Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Stepwise Cyclopropanation on the Polycyclopropanated Polyketide Formation in Jawsamycin

Biosynthesis

Tomoshige Hiratsuka, Hideaki Suzuki, Atsushi Minami, and Hideaki Oikawa*

Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan.

Table of Contents

Experimental section	Page S2
Figures	
Figure S1 : MS spectra of crude metabolites.	Page S4
Figure S2 : MS/MS spectra of 2 and 1.	Page S5
Figure S3-S13 : LC-HRMS and MS/MS analytical data of ¹³ C-labeled	d analogs.
	Page S6-S16
Figure S14 : MS analysis of crude metabolites from jawsamycin prod	ucing S. fervens HP-891.
	Page S17
Schemes	
Scheme S1 : Proposed biosynthetic pathway for 2a-4a .	Page S18
Scheme S2 : Proposed biosynthetic pathway of U-106305.	Page S19
Tables	
Table S1 : Number of polyketide isomers of 1 and 2 analogs.	Page S20
Table S2 : Hypothetical chain elongation process.	Page S21
Table S3 : NMR	Page S22-S23
NMR spectra	Page S24

General.

All reagents commercially supplied were used as received. ¹H- and ¹³C-NMR spectra were recorded on Bruker AMX-500 spectrometer. NMR spectra were recorded in $(CD_3)_2SO$ (99.9 atom % enriched, Kanto). ¹H chemical shifts were reported in δ value based on internal $(CD_3)_2SO$ (2.50 ppm) as a reference. ¹³C chemical shifts were reported in δ value based on dimethyl sulfoxide (39.5 ppm) as a reference. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant (Hz), and integration. Mass spectra were obtained with a JEOL JMS-T100LP (ESI mode). Tandem MS analysis was conducted with a LTQ-Orbitrap XL (ThermoScientific).

Feeding experiments of ¹³C-labeled methionine.

Seed cultures (3.0 mL) of *S. lividans* TK23 harboring pJawA or pJawB¹ were inoculated to 20 mL of Soytone medium {50 g of D-glucose, 20 g of Soytone, 0.3 g of KH₂PO₄, 0.4 g of K₂HPO₄ and 0.2 g of MgSO₄•7H₂O per liter of water (pH 7.0)} containing thiostrepton (10 µg/mL) in 100 mL baffled shake flask and grown at 30°C for 2 days with agitation. The culture broth (0.3 mL) was further inoculated to 5.7 mL of Soytone broth containing thiostrepton (10 µg/ml) in 100 mL baffled shake flask. To this culture was added L-[Me-¹³C₁]methionine (final concentration: 1 mg/mL). Cultivation was continued for an additional 3 days at 30°C. The culture broth was extracted with ethyl acetate and the organic layers were evaporated to dryness under reduced pressure. The crude mixture was dissolved in 300 µL of acetonitrile and the sample solution (10 µL) was directly analysed by LC-MS/MS with InertSustain C18 (1.0 mm x 10 mm, GL science) using a linear gradient from 20% to 38% Solution B for 0–5 min, 38% to 45% for 5–30 min, 45% to 60% for 30–35 min, 60% to 100% for 35–36 min, 100% Solution B additional 9 min. Solution A: 98% of water and 2% of acetonitrile containing 0.1% formic acid.

Isolation of jawsamycin analogs.

S. lividans TK23 harboring pJawA or pJawB was grown on Soytone medium (100 mL) containing thiostrepton (20 μ g/mL) in baffled shake flask (500 mL). Fermentation was carried out for 1 week at 30°C with agitation. The culture broth (2.4 L) was extracted with ethyl acetate. The organic layers were evaporated to dryness under reduced pressure. The resultant was dissolved in a small volume of DMSO and purified by preparative HPLC. The crude extracts were separated by HPLC with Wakopack Navi C18-5 (10 mm x 250 mm, Wako) [column temperature, 30°C; flow rate, 2.5 mL/min] using a linear gradient from 70% to 74% acetonitrile for 0–14 min, 74% to 95% for 14–15 min, 95% acetonitrile additional 1 min, 95% to 70% for 16–16.5 min, and 70% acetonitrile for an additional 8.5 min. The crude fraction was further separated by the following HPLC conditions to give the following analogs;

3 (C₁₆-CP₅): The crude fraction containing **3** was purified by HPLC with Wakopack Navi C18-5 (10 mm x 250 mm, Wako) [column temperature, 30°C; flow rate, 2.5 mL/min] using a linear gradient from 55% to 55% acetonitrile for 0–17 min, 55% to 90% for 17–18 min, 95% to 55% for 18–18.5 min, and 55% acetonitrile for an additional 8.5 min to yield **3** (1.8 mg).

 $[\alpha]_D^{20}$ -98.1 (c 0.094 (CH₃)₂SO). ESI-HR-MS (positive) calculated for C₃₀H₄₀N₃O₆ [M+H]⁺ 538.2912,

found m/z 538.2936. NMR data of **3** are summarized in Table S3.

4 (C₁₆-CP₄): The crude fraction containing **4** was purified by HPLC with Wakopack Navi C18-5 (10 mm x 250 mm, Wako) [column temperature, 30°C; flow rate, 2.5 mL/min] using a linear gradient from 65% to 65% acetonitrile for 0–14 min, 65% to 95% for 14–15 min, 95% acetonitrile additional 1 min, 95% to 65% for 16–16.5 min, and 65% acetonitrile for an additional 8.5 min to yield **4** (2.6 mg). $[\alpha]_D^{20}$ -211.3 (c 0.46 (CH₃)₂SO). ESI-HR-MS (positive) calculated for C₂₉H₃₈N₃O₆ [M+H]⁺ 524.2755, found *m/z* 524.2727. NMR data of **4** are summarized in Table S3.

2a (C₁₈-CP₄): The crude fraction containing **2a** was purified by HPLC with Wakopack Navi C18-5 (10 mm x 250 mm, Wako) [column temperature, 30°C; flow rate, 2.5 mL/min] using a linear gradient from 72% to 72% acetonitrile for 0–14 min, 72% to 95% for 14–15 min, 95% acetonitrile additional 1 min, 95% to 72% for 16–16.5 min, and 72% acetonitrile for an additional 8.5 min to yield **2a** (1.0 mg). $[\alpha]_D^{20}$ -60.4 (c 0.087 (CH₃)₂SO). ESI-HR-MS (positive) calculated for C₃₁H₄₀N₃O₆ [M+H]⁺ 550.2912, found *m/z* 550.2865. NMR data of **2a** are summarized in Table S3.

3a (C₁₆-CP₄): The partially purified fraction containing **3a** and **4** was further purified by HPLC with Wakopack Navi C18-5 (4.6 mm x 250 mm, Wako) [column temperature, 30°C; flow rate, 1.0 mL/min] using an isocratic condition (48% acetonitrile) to yield **3a** (0.3 mg). [α]_D²⁰ -23.4 (c 0.033 (CH₃)₂SO). ESI-HR-MS (positive) calculated for C₂₉H₃₈N₃O₆ [M+H]⁺ 524.2755, found *m/z* 524.2752. NMR data of **3a** are summarized in Table S3.

4a (C₁₆-CP₃): The crude fraction containing **4a** was purified by HPLC with Wakopack Navi C18-5 (10 mm x 250 mm, Wako) [column temperature, 30°C; flow rate, 2.5 mL/min] using a linear gradient from 60% to 60% acetonitrile for 0–14 min, 60% to 95% for 14–15 min, 95% acetonitrile additional 1 min, 95% to 60% for 16–16.5 min, and 60% acetonitrile for an additional 8.5 min to yield **4a** (1.6 mg) as a mixture of isomers (**4a**/isomer = 5/1 ratio).

 $[\alpha]_D^{20}$ -39.7 (c 0.10 (CH₃)₂SO). ESI-HR-MS (positive) calculated for C₂₈H₃₆N₃O₆ [M+H]⁺ 510.2599, found *m/z* 510.2590. NMR data of **4a** are summarized in Table S3.

References

1. T. Hiratsuka, H. Suzuki, R. Kariya, T. Seo, A. Minami, H. Oikawa, *Angew. Chem. Int. Ed.* **2014**, *53*, 5423-5426.

Figure S1. MS spectra of crude metabolites obtained from (A) dehydrojawsamycin (2) producing transformant and (B) jawsamycin (1) producing transformant. (C) Isolated dehydrojawsamycin analogs corresponding to the observed molecular ion peaks.

(A)

Figure S2. MS/MS spectra of 2 and 1.

Figure S3. LC-HRMS and MS/MS analysis of (A) ¹³C-labeled **2**, (B) ¹³C-labeled C_{18} -CP₄ analogs, and (C) ¹³C-labeled C_{18} -CP₃ analogs, which were obtained from the feeding experiment with L-[Me-¹³C]methionine. In this feeding experiment shown in Figure S3-S8, a major isotopomer was found to be a fully ¹³C-enriched sample (~50%) at a methylene carbon of the cyclopropane moiety. The carbon-13 labels are shown in the gray circles. An increased mass number of each fragmentation compared with that of non-labeled one is shown in parenthesis. (D) Summary of high resolution mass spectrometry of each compound.

Figure S4. LC-HRMS and MS/MS analysis of (A) ¹³C-labeled **3**, (B) ¹³C-labeled **4** and **3a**, (C) ¹³C-labeled C_{16} -CP₃ analogs, and (D) ¹³C-labeled C_{16} -CP₂ analog, which were obtained from the feeding experiment with L-[Me-¹³C]methionine. The carbon-13 labels are shown in the gray circles. An increased mass number of each fragmentation compared with that of non-labeled one is shown in parenthesis. (E) Summary of high resolution mass spectrometry of each compound.

Figure S5. LC-HRMS and MS/MS analysis of (A) ¹³C-labeled C_{14} -CP₅ analog, (B) ¹³C-labeled C_{14} -CP₄ analog, (C) ¹³C-labeled C_{14} -CP₃ analogs, (D) ¹³C-labeled C_{14} -CP₂ analogs, and (E) ¹³C-labeled C_{14} -CP₁ analog, which are obtained from the feeding experiment with L-[Me-¹³C]methionine. An increased mass number of each fragmentation compared with that of non-labeled one is shown in parenthesis. (F) Summary of high resolution mass spectrometry of each compound.

Figure S6. LC-HRMS and MS/MS analysis of (A) ¹³C-labeled C_{12} -CP₄ analog, (B) ¹³C-labeled C_{12} -CP₃ analog, (C) ¹³C-labeled C_{12} -CP₂ analog, and (D) ¹³C-labeled C_{12} -CP₁ analogs, which are obtained from the feeding experiment with L-[Me-¹³C]methionine. An increased mass number of each fragmentation compared with that of non-labeled one is shown in parenthesis. (E) Summary of high resolution mass spectrometry of each compound.

Figure S7. LC-HRMS and MS/MS analysis of (A) ¹³C-labeled C_{10} -CP₁ analog, which are obtained from the feeding experiment with L-[Me-¹³C]methionine. An increased mass number of each fragmentation compared with that of non-labeled one is shown in parenthesis. (B) Summary of high resolution mass spectrometry of each compound.

Figure S8. LC-HRMS and MS/MS analysis of (A) ¹³C-labeled C_8 -CP₁ analog and (B) ¹³C-labeled C_8 -CP₀ analog, which are obtained from the feeding experiment with L-[Me-¹³C]methionine. An increased mass number of each fragmentation compared with that of non-labeled one is shown in parenthesis. (C) Summary of high resolution mass spectrometry of each compound.

Figure S9. LC-HRMS and MS/MS analysis of (A) ¹³C-labeled **1**, (B) ¹³C-labeled C_{18} -CP₄ analogs, and (C) ¹³C-labeled C_{18} -CP₃ analog, which are obtained from the feeding experiment with L-[Me-¹³C]methionine. In this feeding experiment shown in Figure S9-S13, a major isotopomer was found to be a fully ¹³C-enriched sample (~50%) at a methylene carbon of the cyclopropane moiety. The carbon-13 labels are shown in the gray circles. An increased mass number of each fragmentation compared with that of non-labeled one is shown in parenthesis. (D) Summary of high resolution mass spectrometry of each compound.

Figure S10. LC-HRMS and MS/MS analysis of (A) ¹³C-labeled C_{16} -CP₅ analog, (B) ¹³C-labeled C_{16} -CP₄ analogs, (C) ¹³C-labeled C_{16} -CP₃ analogs, and (D) ¹³C-labeled C_{16} -CP₂ analog, which are obtained from the feeding experiment with L-[Me-¹³C]methionine. An increased mass number of each fragmentation compared with that of non-labeled one is shown in parenthesis. (E) Summary of high resolution mass spectrometry of each compound.

Figure S11. LC-HRMS and MS/MS analysis of (A) ¹³C-labeled C_{14} -CP₅ analog, (B) ¹³C-labeled C_{14} -CP₄ analog, (C) ¹³C-labeled C_{14} -CP₃ analogs, (D) ¹³C-labeled C_{14} -CP₂ analogs, and (E) ¹³C-labeled C_{14} -CP₁ analog, which are obtained from the feeding experiment with L-[Me-¹³C]methionine. An increased mass number of each fragmentation compared with that of non-labeled one is shown in parenthesis. (F) Summary of high resolution mass spectrometry of each compound.

Figure S12. LC-HRMS and MS/MS analysis of (A) ¹³C-labeled C_{12} -CP₄ analog, (B) ¹³C-labeled C_{12} -CP₃ analog, (C) ¹³C-labeled C_{12} -CP₂ analog, and (D) ¹³C-labeled C_{11} -CP₁ analogs, which are obtained from the feeding experiment with L-[Me-¹³C]methionine. An increased mass number of each fragmentation compared with that of non-labeled one is shown in parenthesis. (E) Summary of high resolution mass spectrometry of each compound.

Figure S13. LC-HRMS and MS/MS analysis of (A) 13 C-labeled C₈-CP₁ analog, which are obtained from the feeding experiment with L-[Me- 13 C]methionine. An increased mass number of each fragmentation compared with that of non-labeled one is shown in parenthesis. (B) Summary of high resolution mass spectrometry of each compound.

Figure S14. MS analysis of crude metabolites from jawsamycin producing *S. fervens* HP-891.

Scheme S1. Proposed biosynthetic pathway for 2a-4a harboring terminal conjugated diene. The isolated analogs are labeled with asterisks. Numbering of the double bond is shown on upper part of the polyketide structure.

Scheme S2. Proposed biosynthetic pathway of U-106305.

Table S1. Number of polyketide isomers of (A) **2** analogs and (B) **1** analogs. Compounds, which were not observed in the LC-HR-MS/MS analysis, are shown in horizontal bars (-). C_{10} -CP₅, C_8 -CP₅, and C_8 -CP₄ are not biosynthetically available and the corresponding columns are shown in grey color.

						CP	
C ₁₈	1	2	1	-	-	-	С
C ₁₆	1	2	3	1	-	-	С
C ₁₄	1	1	2	2	1	-	С
C ₁₂	-	1	1	1	2	-	С
C ₁₀		-	-	-	1	-	С
C ₈			-	-	1	1	C

(A)

(]	B)	
<u>ر</u>		

	CP_5	CP_4	CP_3	CP_2	CP_1	CP_0
C ₁₈	1	2	1	-	-	-
C ₁₆	1	2	3	1	-	-
C ₁₄	1	1	2	2	1	-
C ₁₂	-	1	1	1	2	-
C ₁₀		-	-	-	-	-
C ₈			-	-	1	-

Table S2. Hypothetical chain elongation process. Polyketides with methyl-terminal cyclopropane are shown in red bond. Instead, those with methyl-terminal conjugated diene are shown in blue bond. Polyketide precursors of the isolated analogs are highlighted by light green color. Early stage branch point, C_4 - CP_0 -(1), is highlighted by yellow color. Putative side products constructed by an unexpected cyclopropanation skip are shown in square brackets but other possibilities cannot be excluded.

	CP ₅	CP4	CP3	CP ₂	CP ₁	CP ₀
C18	C ₁₈ -CP ₅ -(278)	C ₁₈ -CP ₄ -(2678)				
		C ₁₈ -CP ₄ -(1278)	C ₁₈ -CP ₃ -(12678)			
C ₁₆	C ₁₆ -CP ₅ -(27)	C ₁₆ -CP ₄ -(267)	C ₁₆ -CP ₃ -(2567)	 r 0-1		
		C ₁₆ -CP ₄ -(127)	C ₁₆ -CP ₃ -(1267)	C ₁₆ -CP ₂ -(12567)		
		Enz				
C ₁₄	C ₁₄ -CP ₅ -(2)	C ₁₄ -CP ₄ -(26)	C ₁₄ -CP ₃ -(256)	C ₁₄ -CP ₂ -(2456)	ן ר ַ ףן	
		C ₁₄ -CP ₄ -(12)	C ₁₄ -CP ₃ -(126)	C ₁₄ -CP ₂ -(1256)	C ₁₄ -CP ₁ -(12456)	
C ₁₂		C ₁₂ -CP ₄ -(2)	C ₁₂ -CP ₃ -(25)	C ₁₂ -CP ₂ -(245)	Г <u>9</u> Л	
			C ₁₂ =CP ₃ -(12)	C ₁₂ -CP ₂ -(125)	C ₁₂ -CP ₁ -(1245)	
			C C C C C C C C C C C C C C C C C C C	Contraction of the second seco		
C ₁₀			C ₁₀ -CP ₃ -(2)	C ₁₀ -CP ₂ -(24)	C ₁₀ -CP ₁ -(234)	
				C ₁₀ -CP ₂ -(12)	C ₁₀ -CP ₁ -(124)	
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
				C ₈ -CP ₂ -(2)	C ₈ -CP ₁ -(23)	
					C ₈ -CP ₁ -(12)	C ₈ -CP ₀ -(123)
C ₆					C ₆ -CP ₁ -(2)	P
						$C_{6}$ -CP ₀ -(12)
C ₄					C ₄ -CP ₁	C ₄ -CP ₀ -(1)

	Deh	ydrojawsamycin (2)	C ₁₈ -	CP ₄ -(1278)-AdU ( <b>2a</b> )	C ₁₆	-CP ₅ -(27)-AdU ( <b>3</b> )
	δ _c	δ _Η	δ _c	δ _H	δ _c	δ _H
1	165.76		165.80		165.47	
2	121.39	5.89 (d, 15.0 Hz)	121.40	5.87 (d, 15.0 Hz)	120.87	5.92 (d, 15.2 Hz)
3	139.59	6.95 (dd, 15.0, 11.2 Hz)	139.62	6.93 (dd, 15.0, 11.3 Hz)	147.21	6.13 (dd, 15.2, 9.9 Hz)
4	125.49	6.21 (dd, 15.0, 10.7 Hz)	125.50	6.10 (dd, 15.0, 11.3 Hz)	20.28	1.21-1.28 (m)
5	145.82	5.66 (dd, 10.7, 4.6 Hz)	145.89	5.63 (dd, 15.0, 9.7 Hz)	23.55	0.95-1.00 (m)
6	21.03	1.22-1.31 (m)	21.06	1.21-1.27 (m)	17.73	0.49-0.55 (m)
7	23.32	0.95-1.02 (m)	23.34	0.93-1.00 (m)	18.13	0.50-0.56 (m)
8	17.68	0.55-0.61 (m)	17.80	0.58-0.60 (m)	18.47	0.56-0.60 (m)
9	18.04	0.54-0.60 (m)	18.32	0.50-0.54 (m)	17.94	0.48-0.53 (m)
10	18.32	0.56-0.64 (m)	18.15	0.54-0.59 (m)	21.36	0.68-0.73 (m)
11	17.83	0.48-0.54 (m)	17.71	0.52-0.57 (m)	19.78	0.95-1.00 (m)
12	21.27	0.70-0.76 (m)	22.22	0.77-0.85 (m)	130.39	4.96 (dd, 5.3, 2.7 Hz)
13	19.68	0.96-1.05 (m)	20.11	1.05-1.12 (m)	130.76	4.96 (dd, 5.3, 2.7 Hz)
14	130.28	4.97 (dd, 5.1, 2.5 Hz)	135.00	5.10 (dd, 14.5, 9.0 Hz)	22.12	0.92-0.98 (m)
15	130.63	4.97 (dd, 5.1, 2.5 Hz)	127.49	5.92-6.01 (m)	14.20	0.60-0.64 (m)
16	22.02	0.95-1.02 (m)	131.54	5.88-5.95 (m)	18.41	0.98 (d, 6.0 Hz)
17	14.10	0.63-0.69 (m)	125.33	5.44-5.52 (m)	13.10	0.57-0.64 (m)
						0.57-0.64 (m)
18	18.32	1.00 (d, 6.0 Hz)	17.80	1.66 (d, 6.7 Hz)	7.81	0.02-0.07 (m)
						0.11 (dt, 8.4, 4.9 Hz)
19	12.99	0.52-0.64 (m)	13.01	0.51-0.61 (m)	7.81	0.02-0.08 (m)
	7.44	0.52-0.64 (m)		0.51-0.61 (m)	11.20	0.02-0.08 (m)
20	7.64	0.03-0.10 (m) 0.12 (dt 8.0.4.0 Hz)	/.6/	0.03-0.09 (m) 0.00, 0.14 (m)	11.30	0.27-0.34 (m)
21	7.68	0.12 (ul, 8.0, 4.9 HZ)	7 70	0.09-0.14 (III) 0.03, 0.09 (m)	1///0	0.2/-0.34 (m)
21	7.08	0.03-0.10 (m)	7.70	0.03-0.09 (m)	14.49	0.30-0.30 (m) 0.42 (dt $8.4.4.3$ Hz)
22	11 19	0.00 0.10 (m)	12.04	0 38-0 46 (m)		0.42 (ut, 0.4, 4.5 Hz)
	11.17	0.30-0.37 (m)	12.01	0 38-0 46 (m)		
23	14 39	0 32-0 38 (m)				
	1	0.43 (dt. 8.2, 4.1 Hz)				
2'	150.74		151.19		150.92	
4'	163.05		163.71		163.34	
5'	101.93	5.62 (d, 8.0 Hz)	101.99	5.53 (d, 8.0 Hz)	102.05	5.59 (d, 8.0 Hz)
6'	141.30	7.67 (d, 8.0 Hz)	141.21	7.56 (br. d 6.2 Hz)	141.37	7.67 (d, 8.0 Hz)
1"	88.23	5.73 (d, 5.1 Hz)	88.40	5.68 (d, 5.2 Hz)	88.35	5.71 (d, 5.1 Hz)
2"	72.42	4.06 (t, 5.1 Hz)	72.45	4.04 (t, 5.2 Hz)	72.51	4.04 (t, 5.1 Hz)
3"	70.85	3.86 (t, 5.1 Hz)	70.88	3.84 (t, 5.2 Hz)	70.93	3.84 (t, 5.1 Hz)
4"	82.63	3.81 (dt, 6.0, 5.1 Hz)	82.58	3.78 (dt, 6.0, 5.2 Hz)	82.72	3.78 (dt, 6.4, 5.1 Hz)
5"	40.94	3.48 (dt, 13.8, 5.1 Hz)	40.97	3.45 (dt, 14.0, 5.2 Hz)	40.90	3.45 (dt, 13.9, 5.1 Hz)
		3.27-3.35 (m)		3.27-3.32 (m)		3.22-3.29 (m)
2"OH		5.45 (br. s)		br		5.42 (br. s)
3"ОН		5.25 (br. s)		br		5.21 (br. s)
NH		8.11 (t, 5.1 Hz)		8.14 (t, 5.2 Hz)		7.98 (t, 5.9 Hz)

 Table S3. NMR spectral data of dehydrojawsamycin analogs.

	C ₁₆ -CP ₄ -(127)-AdU ( <b>3a</b> )	$C_{16}$ - $CP_{4}$ -(267)- $AdU$ (4)	C ₁₆ -CP ₃ -(1267)-AdU (4a)
	δ _H	δ _H	δ _H
1			
2	5.93 (d, 15.2 Hz)	5.88 (d, 15.1 Hz)	5.88 (d, 14.9 Hz)
3	6.13 (dd, 15.2, 10.0 Hz)	6.94 (dd, 15.1, 11.3 Hz)	6.95 (dd, 14.9, 11.1 Hz)
4	1.21-1.29 (m)	6.21 (dd, 15.1, 11.3 Hz)	6.21 (dd, 14.9, 11.1 Hz)
5	0.95-1.00 (m)	5.65 (dd, 15.1, 9.5 Hz)	5.65 (dd, 14.9, 9.5 Hz)
6	0.49-0.73 (m)	1.23-1.32 (m)	1.23-1.30 (m)
7	0.49-0.73 (m)	0.50-0.67 (m)	0.50-0.68 (m)
8	0.49-0.73 (m)	0.50-0.67 (m)	0.50-0.68 (m)
9	0.49-0.73 (m)	0.50-0.67 (m)	0.50-0.68 (m)
10	0.49-0.73 (m)	0.50-0.67 (m)	0.50-0.68 (m)
11	0.95-1.00 (m)	0.92-1.02 (m)	0.90-0.95 (m)
12	5.10 (dd, 14.5, 9.3 Hz)	4.97 (dd, 5.3, 2.7 Hz)	5.11 (dd, 14.6, 9.0 Hz)
13	5.94-6.03 (m)	4.97 (dd, 5.3, 2.7 Hz)	5.95-6.04 (m)
14	5.87-5.96 (m)	0.92-1.02 (m)	5.87-5.96 (m)
15	5.49 (dd, 14.5, 7.3 Hz)	0.50-0.67 (m)	5.49 (dd, 14.6, 6.9 Hz)
16	1.67 (d, 6.6 Hz)	0.99 (d, 5.9 Hz)	1.67 (d, 6.9 Hz)
17	0.57-0.64 (m)	0.50-0.71 (m)	0.50-0.68 (m)
18	0.02-0.11 (m)	0.03-0.09 (m)	0.03-0.08 (m)
19	0.02-0.11 (m)	0.30-0.46 (m)	0.41-0.48 (m)
20	0.27-0.34 (m)	0.30-0.46 (m)	
21			
22			
23			
2'			
4'	5.50 (1 )	<b>5</b> (0 (1 0 1 H )	5 (1 (1 0 1 H )
5'	5.58 (br. s)	5.60 (d, 8.1 Hz)	5.61 (d, 8.1 Hz)
0 [°]	7.03 (Dr. s)	7.66 (d, 8.1 Hz)	7.67 (d, 8.1 HZ)
	5.70(a, 5.1  Hz)	5./2 (d, 5.1 Hz)	5.72 (0, 5.1 Hz)
2"	4.04 (t, 5.1 Hz)	4.04 (t, 5.1 Hz)	4.05(t, 5.1  Hz)
3"	3.83 (t, 5.1  HZ)	3.84 (t, 5.1 Hz)	3.85 (t, 5.1 Hz)
4"	3.78 (dt, 6.0, 5.1 Hz)	3.80 (dt, 6.5, 5.1 Hz)	3.80 (dt, 6.3, 5.1 Hz)
5"	3.41-3.48 (m)	3.47 (dt, 13.6, 5.1 Hz)	3.4/(dt, 13.8, 5.1 Hz)
2011	5.40 (hr)	5.42 (hr -)	5.24-5.52 (m)
2 0H	5.40 (DI. S)	5.42 (DI. S)	5.41 (DF. S)
3"OH	5.18 (br. s)	5.21 (br. s)	5.19 (br. s)
NH	7.99 (br. s)	8.11 (t, 6.0 Hz)	8.11 (t, 5.8 Hz)

Table S3. Continued.



. 3; 16 14 12 10 3a; R 12 10 ``= ``_ 4; ÷ 16 14 12 10 4a; R 16 14 12 10 





- S25 -



- S26 -



# an5036 2612 Hiratsuka nona-CP4-1 1.0mg/0.06ml DMSO dH(DMSO)=2.49 ppm, dC(DMSO)=39.5 ppm







an5037 2612 Hiratsuka octa-CP5-1 1.8mg/0.06ml DMSO dH(DMSO)=2.49 ppm, dC(DMSO)=39.5 ppm







