Supporting Information

Diversity-Oriented Synthesis and Cytotoxic Activity Evaluation of Biaryl-Containing Macrocycles

Karell Pérez-Labrada^a, Marco A. Cruz-Mendoza^a, Alejandra Chávez-Riveros^a, Eduardo

Hernández-Vázquez^a, Tomás Torroba^{b,*}, Luis D. Miranda^{a,*}

^aInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior,

Ciudad Universitaria, Coyoacán, México D.F. 04510, México.

^bUniversidad de Burgos, Burgos, Castille and León, Spain.

Table of contents

Figure 1. 300 MHz ¹ H NMR spectra in CDCl ₃ of compound 8	S 1
Figure 2. 75 MHz ¹³ C NMR spectra in CDCl ₃ of compound 8	S 2
Figure 3. 300 MHz ¹ H NMR spectra in $CDCl_3$ of compound 9	S 3
Figure 4. 75 MHz ¹³ C NMR spectra in CDCl ₃ of compound 9	S 4
Figure 5. 300 MHz ¹ H NMR spectra in CDCl ₃ of macrocycle 13	S 5
Figure 6. 75 MHz 13 C NMR spectra in CDCl ₃ of macrocycle 13	S 6
Figure 7. HRMS (DART+) spectra of macrocycle 13	S 7
Figure 8. 300 MHz ¹ H NMR spectra in CDCl ₃ of macrocycle 14	S 8
Figure 9. 75 MHz ¹³ C NMR spectra in CDCl ₃ of macrocycle 14	S9
Figure 10. HRMS (DART+) spectra of macrocycle 14	S10
Figure 11. 300 MHz ¹ H NMR spectra in CDCl ₃ of macrocycle 15	S 11
Figure 12. 75 MHz ¹³ C NMR spectra in CDCl ₃ of macrocycle 15	S12

Figure 13. HRMS (DART+) spectra of macrocycle 15	S13
Figure 14. 300 MHz ¹ H NMR spectra in CDCl ₃ of macrocycle 16	S14
Figure 15. 75 MHz ¹³ C NMR spectra in CDCl ₃ of macrocycle 16	S15
Figure 16. HRMS (DART+) spectra of macrocycle 16	S16
Figure 17. 300 MHz ¹ H NMR spectra in CDCl ₃ of macrocycle 17	S17
Figure 18. 75 MHz 13 C NMR spectra in CDCl ₃ of macrocycle 17	S18
Figure 19. HRMS (DART+) spectra of macrocycle 17	S19
Figure 20. 300 MHz ¹ H NMR spectra in CDCl ₃ of macrocycle 18	S20
Figure 21. 75 MHz ¹³ C NMR spectra in CDCl ₃ of macrocycle 18	S21
Figure 22. HRMS (FAB+) spectra of macrocycle 18	S22
Figure 23. 300 MHz ¹ H NMR spectra in CDCl ₃ of macrocycle 19	S23
Figure 24. 75 MHz ¹³ C NMR spectra in CDCl ₃ of macrocycle 19	S24
Figure 25. HRMS (DART+) spectra of macrocycle 19	S25
Figure 26. 300 MHz ¹ H NMR spectra in CDCl ₃ of macrocycle 20	S26
Figure 27. 75 MHz ¹³ C NMR spectra in CDCl ₃ of macrocycle 20	S27
Figure 28. HRMS (DART+) spectra of macrocycle 20	S28
Figure 29. 300 MHz ¹ H NMR spectra in CDCl ₃ of macrocycle 21	S29
Figure 30. 75 MHz ¹³ C NMR spectra in CDCl ₃ of macrocycle 21	S 30
Figure 31. HRMS (FAB+) spectra of macrocycle 21	S 31
Figure 32. 300 MHz ¹ H NMR spectra in CDCl ₃ of macrocycle 22	S32
Figure 33. 75 MHz 13 C NMR spectra in CDCl ₃ of macrocycle 22	S33
Figure 34. HRMS (FAB+) spectra of macrocycle 22	S 34
Figure 35. 300 MHz ¹ H NMR spectra in CDCl ₃ of macrocycle 23	S35

Figure 36. 75 MHz ¹³ C NMR spectra in CDCl ₃ of macrocycle 23	S36
Figure 37. HRMS (DART+) spectra of macrocycle 23	S 37
Figure 38. 300 MHz ¹ H NMR spectra in CDCl ₃ of macrocycle 24	S38
Figure 39. 75 MHz ¹³ C NMR spectra in CDCl ₃ of macrocycle 24	S39
Figure 40. HRMS (DART+) spectra of macrocycle 24	S40
Crystallographic data of 23	S41

Figure 1. 300 MHz ¹H NMR spectra in CDCl₃ of compound 8

S2

Figure 3. 300 MHz 1 H NMR spectra in CDCl₃ of compound 9

Figure 5. 300 MHz ¹H NMR spectra in CDCl₃ of macrocycle 13

Figure 6. 75 MHz ¹³C NMR spectra in CDCl₃ of macrocycle 13

Figure 7. HRMS (DART+) spectra of macrocycle 13

Figure 8. 300 MHz ¹H NMR spectra in CDCl₃ of macrocycle 14

Figure 9. 75 MHz ¹³C NMR spectra in CDCl₃ of macrocycle 14

Figure 10. HRMS (DART+) spectra of macrocycle 14

Figure 11. 300 MHz ¹H NMR spectra in CDCl₃ of macrocycle 15

Figure 12. 75 MHz ¹³C NMR spectra in CDCl₃ of macrocycle 15.

Figure 13. HRMS (DART+) spectra of macrocycle 15

Figure 14. 300 MHz ¹H NMR spectra in CDCl₃ of macrocycle 16

Figure 15. 75 MHz ¹³C NMR spectra in CDCl₃ of macrocycle 16

Figure 16. HRMS (DART+) spectra of macrocycle 16

Figure 17. 300 MHz ¹H NMR spectra in CDCl₃ of macrocycle 17

Figure 18. 75 MHz ¹³C NMR spectra in CDCl₃ of macrocycle 17

Figure 19. HRMS (DART+) spectra of macrocycle 17

Figure 20. 300 MHz ¹H NMR spectra in CDCl₃ of macrocycle 18

Figure 21. 75 MHz ¹³C NMR spectra in CDCl₃ of macrocycle 18

```
[ Elemental Composition ]
Data : Dr-Luis-D-Miranda070
                                 Date : 28-Jan-2015 18:40
Sample: 19 MCM-082
Note : -luis-velasco
Inlet : Direct
                                  Ion Mode : FAB+
RT : 1.21 min
                                  Scan#: (4,10)
Elements : C 40/0, H 65/0, O 6/0, N 5/1
Mass Tolerance : 1000ppm, 1mmu if m/z > 1
Unsaturation (U.S.) : 4.0 - 15.0
Observed m/z Int%
 633.4377 100.0
Estimated m/z Error[ppm] U.S.
                               СН
                                           0
                                                 Ν
 633.4380 -0.5 12.5
                                38 57 4
                                                 4
```

Figure 22. HRMS (FAB+) spectra of macrocycle 18

Figure 23. 300 MHz ¹H NMR spectra in CDCl₃ of macrocycle 19

Figure 24. 75 MHz ¹³C NMR spectra in CDCl₃ of macrocycle 19

Figure 25. HRMS (DART+) spectra of macrocycle 19

Figure 26. 300 MHz ¹H NMR spectra in CDCl₃ of macrocycle 20

Figure 27. 75 MHz ¹³C NMR spectra in CDCl₃ of macrocycle 20

Figure 28. HRMS (DART+) spectra of macrocycle 20

Figure 29. 300 MHz ¹H NMR spectra in CDCl₃ of macrocycle 21

Figure 30. 75 MHz ¹³C NMR spectra in CDCl₃ of macrocycle 21

[Elemental Composition] Data : Dr-Luis-D-Miranda072 Date : 28-Jan-2015 17:36 Sample: 18 MCM-072 Note : -luis-velasco Inlet : Direct Ion Mode : FAB+ Scan#: (3,5) RT : 0.71 min Elements : C 40/0, H 49/0, O 6/0, N 5/1 Mass Tolerance : 1000ppm, 1mmu if m/z > 1Unsaturation (U.S.) : 4.0 - 15.0 Observed m/z Int% 535.3278 100.0 Estimated m/z Error[ppm] U.S. C H 0 Ν -1.1 12.5 31 43 4 4 535.3284

Figure 31. HRMS (FAB+) spectra of macrocycle 21

Figure 32. 300 MHz ¹H NMR spectra in CDCl₃ of macrocycle 22

Figure 33. 75 MHz 13 C NMR spectra in CDCl₃ of macrocycle 22

```
[ Elemental Composition ]
Data : Dr-Luis-D-Miranda069 Date : 28-Jan-2015 18:30
Sample: 19 MCM-088
Note : -luis-velasco
Inlet : Direct
                                Ion Mode : FAB+
                                Scan#: (5,8)
RT : 1.03 min
Elements : C 40/0, H 65/0, O 6/0, N 5/1
Mass Tolerance : 1000ppm, 1mmu if m/z > 1
Unsaturation (U.S.) : 4.0 - 15.0
Observed m/z Int%
 647.4542 100.0
Estimated m/z Error[ppm] U.S. C H
                                          0
                                               N
 647.4536 +0.9 12.5
                                         4
                              39
                                    59
                                               4
```

Figure 34. HRMS (FAB+) spectra of macrocycle 22

Figure 35. 300 MHz ¹H NMR spectra in CDCl₃ of macrocycle 23

Figure 36. 75 MHz ¹³C NMR spectra in CDCl₃ of macrocycle 23

Figure 37. HRMS (DART+) spectra of macrocycle 23

Biaryl-containing macrocycle 24

Figure 38. 300 MHz ¹H NMR spectra in CDCl₃ of macrocycle 24

Figure 39. 300 MHz ¹H NMR spectra in CDCl₃ of macrocycle 24

Data:U-319 ACR-1-56	Acquired:11/28/2016 11:10:13 AM
Sample Name:Dr. Luis Miranda-Abigail Balderas	Operator:AccuTOF
Description:	Mass Calibration data:Cal PEG 600
Ionization Mode:ESI+	Created:11/28/2016 11:30:09 AM
History:Determine m/z[Peak Detect[Centroid,50,Area];Correct Base[50.0%]];Corre	Created by:AccuTOF

Charge number:1	Tolerance:20.00(mmu)
Element: ¹² C:0 32, ¹ H:0 60,	¹⁴ N:0 4, ¹⁶ O:4 5

Mass	Intensity	Calc. Mass	Mass Difference (mmu)	Mass Difference (ppm)	Possible Formula
547.32871	15370.25	547.32843	0.28	0.52	${}^{12}C_{32}{}^{1}H_{43}{}^{14}N_{4}{}^{16}O_{4}$

Figure 40. HRMS (DART+) spectra of macrocycle 24

Crystal data and structure refinement for 23 (CCDC number 1530930)

Empirical formula	C63 H80 N8 O9		
Formula weight	1093.35		
Temperature	298(2) K		
Wavelength	1.54178 Å		
Crystal system	Monoclinic		
Space group	P21/n		
Unit cell dimensions	a = 7.5086(2) Å	α = 90°.	
	b = 20.5310(5) Å	β=97.9726(15)°.	
	c = 20.0462(5) Å	$\gamma = 90^{\circ}$.	
Volume	3060.43(13) Å ³		
Z	2		
Density (calculated)	1.186 Mg/m ³		
Absorption coefficient	0.643 mm ⁻¹		
F(000)	1172		
Crystal size	0.294 x 0.260 x 0.142 mm ³		
Theta range for data collection	3.096 to 68.396°.		
Index ranges	-8<=h<=6, -24<=k<=24, -24<=l<=23		
Reflections collected	13187		
Independent reflections	5417 [R(int) = 0.0342]		
Completeness to theta = 67.679°	96.8 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7531 and 0.6386		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	5417 / 93 / 410		
Goodness-of-fit on F ²	1.197		
Final R indices [I>2sigma(I)]	R1 = 0.1513, $wR2 = 0.3364$		
R indices (all data)	R1 = 0.1764, w $R2 = 0.3543$		
Largest diff. peak and hole	0.715 and -0.405 e.Å ⁻³		

