Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Bifunctional bispidine derivatives for copper-64 labelling and Positron Emission

Tomography

Amandine Roux, † Raphaël Gillet, † Sandrine Huclier-Markai, §‡ Laurence Ehret-Sabatier, ‡ Aline M. Nonat*† and Loïc Charbonnière*†

†Laboratoire d'Ingénierie Moléculaire Appliquée à l'Analyse, IPHC, UMR 7178 CNRS/UdS,

‡ Laboratoire de Spectrométrie de Masse BioOrganique, IPHC, UMR 7178,

ECPM, Bât R1N0, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France

§ GIP Arronax, 1 rue Arronax, BP 10112, 44817 Saint-Herblain, France

[‡] Subatech Laboratory, UMR 6457, Ecole des Mines de Nantes, IN2P3/CNRS, Université de

Nantes, 4 rue Alfred Kastler, 44300 Nantes, France

a line.non at @unistra.fr, l.charbonn @unistra.fr

Supplementary Informations

Figure S1. ¹ H NMR spectrum of 1 after and before purificationS2	2
Figure S2. ¹³ C NMR spectrum of 1	3
Figure S3. ¹ H NMR spectrum of 2 S4	4
Figure S4. ¹³ C NMR spectrum of 2	4
Figure S5. ¹ H NOESY spectrum of 2	5
Figure S6. ¹ H NMR spectrum of 3 Set	6
Figure S7. ¹³ C NMR spectrum of 3 S	6
Figure S8. ¹³ C NMR spectrum of L ₂ S	7
Figure S9. ¹³ C NMR spectrum of L ₃ S	7
Figure S10. ¹³ C NMR spectrum of L ₄ S	8
Table S1. Time-dependence of the 64 Cu radiolabeling yields for L_1 and L_2 at different metal/ligand ratios	ıt Ə
Table S2. Time-dependence of the radiolabeling yields of L_1 and L_2 at different pH values	9

Figure S1. ¹H NMR spectrum of 1 (400MHz, CDCl₃) after (top) and before (bottom) purification.

Figure S2. ¹³C NMR spectrum of 1 (100MHz, CDCl₃).

Figure S3. ¹H NMR spectrum of 2 (400MHz, CD₃OD).

Figure S4. ¹³C NMR spectrum of 2 (75MHz, CD₃OD).

Figure S5. ¹H NOESY spectrum (400 MHz, CD₃OD) of 2 showing an Overhauser effect between protons H6/H8 and H9.

Figure S7. ¹³C NMR spectrum of 3 (75MHz, D₂O, *TFA).

Figure S9. ¹³C NMR spectrum of L₃ (100MHz, D₂O).

Figure S10. ¹³C NMR spectrum of L₄ (100MHz, D₂O).

	t (min)							
	L/M	5	10	15	30	45	60	
L ₁	1	75	89	93	93	95	94	
	2	92	94	n/a	92	93	94	
	3	92	92	94	93	95	n/a	
	5	92	93	92	94	93	94	
	10	91	93	90	89	89	91	
	100	88	91	91	n/a	n/a	n/a	
L_2	1	16	n/a	17	28	34	33	
	2	67	n/a	83	n/a	n/a	n/a	
	3	84	n/a	87	n/a	n/a	n/a	
	5	77	n/a	80	n/a	n/a	n/a	
	10	87	n/a	87	90	89	90	
	50	84	n/a	84	77	84	82	
	100	81	n/a	81	85	85	86	

Table S1. Time-dependence of the ⁶⁴Cu radiolabeling yields for L₁ and L₂ at different metal/ligand ratios (NH₄OAc 0.1 M pH 5.4, r.t.). Experimental conditions for L₂: source 1, 0.06 nmol \leq n(ligand) \leq 6.0 nmol, n(Cu) = 62.73 pmol, (⁶⁴Cu) = 34.8 MBq/nmol; for L₁: source 3, 0.25 nmol \leq n(ligand) \leq 25.0 nmol, n(Cu) = 15.7 pmol, A(⁶⁴Cu) = 25.3 MBq/nmol. All yields are given within the experimental uncertainties of the cyclone device of ±5%.

	t (min)								
	pН	5	10	15	30	45	60		
L ₁	2	82	90	93	93	92	95		
	3	85	91	94	94	93	94		
	4	90	92	93	92	91	95		
	5	92	93	92	94	93	94		
	6	90	90	92	93	94	93		
L_2	2	16	23	31	55	67	79		
	3	29	37	44	58	63	72		
	4	86	87	90	91	91	91		
	6	85	88	89	87	88	90		

Table S2. Time-dependence of the radiolabeling yields of L_1 and L_2 at different pH values (r.t, ammonium acetate 0.1 M). Experimental conditions for L_2 : source 2, n(ligand) = 0.44 nmol, n(Cu) = 22.4 pmol, A(⁶⁴Cu) = 25.3 MBq/nmol, L/M = 5 ; for L₁: source 4, n(ligand) = 1.0 nmol, n(Cu) = 15.7 pmol, A(⁶⁴Cu) = 25.3 MBq/nmol, L/M =1. All yields are given within the experimental uncertainties of the cyclone device of ±5%.