Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

for

Converting *Pasteurella multocida* α2–3-sialyltransferase 1 (PmST1) to a regioselective α2– 6-sialyltransferase by saturation mutagenesis and regioselective screening

John B. McArthur,^a Hai Yu,^a Jie Zeng,^{a,b} and Xi Chen*^a

^aDepartment of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA

^bSchool of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China

*Corresponding author. E-mail: xiichen@ucdavis.edu; Fax: +1 530 752-8995; Tel: +1 530 754-6037

Table of Contents

TableS1.6LNnTβPro	¹³ C N ₃	NMR c	hemical	shift ass	ignment f	for LNnTβPr	oN ₃ and	Neu5Acα2–
Figure S1. catalyzed re	pH pro actions	ofiles of s	ialylation	yields an	d sialyl pr	oduct linkage	specificiti	ies of PmST1- S3
Figure S2. PmST1 P34	pH pr H/M14	ofiles of 4L-cataly	α2–6-sial zed reacti	yl produc ons	t percenta	ges (A) and s	ialylation	yields (B) of S3
Figure S3. results	Don	or substi	rate prom	iscuity of	f PmST1	P34H/M144L	confirme	ed by HRMS S4–S8
Figure 6LNnTβPro	S4. N ₃	$^{1}\mathrm{H}$	and	¹³ C	NMR	spectra	of	Neu5Acα2–
Figure S5. the range of	Compa 56–65	arison of ppm	¹³ C NMR	spectra o	f LNnTβP	roN ₃ and Neu	5Acα2–6	LNTβProN3 in S10
Figure S6 6)Galβ1–40	. ¹ Η a GlcβPro	and ${}^{13}C$ N_3	NMR spo	ectra of	Neu5Acα2	2–6Galβ1–4G	cNAcβ1–	-3(Neu5Acα2–

Residue	Carbon atom	Chemical shift (ppm)					
	С	Galβ1–4GlcNAcβ1–3Galβ1–	Neu5Acα2–6LNnTβProN₃				
		4GlcβProN₃ (LNnTβProN₃)					
4Glcβ1–	1	101.98	101.98				
	2	72.66	73.56				
	3	74.22	74.23				
	4	78.19	78.22				
	5	74.64	74.65				
	6	59.91	59.90				
3Galβ 1–	1	102.73	102.82				
	2	69.83	69.84				
	3	81.92	81.89				
	4	68.20	68.19				
	5	74.75	74.76				
	6	60.83	60.84				
4GlcNAcβ 1–	1	102.81	102.47				
	2	55.06	54.80				
	3	72.05	72.11				
	4	77.99	80.30				
	5	74.42	74.13				
	6	59.71	59.99				
	C=0	174.83	174.78				
	CH ₃	22.03	22.16				
6Galβ1–	1	102.63	103.33				
	2	70.83	70.60				
	3	72.37	72.41				
	4	68.42	68.27				
	5	75.22	72.66				
	6	60.91	63.22				
Neu5Acα2–	1		173.43				
	2		100.00				
	3		39.94				
	4		68.08				
	5		51.76				
	6		72.29				
	7		68.23				
	8		71.59				
	9		62.52				
	C=0		174.81				
	CH ₃		21.91				
ProN ₃	$O\underline{C}H_2CH_2CH_2N_3$	67.24	67.24				
	$OCH_2CH_2CH_2N_3$	28.10	28.10				
	$OCH_2CH_2\underline{C}H_2N_3$	47.73	47.73				

Table S1. ¹³C NMR chemical shift assignment for LNnT β ProN₃ and Neu5Ac α 2–6LNnT β ProN₃.

Figure S1. pH profiles of sialylation yields and sialyl product linkage specificities of PmST1catalyzed reactions. A, $\alpha 2$ –3-sialyl product percentages; B, $\alpha 2$ –6-sialyl product percentages; and C, sialylation yields.

Figure S2. pH profiles of α 2–6-sialyl product percentages (A) and sialylation yields (B) of PmST1 P34H/M144L-catalyzed reactions.

Figure S3. Donor substrate promiscuity of PmST1 P34H/M144L confirmed by HRMS results.

S5

E Lac β ProN₃ with ManNAc6OMe (E)

I Lac β ProN₃ with Neu5Ac8OMe (I)

Figure S4. ¹H and ¹³C NMR spectra of Neu5Ac α 2–6LNnT β ProN₃

Figure S5. Comparison of ¹³C spectra of LNnT β ProN₃ and Neu5Ac α 2–6LNnT β ProN₃ in the range of 56–65 ppm.

Figure S6. ¹H and ¹³C NMR spectra of Neu5Ac α 2–6Gal β 1–4GlcNAc β 1–3(Neu5Ac α 2–6)Gal β 1–4Glc β ProN₃