Electronic Supplementary Information for:

Photocatalytic Esterification under Mitsunobu Reaction Conditions Mediated by Flavin and Visible Light

Michal März,^[a] Josef Chudoba,^[b] Michal Kohout,^[a] and Radek Cibulka*^[a]

^a Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic

^b Central Laboratories, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic

* Corresponding author: Fax: +420 220 444288; E-mail: cibulkar@vscht.cz

Contents:

S1 Experimental – general comments	2
S2 Experimental – Synthetic procedures	3
S3 Experimental – Photocatalytic esterification	6
S4 HPLC analysis of products (6r, 6s) of stereoselective esterification	11
S5 ¹ H and ¹³ C NMR spectra of 1 and 2	19
S6 ¹ H and ¹³ C NMR spectra of 3	25
S7 ¹ H and ¹³ C NMR spectra of 6	28
S8 Photooxidation of acylhydrazines 2 with 3	49
S9 Preliminary screening of the reaction conditions	52
S10 Blank experiments	53
S11 Effect of adducts on stereoselectivity of Mitsunobu esterification	54
S12 UV-VIS and fluorescence spectra of 1, 2 and 3	55
S13 Fluorescence quenching of 3 by diacylhydrazines 2 and Ph ₃ P	59
S14 Experimental setup	60

S1 Experimental – general comments

NMR spectra were recorded on a Varian Mercury Plus 300 (299.97 MHz for ¹H, 75.44 MHz for ¹³C, and 282.23 MHz for ¹⁹F) or Agilent 400-MR DDR2 (399.94 MHz for ¹H and 100.58 MHz for ¹³C) at 298 K unless otherwise indicated. Chemical shifts δ are given in ppm, using residual solvent or tetramethylsilane as an internal standard. Coupling constants *J* are reported in Hz. **UV-VIS spectra** were recorded on a Varian Cary 50 spectrophotometer. **Fluorescence spectra** were recorded on Varian Cary Eclipse. High-resolution **mass spectra** were obtained on Q-Tof Micro (Waters), equipped with a quadrupole and TOF analyzers and MCP detector. TLC analyses were carried out on a DC Alufolien Kieselgel 60 F254 (Merck). Preparative column chromatography separations were performed on a silica gel Kieselgel 60 0.040-0.063 mm (Merck). **Melting points** were measured on a Boetius melting point apparatus and are uncorrected. **Quantum yields** of photocatalytic esterifications were measured by ferrioxalate actinometer.¹ Concentration of hydrogen peroxide in reaction mixtures was measured by iodometry.²

Starting materials, reagents and substrates were obtained from commercial suppliers and used without further purification. The solvents were purified and dried using standard procedures.³ Riboflavin tetraacetate (3),^{4,5} diacylhydrazines 2 (ref.)⁶ and azo-compounds 1c and 1d (ref.⁷) were prepared according to previously reported procedures. NMR spectra of the prepared compounds are in agreement with previously reported data.²⁻⁵

¹S. L. Murov, I. Carmichael, G. L. Hug, *Handbook of Photochemistry*, 2. Edition, New York **1993**.

² R. D. Mair, A. J. Graupner, Anal. Chem. **1964**, 36, 194 – 204.

³ D. D. Perrin, W. L. F. A. Purification of Laboratory Chemicals, 4th Ed.; Elsevier Science Ltd., Oxford, 1996.

⁴ Neveselý, T.; Svobodová, E.; Chudoba, J.; Sikorski, M.; Cibulka, R. Adv. Synth. Catal. 2016, 358, 1654.

⁵ Schmaderer, H., et al., Adv. Synth. Catal. 2009, 351, 163-174.

⁶ Matveeva, E.D., et al., Chem. Heterocycl. Compd., 2000, 36(10), 1149-1153.

⁷ Menard, F., C.F. Weise, and M. Lautens, Org. Lett. 2007, 9(26), 5365-5367.

S2 Experimental – Synthetic procedures

2',3',4',5'-Tetraacetylriboflavin (3b): Prepared according to described procedure.^{2 1}H NMR (600 MHz, CDCl₃) δ 8.38 (s, 1H), 8.04 (s, 1H), 7.56 (s, 1H), 5.67 (d, *J* = 8.4 Hz, 2H), 5.46 (s, 2H), 5.41 (td, *J* = 6.1, 3.0 Hz, 2H), 4.43 (dd, *J* = 12.4, 2.8 Hz, 1H), 4.24 (dd, *J* = 12.4, 5.8 Hz, 1H), 2.57 (s, 4H), 2.45 (s, 4H), 2.28 (s, 3H), 2.21 (s, 3H), 2.08 (s, 3H), 1.76 (s, 3H), 1.58 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 170.7, 170.4, 170.0, 159.4, 154.4, 150.9, 148.3, 137.2, 136.2, 134.8, 133.2, 131.4, 115.7, 70.7, 69.6, 69.2, 62.1, 45.2, 21.6, 21.2, 21.0, 20.86, 20.5, 19.6.

3-Benzyl-2',3',4',5'-tetraacetylriboflavin (**3c**): **3b** (1.1 mmol), benzylalcohol (1 mmol) and triphenylphosphine (2 mmol) were dissolved in CH₃CN (60 mL) under nitrogen atmosphere. Then DIAD (2 mmol) was added dropwise and the mixture was mixed 24 h at RT. After the reaction mixture was evaporated and the residue was purified by flash chromatography (silica gel, DCM/CH₃OH, 20:1) to give product **3c** (0,41 g, 63 %) as yellow solid; m.p: 90-92 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.00 (s, 12H), 7.57 – 7.51 (m, 2H), 7.37 – 7.19 (m, 4H), 5.64 (d, J

= 7.6 Hz, 2H), 5.48 – 5.36 (m, 2H), 5.26 (s, 2H), 5.03 – 4.61 (m, 2H), 4.42 (dd, J = 12.3, 2.8 Hz, 1H), 4.24 (dd, J = 12.4, 5.8 Hz, 1H), 2.54 (s, 3H), 2.43 (s, 3H), 2.28 (s, 3H), 2.20 (s, 3H), 2.06 (s, 3H), 1.70 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 170.7, 170.4, 170.0, 169.8, 160.0, 155.4, 149.2, 147.6, 136.7, 135.7, 134.8, 133.0, 131.3, 115.5, 70.6, 69.1, 62.0, 44.7, 28.8, 21.5, 21.2, 20.9, 20.8, 20.5, 19.6; HRMS (ESI) calcd for C₃₂H₃₄N₄O₁₀ ([M+Na]⁺) 657.21671, found 657.21655.

3-Methyl-2',3',4',5'-tetraacetylriboflavin (3d): **3b** (1 mmol) was dissolved in DMF (80 ml) and K_2CO_3 (10 mmol) was added. Methyl jodide (10 mmol) was added dropwise and the mixture was stirred 24h at RT. After evaporation of solvents, CHCl₃ (50 mL) was added and the mixture was washed with water (3 x 50 ml). The organic phase was dried with Na₂SO₄ and filtered. The solvent was evaporated and the residue was purified by flash chromatography (silica gel, CHCl₃/CH₃OH, 50:1) to give product **3d**

(0.4 g, 72 %) as a orange solid. M.p. = 182 °C (ref.⁸ 183 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.02 (s, 1H), 7.53 (s, 1H), 5.73 – 5.60 (m, 1H), 5.52 – 5.34 (m, 2H), 5.24 – 4.64 (m, 2H), 4.42 (dd, J = 12.4, 2.8 Hz, 1H), 4.24 (dd, J = 12.4, 5.8 Hz, 1H), 3.48 (s, 3H), 2.54 (s, 3H), 2.43 (s, 3H), 2.29 (s, 3H), 2.21 (s, 3H), 2.07 (s, 3H), 1.72 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 170.7, 170.4, 170.0, 169.8, 160.0, 155.4, 149.2, 147.6, 136.7, 135.7, 134.8, 133.0, 131.3, 115.5, 70.6, 69.1, 62.0, 44.7,

28.8, 21.5, 21.2, 20.9, 20.8, 20.5, 19.6; HRMS (APCI) calcd for $C_{26}H_{30}N_4O_{10}$ ([M+H]⁺) 559.20347, found 559.20329.

⁸ Schmaderer, H., et al., Adv.Synth. Catal., 2009, 351(1-2), 163-174.

General procedure of preparation of hydrazines 2 (according to ref.⁴):

Alkyl chloroformate (0.05 mol) was added dropwise with stirring to a solution of hydrazine hydrate (1.37 g, 23.5 mmol) in ethanol (15 ml) cooled to 10 °C. After the addition of half of alkyl chloroformate, a solution of Na₂CO₃ (2.65 g, 25 mmol) in water (20 ml) was added and then second half of alkyl chloroformate was added dropwise. The mixture was stirred 30 min at 20 °C. The precipitate was then filtered, washed with water (15 ml) and ethanol (10 ml) and dried to give **2**.

Diethyl hydrazine-1,2-dicarboxylate (**2a**): White solid (yield 65 %), M.p. = 131 °C (ref.⁴ 131-132 °C); ¹H NMR (400 MHz, CDCl₃) δ 6.59 (s, 2H), 4.20 (q, J = 7.1 Hz, 4H), 1.27 (t, J = 7.1 Hz, 6H); 13C NMR (101 MHz, CDCl₃) δ 156.9, 62.4, 14.5; HRMS (ESI) calcd for C₆H₁₂N₂O₄ ([M+Na]⁺)

Diisopropyl hydrazine-1,2-dicarboxylate (**2b**): White solid (yield 33 %), M.p. = 106-108 °C (ref.⁹ 107-108 °C); ¹H NMR (300 MHz, CDCl₃) δ 6.32 (s, 1H), 4.98 (hept, J = 6.3 Hz, 1H), 1.26 (d, 7H); ¹³C NMR (101 MHz, CDCl₃) δ 156.5, 70.2, 22.1; HRMS (ESI) calcd for C₈H₁₆N₂O₄ ([M+Na]⁺) H

Di-*tert*-**butyl hydrazine-1,2-dicarboxylate** (2c): Prepared according to described procedure.¹⁰ White solid (yield 40 %), M.p. = 121 °C (ref.⁹ 121-122 °C); ¹H NMR (400 MHz, CDCl₃) δ 6.19 (br, 1H), 1.47 (s, 9H); ¹³C H_{N} NMR (101 MHz, CDCl₃) δ 155.9, 81.7, 28.3; HRMS (ESI) calcd for $C_{10}H_{20}N_2O_4$ ([M+Na]⁺) 255.13153, found 255.13181.

Dibenzyl hydrazine-1,2-dicarboxylate (2d): White solid (yield 70 %), M.p. = 106 °C (ref.¹¹ 106.5 °C); ¹H NMR (400 MHz, CD₃CN) δ 7.64 - 7.25 (m, 5H), 7.06 (br, 1H), 5.12 (s, 2H); ¹³C NMR (101 MHz, cd₃cn) δ 157.5, 137.5, 129.5, 129.1, 128.9, 67.9; HRMS (ESI) calcd for C₁₆H₁₆N₂O₄ ([M+Na]⁺) 323.10023, found 323.10065.

General procedure of preparation of azo-compounds⁵ 1

Hydrazine (**2c** or **2d**; 0.7 mmol) and anhydrous pyridine (1.6 mmol) were dissolved in DCM (20 ml) under N₂ atmosphere and the mixture was cooled to 0 °C. The bromine (0.8 mmol) in DCM (6 ml) was added dropwise and the mixture was stirred for 90 min. After DCM (50 ml) was added and the mixture was washed with 1M HCl (2 x 15 ml), sat. NaHCO₃ (2 x 15 ml), H₂O (15 mL) and brine (15 mL). The organic phase was dried with MgSO₄ and filtered. The solvent was removed under reduced pressure to give **1c-d** as a yellow solid.

Di-*tert*-**butyl azodicarboxylate** (1c): Yellow solid (yield 92 %); ¹H NMR (400 MHz, CDCl₃) δ 1.62 (s, 9H); ¹³C NMR (101 MHz, $\bigvee_{N \in \mathbb{N}} N \in \mathbb{N}$

⁹ Hughes, D.L. and R.A. Reamer, J. Org. Chem., **1996**, 61(9), 2967-2971.

¹⁰ Ling, K.B. and A.D. Smith, *Chem. Comm.un*, **2011**, 47(1), 373-375.

¹¹ Kenner, G.W. and R.J. Stedman, J. Chem. Soc., **1952**, 2089-2094.

CDCl₃) δ 159.4, 87.0, 27.9; HRMS calcd for (ESI) C₁₀H₁₈N₂O₄ ([M+Na]⁺) 253.11610, found 253.11588.

Dibenzyl azodicarboxylate (1d): Yellow solid (yield 90 %); ¹H NMR (400 MHz, CD₃CN) δ 7.51 – 7.37 (m, 5H), 5.45 (s, 2H); ¹³C NMR (101 MHz, CD₃CN) δ 161.1, 135.1, 130.1, 129.8, 129.8, 71.9; HRMS (APCI) calcd for C₁₆H₁₄N₂O₄ (M⁺) 298.09601, found 298.09591.

General procedure of preparation of chiral esters (standards)

3,5-dinitrobenzoic acid (**4h**) or 3-nitrobenzoic acid (**4a**) (1.2 mmol), 1-phenylethanol (**5l**) or ethyl lactate (**5m**) (1 mmol), DCC (1.5 mmol) and DMAP (0.1 mmol) were dissolved in dry CH₃CN (10 mL) and the mixture was stirred for 24h at RT. After the reaction mixture was evaporated, the residue was purified by flash chromatography (silica gel, Hexane/EtOAc, 10:1) to give the product.

(*R*)- and (*S*)-1-Phenylethyl 3-nitrobenzoate (6r): Yield 90 % (0.24 g, 0.9 mmol) for (*R*)and 89 % (0,24 g, 0.89 mmol) for (*S*). Yellowish oil; ¹H NMR (400 MHz, CDCl₃) δ 8.98 – 8.81 (m, 1H), 8.48 – 8.25 (m, 2H), 7.68 – 7.62 (m, 1H), 7.49 – 7.43 (m, 2H), 7.42 – 7.36 (m, 2H), 7.36 – 7.30 (m, 1H), 6.18 (q, *J* = 6.6 Hz, 1H), 1.72 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 163.9, 148.4, 141.1, 135.5, 132.4, 129.7, 128.8, 128.4, 127.5, 126.3, 124.7, 74.3, 22.4; HRMS (APCI) calcd for C₁₅H₁₃NO₄ ([M]⁺) 271.08501, found 271.08503. For (*R*)-[α]_D²⁵ = -44.7° (*c* 0.380, CHCl₃), purity by HPLC 99 %; For (*S*)- [α]_D²⁵ = 42.1° (*c* 0.329, CHCl₃), purity by HPLC 100 %.

Ethyl (S)- and (*R*)-2-((3,5-dinitrobenzoyl)oxy) propionate (6s): Yield 88 % (0.275 g, 0.88 mmol) for (*R*)- and 91 % (0.284 g, 0.91 mmol) for (*S*). White solid, m.p: 92-93 °C; ¹H NMR (400 MHz, CDCl₃) δ = 9.26 (t, *J* = 2.2, 1H), 9.20 (d, *J* = 2.1, 2H), 5.41 (q, *J* = 7.1, 1H), 4.27 (q, *J* = 7.1, 2H), 1.72 (d, *J* = 7.1, 3H), 1.31 (t, *J* = 7.1, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.8, 162.1, 148.8, 133.4, 129.8, 122.8, 71.0, 62.1, 17.1, 14.3; HRMS (APCI) calcd for C₁₂H₁₂N₂O₈ ([M]⁺) 312.05978, found 312.05991. For (*R*)- [α]_D²⁵ = -10.4° (*c* 0.214, CHCl₃), purity by HPLC 100 %; For (*S*)- [α]_D²⁵ = 8.2° (*c* 0.341, CHCl₃), purity by HPLC 99 %.

S3 Experimental – Photocatalytic esterification

General procedure for photocatalytic esterification under Mitsunobu reaction conditions

Preliminary experiments on esterification

A mixture of benzylalcohol (**5a**, 0.150 mmol), 3-nitrobenzoic acid (**4a**, 0.180 mmol), triphenylphosphine (0.30 mmol), diisopropyl hydrazine-1,2-dicarboxylate (**2b**) or DIAD (**1b**) (0.0150 mmol), catalyst (**3b-d**, **7** or **8**, 0.0150 mmol), in the presence or absence of phenylsilane (0.30 mmol) and activated MS 4 Å (150 mg) in CH₃CN (2 mL) was bubbled with oxygen (2 min) and then was stirred at 25 °C or 50 °C under O₂ (balloon) under irradiation with blue LEDs (450 nm, 1 W LED) for 24 hours (for details about experimental setup, see S14). Then, the reaction mixture was filtered and the solvent was evaporated. The conversion was determined by ¹H NMR.

Esterification on preparative scale

Method A

A mixture of alcohol (**5a-m**, 0.150 mmol), nucleophile (**4a-h**, or phthalimide, 0.180 mmol), triphenylphosphine (0.30 mmol), DIAD (**1b**, 0.0150 mmol), TARF³-CH₃ (**3d**, 0.0150 mmol) and activated MS 4 Å (150 mg) in CH₃CN (2 mL) was bubbled with oxygen (2 min) and then was stirred at 25 °C under O₂ (balloon) under irradiation with blue LEDs (450 nm, 1 W LED) for 24 hours (for details about experimental setup, see S14). After irradiation, the reaction mixture was filtered and the solvent was evaporated. The residue was purified by flash chromatography (silica gel, *n*-hexane/EtOAc, 20:1 or CHCl₃) to give the product.

Method B

A mixture of alcohol (**5a-m**, 0.150 mmol), nucleophile (**4a-h**, or phthalimide 0.180 mmol), triphenylphosphine (0.30 mmol), diisopropyl hydrazine-1,2-dicarboxylate (**2b**, 0.0150 mmol), TARF³-CH₃ (**3d**, 0.0150 mmol), phenylsilane (0.30 mmol) and activated MS 4 Å (150 mg) in CH₃CN (2 mL) was bubbled with oxygen (2 min) and then was heated at 50 °C under O₂ (balloon) under irradiation with blue LEDs (450 nm, 1 W LED) for 24 hours (for details about experimental setup, see S14). Then, the reaction mixture was filtered and the solvent was evaporated. The residue was purified by flash chromatography (silica gel, *n*-hexane/EtOAc, 20:1 or CHCl₃) to give the product.

Benzyl 3-nitrobenzoate (6a): Yellowish oil; ¹H NMR (400 MHz, CDCl₃) δ 8.91 – 8.87 (m, 1H), 8.45 – 8.36 (m, 2H), 7.66 (dd, J = 12.0, 4.2 Hz, 1H), 7.50 – 7.34 (m, 5H), 5.42 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 164.5, 148.4, 135.5, 135.4, 132.1, 129.8, 128.9, 128.8, 128.6, 127.6, 124.8, 67.8; HRMS (APCI) calcd for C₁₄H₁₁NO₄ ([M]⁺) 257.06936, found 257.06924.

4-Chlorobenzyl 3-nitrobenzoate (6b): White solid, m.p: 85-87 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.87 (t, J = 1.8 Hz, 1H), 8.43 (ddd, J = 8.2, 2.2, 0.9 Hz, 1H), 8.40 - 8.36 (m, 1H), 7.66 (t, J = 8.0 Hz, 1H), 7.45 - 7.35 (m, 4H), 5.38 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 164.4, 148.4, 135.5, 134.8, 133.9, 131.9, 130.1, 129.9, 129.1, 127.8, 124.8, 67.0; NO₂ HRMS (APCI) calcd for $C_{14}H_{10}CINO_4$ ([M]⁺) 291.03038, found 291.03055.

CI

 NO_2

4-Nitrobenzyl 3-nitrobenzoate (6c): White solid, m.p: 142-143 °C; ¹H NMR (400 MHz, $CDCl_3$) δ 8.94 – 8.84 (m, 1H), 8.50 – 8.43 (m, 1H), 8.43 - 8.38 (m, 1H), 8.27 (d, J = 8.6 Hz, 2H), 7.70 (m, 1H), 7.63 (d, J = 8.6 Hz, 2H), 5.52 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 164.2, 148.6, 148.1, 142.5, 135.5, 131.4, 130.0, 128.9, 128.0, 124.9, 124.2, 66.2; NO₂ HRMS (APCI) calcd for $C_{14}H_{10}N_2O_6$ ([M]⁺) 302.04996, found 302.04969.

4-(Trifluormethyl)benzyl 3-nitrobenzoate (6d): White solid, m.p: 72-73 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.95 - 8.85 (m, 1H), 8.48 - 8.37 (m, 2H), 7.74 -7.64 (m, 3H), 7.58 (d, J = 8.1 Hz, 2H), 5.47 (s, 2H); ¹³C NMR (101 MHz, cdcl₃) δ 164.3, 148.5, 139.3, 135.5, 131.6, 131.1, 129.9, 128.6, 127.9, 125.9 (q, J = 3.8 Hz), 124.8, 122.7, 66.8; HRMS CF_3 ΝO₂ (+EI) calcd for $C_{15}H_{10}F_3NO_4$ ([M]⁺) 325,05832, found 325.05697.

4-Methylbenzyl 3-nitrobenzoate (6e): Yellowish oil; ¹H NMR (400 MHz, CDCl₃) $\delta 8.92 - 8.79$ (m, 1H), 8.43 - 8.36 (m, 2H), 7.67 - 7.61 (m, 1H), 7.36 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 7.8 Hz, 2H), 5.38 (s, 2H), 2.38 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.5, 148.4, 138.7, 135.5, 132.4, 132.1, 129.7, 129.5, 128.8, 127.6, 124.8, 67.7, 21.4; HRMS CH₃ ΝO₂ (APCI) calcd for $C_{15}H_{13}NO_4$ ([M]⁺) 271.08501, found 271.08502.

4-Methoxybenzyl 3-nitrobenzoate (6f): White solid, m.p: 75-77 °C; ¹H NMR (300 MHz,

 $CDCl_3$) $\delta 8.96 - 8.73$ (m, 1H), 8.48 - 8.27 (m, 2H), 7.64 (t, J =8.0 Hz, 1H), 7.44 - 7.38 (m, 2H), 6.96 - 6.90 (m, 2H), 5.35 (s, 2H), 3.83 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.5, 160.1, 148.4, 135.5, 132.2, 130.6, 129.7, 127.5, 127.5, 124.8, 114.2, 67.7, 55.5; HRMS (APCI) calcd for $C_{15}H_{13}NO_5$ ([M]⁺) 287.08053, found 287.08024.

3-Chlorobenzyl 3-nitrobenzoate (6g): Yellowish oil; ¹H NMR (400 MHz, CDCl₃) δ 8.96 – 8.79 (m, 1H), 8.56 - 8.25 (m, 2H), 7.67 (t, J = 8.0 Hz, 1H), 7.45 (s, 1H),7.38 - 7.31 (m, 3H), 5.39 (s, 2H); ¹³C NMR (101 MHz, cdcl₃) δ 164.2, 148.3, 137.2, 135.4, 134.6, 131.6, 130.1, 129.7, 128.8, 128.5, 127.6, 126.5, 124.7, 66.7; HRMS (APCI) calcd for $C_{14}H_{10}CINO_4$ ([M]⁺) NO₂ 291.03038, found 291.03067.

2-Chlorobenzyl 3-nitrobenzoate (6h): White solid, m.p: 71–72 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.91 – 8.87 (m, 1H), 8.45 – 8.37 (m, 2H), 7.69 – 7.63 (m, 1H), Ο 7.53 - 7.41 (m, 2H), 7.36 - 7.28 (m, 2H), 5.52 (s, 2H); ¹³C NMR (101) MHz, CDCl₃) δ 164.3, 148.4, 135.6, 134.2, 133.1, 131.8, 130.5, 130.2, CI 129.9, 129.8, 65.2; HRMS (APCI) calcd for $C_{14}H_{10}CINO_4$ ([M]⁺) NO₂ 291.03038, found 291.03053.

Phenethyl 3-nitrobenzoate (6i): Yellowish oil; ¹H NMR (400 MHz, CDCl₃) δ 8.92 – 8.75 (m, 1H), 8.44 - 8.39 (m, 1H), 8.35 - 8.29 (m, 1H), 7.68 - 7.60 (m, 1H)1H), 7.38 - 7.27 (m, 5H), 4.60 (t, J = 7.0 Hz, 2H), 3.12 (t, J = 7.0 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 164.5, 148.5, 137.5, 135.4, 132.2, 129.8, 129.1, 128.8, 127.5, 127.0, 124.7, 66.5, 35.3; HRMS (APCI) ΝO₂ calcd for $C_{15}H_{13}NO_4$ ([M]⁺) 271.08501, found 271.08500.

Octyl 3-nitrobenzoate (6k): Yellowish oil; ¹H NMR (400 MHz, CDCl₃) δ 8.86 (s, 1H), 8.39 (dd, J = 17.1, 8.0 Hz, 2H), 7.66 (t, J = 8.0 Hz, 1H), 4.38 (t, J = 6.7 Hz, 2H),1.92 - 1.62 (m, 2H), 1.66 - 1.10 (m, 10H), 0.88 (m, 3H); ¹³C NMR (101) MHz, cdcl₃) δ 164.7, 148.4, 135.4, 132.4, 129.7, 127.4, 124.7, 77.5, 66.3, 31.9, 29.4, 29.3, 28.8, 26.1, 22.8, 14.3; HRMS (APCI) calcd for C₁₅H₂₁NO₄ ΝO₂ $([M]^+)$ 279.14761, found 279.14750.

4-Chlorobenzyl 4-nitrobenzoate (61): Yellowish solid, m.p: 110-111 °C; 1H NMR (400 MHz, CDCl₃) δ 8.32 - 8.26 (m, 2H), 8.26 - 8.20 (m, 2H), 7.43 - 7.36 (m, 4H), 5.38 (s, 2H); 13C NMR (101 MHz, CDCl₃) δ 164.56, 150.8, 135.4, 134.8, 133.8, 131.0, 130.0, 129.1, 123.8, O_2N 67.0; HRMS (APCI) calcd for C14H10ClNO4 ($[M]^+$) 291.03038, found 291.03046.

4-Chlorobenzyl benzoate (6m): Yellowish oil; ¹H NMR (400 MHz, CDCl₃) δ 8.10 – 8.03 (m, 2H), 7.61 - 7.52 (m, 3H), 7.49 - 7.33 (m, 4H), 5.32 (d, J = 5.6Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 166.3, 134.5, 134.1, 133.1, 129.9, 129.7, 129.6, 128.8, 128.4, 65.9; HRMS (APCI) calcd for $C_{14}H_{11}ClO_2$ ([M]⁺) 246.04421, found 246.04544.

4-Chlorobenzyl 2-phenylacetate (6n): Yellowish oil; ¹H NMR (400 MHz, CDCl₃) δ 7.94 - 6.94 (m, 9H), 5.10 (s, 2H), 3.67 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) & 171.4, 134.5, 134.2, 133.9, 129.6, 129.4, 128.9, 128.8, 127.3, 65.9, 41.5; HRMS (APCI) calcd for C₁₅H₁₃ClO₂ C $([M]^+)$ 260.05986, found 260.06006.

4-chlorobenzyl 2-methyl-2-phenylpropanoate (60): Yellowish oil; ¹H NMR (400 MHz, $CDCl_3$) δ 7.33 – 7.30 (m, 4H), 7.28 – 7.23 (m, 3H), 7.13 – 7.09 (m, 2H), 5.06 (s, 2H), 1.60 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 176.49, 144.4, 134.8, 133.9, 129.2, 128.7, 128.5, 126.9, 125.8, 65.7, 46.7, 26.5.

4-chlorobenzyl 3-phenylpropanoate (**6p**): Yellowish oil; ¹H NMR (400 MHz, cdcl₃) δ 7.35 – 7.27 (m, 4H), 7.25 - 7.17 (m, 5H), 5.08 (s, 2H), 2.98 (t, J = 7.7Hz, 2H), 2.70 (t, J = 9.1, 6.4 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) § 172.7, 140.4, 134.5, 134.2, 129.7, 128.8, 128.6, 128.4, 126.4, 65.5, 35.9, 31.0; HRMS (+EI) calcd for $C_{16}H_{15}ClO_2$ $([M]^+)$ 256.06494, found 256.06670.

4-chlorobenzyl hexanoate (6q): Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.31 (m, 2H), 7.31 - 7.26 (m, 2H), 5.07 (s, 2H), 2.34 (t, J = 7.6 Hz, 2H), 1.78-1.49 (m, 2H), 1.40 - 1.20 (m, 4H), 0.88 (t, J = 7.0 Hz, 3H); ^{13}C C_5H NMR (101 MHz, CDCl₃) δ 173.7, 134.8, 134.2, 129.7, 128.9, 65.4, 34.4, 31.4, 24.8, 22.4, 14.0; HRMS (+EI) calcd for C₁₃H₁₇ClO₂ $([M]^+)$ 240.09171, found 240.09134.

(S)-1-Phenylethyl 3-nitrobenzoate (6r): Yellowish oil; ¹H NMR (400 MHz, CDCl₃) δ 8.98 - 8.81 (m, 1H), 8.48 - 8.25 (m, 2H), 7.68 - 7.62 (m, 1H), 7.49 -7.43 (m, 2H), 7.42 - 7.36 (m, 2H), 7.36 - 7.30 (m, 1H), 6.18 (q, J = 6.6Hz, 1H), 1.72 (d, J = 6.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 163.9, 148.4, 141.1, 135.5, 132.4, 129.7, 128.8, 128.4, 127.5, 126.3, 124.7, 74.3, 22.4; HRMS (APCI) calcd for $C_{15}H_{13}NO_4$ ([M]⁺) 271.08501, found NO_2 271.08503.

(*R*)-1-Phenylethyl 3-nitrobenzoate (6r): Yellowish oil; ¹H NMR (400 MHz, CDCl₃) δ 8.98 - 8.81 (m, 1H), 8.48 - 8.25 (m, 2H), 7.68 - 7.62 (m, 1H), 7.49 -7.43 (m, 2H), 7.42 - 7.36 (m, 2H), 7.36 - 7.30 (m, 1H), 6.18 (q, J = 6.6Hz, 1H), 1.72 (d, J = 6.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 163.9, 148.4, 141.1, 135.5, 132.4, 129.7, 128.8, 128.4, 127.5, 126.3, 124.7, NO₂ 74.3, 22.4; HRMS (APCI) calcd for $C_{15}H_{13}NO_4$ ($[M]^+$) 271.08501, found 271.08502.

Ethyl (R)-2-((3,5-dinitrobenzoyl)oxy) propionate (6s): White solid, m.p: 92-93 °C; ¹H NMR (400 MHz, CDCl₃) δ = 9.26 (t, J = 2.2, 1H), 9.20 (d, J = 2.1, 2H), 5.41 (q, J = 7.1, 1H), 4.27 (q, J = 7.1, 2H), 1.72 (d, J = O_2N 7.1, 3H), 1.31 (t, J = 7.1, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.8, 162.1, 148.8, 133.4, 129.8, 122.8, 71.0, 62.1, 17.1, 14.3; ŃΟ₂ HRMS (APCI) calcd for $C_{12}H_{12}N_2O_8$ ([M]⁺) 312.05978, found 312.05991.

Ethyl (S)-2-((3,5-dinitrobenzoyl)oxy) propionate (6s): White solid, m.p: 92-93 °C; ¹H NMR (400 MHz, CDCl₃) δ = 9.26 (t, J = 2.2, 1H), 9.20 (d, J = 2.1, 2H), 5.41 (q, J = 7.1, 1H), 4.27 (q, J = 7.1, 2H), 1.72 (d, J = O_2N 7.1, 3H), 1.31 (t, J = 7.1, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.8, 162.1, 148.8, 133.4, 129.8, 122.8, 71.0, 62.1, 17.1, 14.3; HRMS (APCI) calcd for $C_{12}H_{12}N_2O_8$ ([M]⁺) 312.05978, found ΝO₂ 312.05991.

N-(4-Chlorobenzyl)-phthalimide (9): White solid, m.p: 119–120 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.81 (m, 2H), 7.75 – 7.68 (m, 2H), 7.37 (d, J = 8.4Hz, 2H), 7.28 (d, J = 8.1 Hz, 2H), 4.81 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 168.1, 135.0, 134.2, 133.9, 132.2, 130.2, 129.0, 123.6, 41.1; HRMS (APCI) calcd for $C_{15}H_{10}CINO_2$ ([M]⁺) 271.04055, found 271.04187.

S4 HPLC analysis of products (6i, 6k) of stereoselective esterification

Analysis were performed on Agilent 1100 series (Agilent Technologies) using Chiral Art Amylose C column, heptane/isopropyl alcohol 9:1, flow 0,7 mL/min, temp. 15 °C, detection at 254 nm.

rac-1-phenylethyl 3-nitrobenzoate (*rac*-6**r**)

```
(S)-1-phenylethyl 3-nitrobenzoate ((S)-6r)
```


(*R*)-1-phenylethyl 3-nitrobenzoate ((*R*)-6r)

Results in Table 3 (main text)

(R)-6r (Method A)

(*R*)-6r (Method **B**)

(*R*)-6r (Method \mathbf{B} – in the absence of $\mathbf{2b}$)

(S)-6r (Method A)

(*S*)-6r (Method **B**)

Ethyl (rac)-2-((3,5-dinitrobenzoyl)oxy) propionate ((rac)-6s)

Ethyl (*R*)-2-((3,5-dinitrobenzoyl)oxy) propionate ((*R*)-6s)

Ethyl (*S*)-2-((3,5-dinitrobenzoyl)oxy) propionate ((*S*)-6s))

Results in Table 3 (main text)

(*S*)-6s (Method A)

(*S*)-6s (Method **B**)

(*R*)-6s (Method A)

(*R*)-6s (Method B)

S5 ¹H and ¹³C NMR spectra of 1 and 2

Dibenzyl azodicarboxylate (1d):

Diethyl hydrazine-1,2-dicarboxylate (2a):

Diisopropyl hydrazine-1,2-dicarboxylate (2b):

Di-tert-butyl hydrazine-1,2-dicarboxylate (2c):

Dibenzyl hydrazine-1,2-dicarboxylate (2d):

S6 ¹H and ¹³C NMR spectra of 3

2',3',4',5'-tetraacetylriboflavin (3b)

3-Benzyl-2',3',4',5'-tetraacetylriboflavin (3c)

3-Methyl-2',3',4',5'-tetraacetylriboflavin (3d)

S7¹H and ¹³C NMR spectra of 6

Benzyl 3-nitrobenzoate (6a)

4-Chlorobenzyl 3-nitrobenzoate (6b)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

-5

أخررها فالأقأ والهورياذا

4-Nitrobenzyl 3-nitrobenzoate (6c)

4-(Trifluoromethyl)benzyl 3-nitrobenzoate (6d)

4-Methylbenzyl 3-nitrobenzoate (6e)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

4-(Methoxy)benzyl 3-nitrobenzoate (6f)

3-chlorobenzyl 3-nitrobenzoate (6g)

2-chlorobenzyl 3-nitrobenzoate (6h)

Phenethyl 3-nitrobenzoate (6i)

Octyl 3-nitrobenzoate (6k)

4-Chlorobenzyl 4-nitrobenzoate (6l)

4-Chlorobenzyl benzoate (6m)

4-Chlorobenzyl 2-phenylacetate (6n)

4-chlorobenzyl 2-methyl-2-phenylpropanoate (60)

4-chlorobenzyl 3-phenylpropanoate (6p)

4-chlorobenzyl hexanoate (6q)

(R)-1-Phenylethyl 3-nitrobenzoate (6r)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

(S)-1-Phenylethyl 3-nitrobenzoate (6r)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

Ethyl (S)-2-((3,5-dinitrobenzoyl)oxy) propionate (6s)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

Ethyl (R)-2-((3,5-dinitrobenzoyl)oxy) propionate (6s)

N-(4-Chlorobenzyl)-phthalimide (9)

S8 Photooxidation of acylhydrazines 2 with 3

Photooxidation of 2 with 3b - solvent screening

A mixture of hydrazine **2** ($c(2) = 1 \times 10^{-3}$ M), flavin **3b** ($c(3b) = 5 \times 10^{-4}$ M), and alternatively of HBF₄ ($c(HBF_4) = 5 \times 10^{-4}$ M) in deuterated solvent (2 mL) was bubbled with oxygen (2 min) and then stirred for 24 hours at 25 °C under O₂ (balloon) under irradiation with blue LEDs (450 nm, 1 W LED). Reaction mixture was analysed by ¹H NMR.

	-				
Solvente	R				
Solvents	Et	<i>i</i> Pr	<i>t</i> Bu	Bn	
CD ₃ CN	18	21	39	35	
$CD_3CN + HBF_4$	quant.	-	-	quant.	
Chlofoform - d ₁	44	-	-	48	
DMSO - d_6	0^{b}	-	-	0^{b}	
Nitromethane - d ₃	13	-	-	53	
Nitrobenzene - d ₅	0	-	-	traces	
DMF - d ₇	0	-	-	0	
THF - d ₈	0	-	-	9	

Table. Photooxidation of 2 with 3d – solvent screening^[a]

 $\begin{array}{c} O \\ RO \\ \mathbf{N} \\$

^[a] $c(2) = 1 \times 10^{-3}$ M, $c(\text{catalyst } 3b) = 5 \times 10^{-4}$ M; ^[b] HBF4 was added (1 equiv. relative to the substrate to simulate acidic conditions during esterification) ^[c] oxidation of solvent to dimethylsulfone

Photooxidation of 2a with 3d – semipreparative experiments

A mixture of hydrazine **2a** (0.01 mmol), flavin **3d** (0.001 or 0.005 mmol), and of HBF₄ (0.0150 mmol) in CD₃CN (2 mL) was bubbled with oxygen (2 min) and then stirred for 24 hours at 25 °C under O₂ (balloon) under irradiation with blue LEDs (450 nm, 1 W LED). Reaction mixture was analysed by ¹H NMR. Alternatively, after evaporation of solvents, crude product **1a** was purified by flash chromatography (see Figure below).

Red: oxidation with 25% of **3d** followed by flash chromatography to remove flavin **3d** and products of its decomposition

Black: oxidation with 25% of 3d; impurities are mainly products of flavin 3d decomposition Grey: oxidation with 10% of 3d Blue: 1a Green: 2a

MS spectrum of fotooxidation of 2a with 3d

HRMS (APCI) calcd for C₆H₁₀N₂O₄ ([M]⁻) 174.06461, found 174.06424.

S9 Preliminary screening of the reaction conditions

Preliminary screening of solvents^[a]

(150 mg); n(2b) = 0.015 mmol; 450 nm; 25 °C; O₂; 24 h; ^[b] 44 % conversion of

benzylchloride.

Preliminary	screening of	amounts of	reagents ^[a]
-------------	--------------	------------	-------------------------

Entwy	Equivalents of reagents					Comer [e]
Entry	Acid	Alcohol	Hydrazine	PPh ₃	Cat.	Conv.
1	1.2	1	0.1	2	0.1	48
2	1.2	1	0.1	2	0.1	45 ^[b]
3	1.2	1	0.1	2	0.2	55
4	2.4	1	0.1	2	0.1	36
5	1.2	1	0.1	4	0.1	51
6	1.2	1	1	2	0.1	49
7	1	2	0.1	2	0.1	42
8	1.2	1	0.1	2	0.1	61 ^[c]
9	1.2	1	0.1	2	0.1	$70^{[d]}$

^[a] $n(\mathbf{5a}) = 0.15 \text{ mmol}; n(\mathbf{4a}) = 0.18 \text{ mmol}; n(\mathbf{3b}) = 0.015 \text{ mmol}; n(PPh_3) = 0.3 \text{ mmol}; MS 4 Å (150 mg); 2 ml CH_3CN; n(\mathbf{2b}) = 0.015 \text{ mmol}; 450 nm; 25 °C; 24 h; ^[b] 2 x MS 4 Å; ^[c] 1 ml CH_3CN; ^[d] 0.5 ml CH_3CN; ^[e] determined by ¹H NMR.$

S10 Blank experiments

Blank experiments for photocatalytic esterification under Mitsunobu reaction conditions in the presence (\checkmark) or absence (-) of catalyst **3d**, PPh₃, light or molecular sieves.^[a]

Entry	Cat. (3d)	PPh ₃	Light ^[b]	MS 4 Å	Conversion ^[c] 24 h [%]
1	-	√	√	✓	0
2	\checkmark	-	\checkmark	\checkmark	0
3	\checkmark	\checkmark	-	\checkmark	0
4	\checkmark	\checkmark	\checkmark	-	0
5	\checkmark	\checkmark	✓	\checkmark	64 ^[d] (99 ^[e])

^[a] n(5a) = 0.15 mmol; n(4a) = 0.18 mmol; n(2b) = 0.015 mmol; n(3d) = 0.015 mmol; $n(PPh_3) = 0.3 \text{ mmol}; 4 \text{ Å MS (150 mg)}; 2 \text{ ml CH}_3\text{CN}; \text{O}_2;$ ^[b] 455 nm; ^[c] Determined by ¹H NMR; ^[d] method A: t = 25 °C; n(1b) = 0.015 mmol; ^[e] method B: t = 50 °C; $n(2b) = 0.015 \text{ mmol}; n(PhSiH_3) = 0.3 \text{ mmol}.$

O OF NO ₂	н + ОН	2 eq. DIAD 2 eq. PPh ₃		
#			Yeild/conv.	er
1	-		71/84	85/15
2	$10 \% \mathbf{3d}^{[b]}$		71/79	73/27
3	MS 4 Å ^[c]		67/75	86/14
4	$hv^{\lfloor d \rfloor}$		69/80	78/22
5	hv, MS 4 Å ^[c,d]		70/78	87/13
6	10 % 3d , MS 4 Å ^{[1}	o,c]	73/79	84/16
7	$50 \% 3d^{[e]}$		72/82	81/19
8	$10 \% \mathbf{3d}, hv^{[b,d]}$		68/76	79/21

S11 Effect of adducts on stereoselectivity of Mitsunobu esterification

^[a] $n((R)-5l) = 0.15 \text{ mmol}; n(4a) = 0.18 \text{ mmol}; n(1b) = 0.3 \text{ mmol}; n(PPh_3) = 0.3 \text{ mmol};$ 2 ml CH₃CN; t = 25 °C; 24 h; ^[b] n(3d) = 0.015 mmol; ^[c] MS 4 Å (150 mg); ^[d] 450 nm; ^[e] n(3d) = 0.075 mmol.

S12 UV-VIS and fluorescence spectra of 1, 2 and 3

Very small absorption of dialkyl azodicarboxylates 1 was observed thus 1 can undergo very slow photodecomposition

UV-VIS spectra of **1b** in acetonitrile ($c(1b) = 1 \times 10^{-2} \text{ M}$)

UV-VIS spectra of **2b** in acetonitrile ($c(2b) = 1 \times 10^{-2} \text{ M}$)

UV-VIS spectrum of **3b** in acetonitrile ($c(3b) = 5 \times 10^{-5} \text{ M}$)

Fluorescence spectrum of **3b** in acetonitrile (c(**3b**) = 1×10^{-6} M); $\lambda_{ext} = 507$ nm

UV-VIS spectrum of **3c** in acetonitrile ($c(3c) = 5 \times 10^{-5} \text{ M}$)

Fluorescence spectrum of **3c** in acetonitrile (c(**3c**) = 1×10^{-6} M); $\lambda_{ext} = 506$ nm

UV-VIS spectrum of **3d** in acetonitrile ($c(3d) = 5 \times 10^{-5} \text{ M}$)

Fluorescence spectrum of **3d** in acetonitrile (c(**3d**) = 3×10^{-6} M); $\lambda_{ext} = 504$ nm

S13 Fluorescence quenching of 3d by diacylhydrazines 2b and Ph₃P

Quenching of 3d with 2b

Quenching of **3d** with PPh₃

S14 Experimental setup

Reactions were performed in 4 mL vials irradiated at a distance 9 mm from the bottom by blue LED (Luxeon STAR/0, 1W; 220 mW@350 mA, 2.8-4 V, 440-460 nm, $\Delta\lambda_{1/2} = 20$ nm). Vials were located in aluminium block which was tempered (±0.2 °C) by Peltier unit. Reaction mixtures were stirred (500 min⁻¹) with magnetic stirrer.