.\underline{\mathrm{C}}(13)\right)$, 110.4 ($\mathrm{C}(1) \mathrm{H}), 110.9$ ($\mathrm{C}(10) \mathrm{H}), 113.0(\mathrm{C}(8)), 114.1$ ($\mathrm{C}(11 \mathrm{a})), 120.8$ ($\mathrm{C}(11) \mathrm{H}), 127.2$
 (C(9)), 189.8 ($\mathrm{C}(12)$); LRMS m / z found $397.2, \mathrm{C}_{23} \mathrm{H}_{25} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$requires 397.2; HRMS m / z found $419.1464, \mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires 419.1471 .

(6aS,12aS)-Deguelin 1

Phenylselenyl chloride ($1.06 \mathrm{~g}, 5.56 \mathrm{mmol}$) was added to a solution of ($6 \mathrm{aS}, 12 \mathrm{aS}$)-rot-2^{\prime}-enonic acid $5(2.00 \mathrm{~g}, 5.05 \mathrm{mmol})$ in anhydrous dichloromethane (80.0 mL) under an atmosphere of nitrogen at $-40^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2 h at -40 ${ }^{\circ} \mathrm{C}$, then warmed to room temperature and stirred for an additional 1 h . The mixture was concentrated in vacuo and the crude yellow foam was dissolved in THF (80.0 mL) and cooled to $0^{\circ} \mathrm{C}$. Hydrogen peroxide ($1.14 \mathrm{~mL}, 30 \%$ aqueous solution, approx. 10 mmol) was then added and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , warmed to room temperature and stirred for an additional 18 h . The mixture was extracted into diethyl ether (80 mL), washed with 5% aqueous sodium bicarbonate solution ($3 \times 80 \mathrm{~mL}$), water (80 mL) and brine (80 mL), dried over anhydrous MgSO_{4} and concentrated in vacuo. The crude yellow foam obtained was purified by flash column chromatography (hexane-ethyl acetate; 3:1 then 2:1) to afford (6aS,12aS)deguelin 1 as a bright yellow oil that solidified upon scratching to form a bright yellow amorphous powder ($1.61 \mathrm{~g}, 81 \%$). $R_{f} 0.30$ (hexane-ethyl acetate; 2:1); $[\alpha]_{D^{20}}{ }^{20}$ 94 (c 0.1 in CHCl_{3}); $v_{\text {max }}(\mathrm{neat}) / \mathrm{cm}^{-1} 1671 \mathrm{~m}(\mathrm{C}=\mathrm{O})^{\text {ketone, }} 1635 \mathrm{w}, 1596 \mathrm{~m}, 1577 \mathrm{~m}$, $1511 \mathrm{~m}, 1440 \mathrm{~m}, 1344 \mathrm{~m}, 1273 \mathrm{~m}, 1212 \mathrm{~m}, 1197 \mathrm{~m}, 1110 \mathrm{~m}, 1093 \mathrm{~m}, 1009 \mathrm{~m}, 819 \mathrm{~m} ; \delta_{\text {H }}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $1.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(7^{\prime}\right) \underline{\mathrm{H}}_{3}\right), 1.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(8^{\prime}\right) \underline{H}_{3}\right), 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(2^{\prime}\right) \underline{H}_{3}\right), 3.81$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(3^{\prime}\right) \underline{H}_{3}\right), 3.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.5 \mathrm{~Hz}, \mathrm{C}(12 \mathrm{a}) \underline{\mathrm{H}}), 4.19\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.0 \mathrm{~Hz}, \mathrm{C}(6) \underline{\mathrm{H}}{ }^{\prime}\right), 4.64$ (1H, dd, J 3.0, $\left.12.0 \mathrm{~Hz}, \mathrm{C}(6) \mathrm{H} \underline{H}^{\prime}\right)$, 4.92 ($1 \mathrm{H}, \mathrm{dd}, J 3.0,4.5 \mathrm{~Hz}, \mathrm{C}(6 \mathrm{a}) \underline{\mathrm{H}}$), 5.56 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.10.0 \mathrm{~Hz}, \mathrm{C}\left(5^{\prime}\right) \underline{\mathrm{H}}\right), 6.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5 \mathrm{~Hz}, \mathrm{C}(10) \underline{\mathrm{H}}), 6.46(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(4) \underline{\mathrm{H}}), 6.65(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.0$ $\left.\mathrm{Hz}, \mathrm{C}\left(4^{\prime}\right) \underline{\mathrm{H}}\right), 6.79(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(1) \underline{\mathrm{H}}), 7.74(1 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}, \mathrm{C}(11) \underline{\mathrm{H}}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $28.1\left(\underline{C}\left(7^{\prime}\right) \mathrm{H}_{3}\right), 28.5\left(\underline{\mathrm{C}}\left(8^{\prime}\right) \mathrm{H}_{3}\right), 44.4(\underline{\mathrm{C}}(12 \mathrm{a}) \mathrm{H}), 55.8\left(\underline{(C}\left(3^{\prime}\right) \mathrm{H}_{3}\right), 56.3\left(\underline{\mathrm{C}}\left(2^{\prime}\right) \mathrm{H}_{3}\right), 66.3$
 ($\mathrm{C}(1) \mathrm{H}), 111.5(\underline{\mathrm{C}}(10) \mathrm{H}), 112.7(\underline{\mathrm{C}}(11 \mathrm{a})), 115.7\left(\underline{\mathrm{C}}\left(4^{\prime}\right) \mathrm{H}\right), 128.5(\underline{\mathrm{C}}(11) \mathrm{H}), 128.7\left(\underline{\mathrm{C}}\left(5^{\prime}\right) \mathrm{H}\right)$,
 LRMS m / z found 395.1, $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$requires 395.1; HRMS m / z found 417.1300, $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires 417.1314 .

(6aR,12aR)-Tephrosin 2

A solution of potassium dichromate ($842 \mathrm{mg}, 2.84 \mathrm{mmol}$) in water (12.0 mL) was added dropwise over a period of 10 min to a solution of ($6 a \mathrm{~S}, 12 \mathrm{aS}$)-deguelin 1 (1.20 $\mathrm{g}, 3.05 \mathrm{mmol})$ in acetic acid $(24.0 \mathrm{~mL})$ at $60^{\circ} \mathrm{C}$. The reaction mixture was stirred at 60 ${ }^{\circ} \mathrm{C}$ for a further 0.5 h then cooled to room temperature and stirred for an additional 18 h . Ice-cold water (200 mL) was then added and the mixture was stirred vigorously for 0.5 h while a yellow precipitate formed, which was collected by filtration and dried in vacuo overnight. The precipitate was purified by flash column chromatography (hexane- ethyl acetate; 2:1) to afford ($6 a R, 12 a R$)-tephrosin 2 as a bright yellow amorphous solid ($962 \mathrm{mg}, 76 \%$). $\mathrm{R}_{f} 0.30$ (hexane-ethyl acetate; 1:1); $[\alpha]_{\mathrm{D}}{ }^{20}-88$ (c 0.1 in CHCl_{3}); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3600-3300 \mathrm{w}$ br, $1674 \mathrm{~m}(\mathrm{C}=0)^{\text {ketone }}, 1596 \mathrm{~m}$, $1577 \mathrm{~m}, 1509 \mathrm{~m}, 1441 \mathrm{~m}, 1330 \mathrm{~m}, 1270 \mathrm{~m}, 1218 \mathrm{~m}, 1200 \mathrm{~m}, 1159 \mathrm{~m}, 1109 \mathrm{~m}, 1087 \mathrm{~m}$, $1027 \mathrm{~m}, 884 \mathrm{~m}, 816 \mathrm{~m} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(7^{\prime}\right) \underline{H}_{3}\right), 1.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(8^{\prime}\right) \mathrm{H}_{3}\right)$, $3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(2^{\prime}\right) \underline{H}_{3}\right), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(3^{\prime}\right) \underline{H}_{3}\right), 4.40(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(12 \mathrm{a}) \mathrm{OH}), 4.49(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1.0$, $\left.12.0 \mathrm{~Hz}, \mathrm{C}(6) \underline{\mathrm{H}} \mathrm{H}^{\prime}\right), 4.57(1 \mathrm{H}, \mathrm{dd}, J 1.0,2.5 \mathrm{~Hz}, \mathrm{C}(6 \mathrm{a}) \underline{\mathrm{H}}), 4.63(1 \mathrm{H}, \mathrm{dd}, J 2.5,12.0 \mathrm{~Hz}$, $\left.\mathrm{C}(6) \mathrm{H} \underline{H}^{\prime}\right), 5.55\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.0 \mathrm{~Hz}, \mathrm{C}\left(5^{\prime}\right) \underline{\mathrm{H}}\right), 6.47(1 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}, \mathrm{C}(10) \underline{\mathrm{H}}), 6.48(1 \mathrm{H}, \mathrm{s}$, $\mathrm{C}(4) \underline{H}), 6.56(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(1) \underline{\mathrm{H}}), 6.60\left(1 \mathrm{H}, \mathrm{d}, J 10.0 \mathrm{~Hz}, \mathrm{C}\left(4^{\prime}\right) \underline{\mathrm{H}}\right), 7.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.0 \mathrm{~Hz}$, $\mathrm{C}(11) \underline{\mathrm{H}}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 28.3$ ($\left.\underline{\mathrm{C}}\left(7^{\prime}\right) \mathrm{H}_{3}\right), 28.5\left(\underline{\mathrm{C}}\left(8^{\prime}\right) \mathrm{H}_{3}\right), 55.9\left(\underline{\mathrm{C}}\left(3^{\prime}\right) \mathrm{H}_{3}\right), 56.3$ $\left(\underline{(}\left(2^{\prime}\right) \mathrm{H}_{3}\right), 63.8\left(\underline{\mathrm{C}}(6) \mathrm{H}_{2}\right), 67.4(\underline{\mathrm{C}}(12 \mathrm{a})), 76.2(\underline{\mathrm{C}}(6 \mathrm{a}) \mathrm{H}), 78.0\left(\underline{\mathrm{C}}\left(6^{\prime}\right)\right), 101.0(\underline{\mathrm{C}}(4) \mathrm{H}), 108.6$
 128.5 (C(11)H), 128.8 ($\left(\underline{C}\left(5^{\prime}\right) \mathrm{H}\right), 143.9$ (C(2)), 148.4 ($\left.\underline{(C}(3)\right), 151.1$ (C(4a)), 156.6 ($\left.\underline{C}(7 a)\right)$, 160.8 (C(9)), 191.4 ($\mathrm{C}(12)$); LRMS m / z found $393.1, \mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{6}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right]^{+}$requires 393.1; HRMS m / z found $433.1262, \mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$requires 433.1258.

ESI Figure 2: An alternative version of Scheme 2 with drawings of the 3-D conformations of the partial structures of molecules $\mathbf{1 , 2 , 9}$ and 10.

