Palladium-catalyzed intermolecular tandem cyclization reaction: a

highly regioselective synthesis of 3H-Spiro[isobenzofuran-1,3'-

isochroman] scaffolds

Liang Wang,^{ab} Xuehu Li,^a Hua Tao,^c Xiang Zhou,^a Xihong Lu,^a Wenyue Du,^a Tingting Jiang,^{ab} Zhijun Xin*^a and Jianping Liang*^a

^a Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, Gansu 730000, P. R. China. E-mail: xinzhj@impcas.ac.cn (Z. Xin); liangjp100@impcas.ac.cn (J. Liang).

^b University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

^c Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 320 Western Dong gang Rd, Lanzhou, Gansu 730000, P. R. China.

Supporting Information Content:

1.	General information	S2
2.	Preparation of starting materials	S2
3.	General procedure for 3H-Spiro[isobenzofuran-1, 3'-isochroman] compounds	S 8
4.	Spectra Data of 3H-Spiro[isobenzofuran-1, 3'-isochroman] compounds	S8-14
5.	Synthesis of 1a	S15-18
6.	References	S18
7.	Crystallographic data of 4c	S19
8.	Copies of ¹ H and ¹³ C Spectra	S20-64

1. General Information

Unless stated otherwise, all reactions were carried out in flame-dried glassware under a dry argon atmosphere. All solvents were purified and dried according to standard methods prior to use. For product purification by flash column chromatography, silica gel (200~300 mesh) and light petroleum ether (bp. 60~90 °C) are used. The ¹H and ¹³C NMR data were recorded on Bruker-400 MHz spectrometer at room temperature in CDCl₃ or DMSO-*d*₆ or CD₃COCD₃ solvent. Chemical shifts for protons are reported using residual CHCl₃ or DMSO or CD₃COCD₃ as internal reference ($\delta = 7.27$, 2.50, 2.05 ppm). Carbon spectra were referenced to the shift of the ¹³C signal of CDCl₃ ($\delta = 77.00$, 39.52 ppm, 29.84 and 206.26 ppm). Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad singlet, coupling constant (s) in Hz, integration). Data for ¹³C NMR is reported in terms of chemical shift (δ , ppm). High-resolution mass spectra (HRMS) data were obtained on a Bruker Daltonics APEX II 47e mass spectrometer. Column chromatography was generally performed on silica gel (200-300 mesh) and TLC inspections were on silica gel GF254 plates. Substrates **3a**, **3g**, **3p** and **3r** were purchased from commercial suppliers and used without further treatment.

2. Preparation of starting materials

2.1 2a-g were prepared following the published literature procedures.¹

3-(2-(hydroxymethyl)phenyl)prop-2-yn-1-yl methyl carbonate (2a)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.45 (t, *J* = 6.6 Hz, 2H), 7.39-7.36 (m, 1H), 7.29-7.25 (m, 1H), 4.99 (s, 2H), 4.81 (s, 2H), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.3, 143.2, 132.4, 129.2, 127.3, 127.3, 120.0, 86.9, 84.8, 63.6, 56.1, 55.1; FT-IR (KBr, cm⁻¹) 3317, 3231, 3073, 3012, 2985, 2859, 174, 1587, 1448, 1367, 1284, 1264, 1048, 931, 756; HRMS (ESI): m/z calcd for C₁₂H₁₆NO₄ [M+NH₄]⁺238.1074, found 238.1072.

3-(6-(Hydroxymethyl)benzo[d][1,3]dioxol-5-yl)prop-2-yn-1-yl methyl carbonate (2b)

OH OCO₂Me 2b

White solid; ¹H NMR (400 MHz, d_6 -DMSO) δ 7.02 (s, 1H), 6.92 (s, 1H), 6.04 (s, 2H), 5.27-5.24 (t, J = 5.4 Hz, 1H), 5.01 (s, 2H), 4.53-4.52 (d, J = 5.2 Hz, 2H), 3.75 (s, 3H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 154.7, 148.5, 145.8, 140.4, 111.1, 110.9, 107.0, 101.5, 86.4, 84.2, 60.8, 55.9, 55.0; FT-IR (KBr, cm⁻¹) 3316, 3053, 3007, 2956, 2912, 2227, 1747, 1617, 1504, 1488, 1442, 1385, 1369, 1297, 1280, 1266, 1085, 1042, 934, 789; HRMS (ESI): m/z calcd for C₁₃H₁₂NO₆ [M+NH₄]⁺ 282.0972, found 282.0973.

3-(3-(Hydroxymethyl)naphthalen-2-yl)prop-2-yn-1-yl methyl carbonate (2c)

White solid; ¹H NMR (400 MHz, d_6 -DMSO) δ 8.07 (s, 1H), 8.00 (s, 1H), 7.93-7.89 (t, J = 8.4 Hz, 2H), 7.56-7.48 (m, 2H), 5.47-5.44 (t, J = 5.6 Hz, 1H), 5.10 (s, 2H), 4.77-4.76 (d, J = 5.6 Hz, 2H), 3.78 (s, 3H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 154.7, 140.3, 132.8, 132.0, 131.3, 127.5, 127.4, 127.3, 126.2, 124.4, 117.1, 87.7, 84.1, 61.2, 55.9, 55.1; FT-IR (KBr, cm⁻¹) 3365, 3286, 3055, 2968, 2940, 2858, 2237, 1752, 1630, 1599, 1493, 1447, 1375, 1299, 1274, 1043, 944, 887, 747; HRMS (ESI): m/z calcd for C₁₆H₁₈NO₄ [M+NH₄]⁺ 288.1230, found 288.1229.

3-(Hydroxymethyl)-4-(3-((methoxycarbonyl)oxy)prop-1-yn-1-yl)phenyl acetate (2d)

Colourless liquid; ¹H NMR (400 MHz, CD₃COCD₃) δ 7.48-7.42 (m, 2H), 7.13-7.10 (m, 1H), 4.93-4.93 (d, *J* = 2.1 Hz, 2H), 4.77 (s, 2H), 4.47 (s, 1H), 3.87 (s, 3H), 2.07 (s, 3H); ¹³C NMR (100 MHz, CD₃COCD₃) δ 170.4, 154.5, 152.7, 147.6, 133.8, 120.2, 119.8, 117.7, 89.6, 83.0, 62.3, 55.8, 52.9, 20.5; FT-IR (KBr, cm⁻¹) 3467, 3076, 3011, 2958, 2856, 2232, 1757, 1605, 1578, 1488, 1443, 1374, 1225, 1199, 1152, 1026, 943, 901, 827, 790; HRMS (ESI): m/z calcd for C₁₄H₁₈NO₆ [M+NH₄]⁺ 296.1129, found 296.1130.

Ethyl (3-(2-(hydroxymethyl)phenyl)prop-2-yn-1-yl) carbonate (2e)

White solid; ¹H NMR (400 MHz, d_6 -DMSO) δ 7.56-7.53 (d, J = 7.6 Hz, 1H), 7.44-7.40 (t, J = 7.6 Hz, 2H), 7.27-7.23 (t, J = 7.4 Hz, 1H), 5.32-5.30 (t, J = 5.4 Hz, 1H), 5.03 (s, 2H), 4.63-4.62 (d, J = 4.8 Hz, 2H) 4.20-4.15 (q, J = 7.2 Hz, 2H), 1.25-1.22 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 154.0, 144.5, 131.6, 129.1, 126.6, 126.3, 118.5, 88.0, 83.9, 64.1, 60.9, 55.6, 14.0; FT-IR (KBr, cm⁻¹) 3303, 3067, 2984, 2941, 2227, 1749, 1599, 1480, 1453, 1401, 1379, 1362, 1261, 1039, 1015, 872, 760; HRMS (ESI): m/z calcd for C₁₃H₁₈NO₄ [M+NH₄]⁺ 252.1230, found 252.1229.

Benzyl (3-(2-(hydroxymethyl)phenyl)prop-2-yn-1-yl) carbonate (2f)

White solid; ¹H NMR (400 MHz, d_6 -DMSO) δ 7.56-7.54 (d, J = 7.6 Hz, 1H), 7.44-7.35 (m, 7H), 7.28-7.24 (t, J = 7.2 Hz, 1H), 5.33-5.30 (t, J = 5.6 Hz, 1H), 5.21 (s, 2H), 5.07 (s, 2H), 4.64-4.62 (d, J = 5.6 Hz, 2H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 154.0, 144.5, 135.2, 131.6, 129.1, 128.5, 128.4, 128.2, 126.6, 126.3, 118.5, 87.9, 84.0, 69.3, 60.9, 55.9; FT-IR (KBr, cm⁻¹) 3309, 3217, 3086, 3033, 2976, 2860, 2242, 2219, 1736, 1638, 1584, 1480, 1453, 1434, 1386, 1279, 1263, 1249, 1048, 991, 928, 913, 756, 694; HRMS (ESI): m/z calcd for C₁₈H₂₀NO₄ [M+NH₄]+ 314.1387, found 314.1386.

Diethyl (3-(2-(hydroxymethyl)phenyl)prop-2-yn-1-yl) phosphate (2g)

White solid; ¹H NMR (400 MHz, d_6 -DMSO) δ 7.55-7.53 (d, J = 7.6 Hz, 1H), 7.44-7.40 (t, J = 7.6 Hz, 2H), 7.28-7.25 (t, J = 7.6 Hz, 1H), 5.32-5.29 (t, J = 5.6 Hz, 1H), 4.96-4.94 (d, J = 10.8 Hz, 2H), 4.64-4.63 (d, J = 5.6 Hz, 2H), 4.11-4.03 (dt, J = 15.2 Hz, J = 7.2 Hz, 4H), 1.28-1.24 (td, J = 7.0 Hz, J = 0.6 Hz, 6H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 144.4, 131.6, 129.1, 126.7, 126.3, 118.5, 88.5 (d, J = 6 Hz), 84.2, 63.6 (d, J = 6 Hz), 61.0, 55.4 (d, J = 5 Hz), 15.9 (d, J = 6 Hz); FT-IR (KBr, cm⁻¹) 3402, 3066, 2985, 2931, 2231, 1599, 1480, 1449, 1375, 1260, 1165, 1026, 974, 836, 762; HRMS (ESI): m/z calcd for C₁₄H₂₀O₅P [M+H]⁺299.1043, found 299.1044.

2.2 Synthesis of 3b-3f

2-Iodobenzoic acid (2 mmol) was dissolved in THF (10 mL) and cooled to 0 °C. NaBH₄ (2.5 mmol, 95mg) and BF₃·OEt₂ (2.5 mmol, 0.35mL) was slowly added into the stirring solution at 0 °C. The reaction mixture was then warmed to room temperature and stirred for 2 h, monitoring by TLC. Upon completion, the reaction was quenched with water (15 mL) at 0 °C and saturated with K₂CO₃. After extraction with EtOAc (3 × 20 mL), the combined organic phases were dried (Na₂SO₄) and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc : petroleum = 4:1) to yield the target 2-iodobenzyl alcohol.

(2-Iodo-6-methylphenyl)methanol (3b)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.22 (d, J = 4.9 Hz, 2H), 7.18-7.15 (q, J = 4.5 Hz, 1H), 4.68 (s, 2H) 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 142.0, 128.9, 128.0, 125.6, 104.6,

70.2, 29.0.

(2-Fluoro-6-iodophenyl)methanol (3c)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 7.6 Hz, 1H), 7.10–7.05 (m, 1H), 7.04–6.98 (m, 1H), 4.83 (d, J = 2.1 Hz, 2H), 2.1 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 161.7, 159.2, 135.2 (d, J = 4 Hz), 131.1 (d, J = 9 Hz), 115.9 (d, J = 23 Hz), 100.5 (d, J = 3 Hz), 62.6 (d, J = 4 Hz).

(4-Fluoro-2-iodophenyl)methanol (3d)

White solid; ¹H NMR (400 MHz, d_6 -DMSO) δ 7.69-7.67 (dd, J = 2.6 Hz, J = 8.4 Hz, 1H), 7.49-7.45 (dd, J = 6.2 Hz, J = 8.6 Hz, 1H), 7.29-7.24 (td, J = 8.6 Hz, J = 2.6 Hz, 1H), 4.38 (s, 2H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 160.5 (d, J = 245 Hz), 140.0 (d, J = 3 Hz), 128.6 (d, J = 8 Hz), 124.9 (d, J = 24 Hz), 114.9 (d, J = 20 Hz), 96.4 (d, J = 8 Hz), 66.5.

(4-Chloro-2-iodophenyl)methanol (3e)

White solid; ¹H NMR (400 MHz, d_6 -DMSO) δ 7.86-7.85 (d, J = 1.8 Hz, 1H), 7.49-7.44 (m, 2H), 5.52 (bs, 1H), 4.38 (s, 2H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 142.9, 137.0, 131.8, 128.6, 128.0, 97.1, 66.7.

(5-bromo-2-iodophenyl)methanol (3f)

White solid; ¹H NMR (400 MHz, *d*₆-CDCl₃) δ 7.66-7.62 (m, 2H), 7.15-7.12 (m, 1H), 4.63 (s, 2H), 2.15 (s, 1H); ¹³C NMR (100 MHz, *d*₆-CDCl₃) δ 144.5, 14.02, 132.1, 131.0, 94.6, 68.6.

2.3 Synthesis of substituted 3h and 3q

A solution of NaNO₂ (2.16 g, 31.3 mmol) in water (10 mL) was added slowly to a cold (0 °C) stirred solution of 2-amino-5-hydroxybenzoic acid (4.0g, 26.1 mmol), concentrated HCl (20 mL) and crushed ice (15 g) in water (40 mL). After addition was completed, the solution was stirred for additional 30

min below 5 °C. A solution of KI (6.62 g, 39.2 mmol) in water (10 mL) was added slowly. The resulting mixture was stirred for 20 min at 0 °C and then heated to 90 °C for 30 minutes to remove all N₂. The mixture was cooled to room temperature and extracted with EtOAc (5 times). The organics were washed with saturated aqueous NaHSO₃ (several times) and water, and then dried over anhydrous Na₂SO₄. The solvents were removed under *vacuo* to give **3q** as yellowish red solid, which was used for next step without further purification. **18** (20 mmol) was dissolved in THF (100 mL) and cooled to 0 °C. NaBH₄ (30mmol) and BF₃·OEt₂ (30mmol) was slowly added into the stirring solution at 0 °C. The reaction mixture was then warmed to room temperature and stirred for 2 h, monitoring by TLC. Upon completion, the reaction was quenched with water (100 mL) at 0 °C and saturated with K₂CO₃. After extraction with EtOAc (3 × 200 mL), the combined organic phases were dried (Na₂SO₄) and concentrated in vacuo. The residue was purified by column chromatography (SiO2; 20% EtOAc in petroleum) to yield the target **3h**

3-(Hydroxymethyl)-4-iodophenyl acetate (3h)

White solid; ¹H NMR (400 MHz, CD₃COCD₃) δ 7.83-7.81 (d, *J* = 8.4 Hz, 1H), 7.33-7.32 (d, *J* = 2.8 Hz, 1H), 6.85-6.82 (dd, *J* = 8.4 Hz, *J* = 2.8 Hz, 1H), 4.64-4.62 (t, *J* = 5.2 Hz, 1H), 4.56-4.55 (d, *J* = 5.2 Hz, 2H) 2.26 (s, 3H); ¹³C NMR (100 MHz, CD₃COCD₃) δ 169.4, 152.5, 146.3, 140.1, 123.0, 121.9, 91.5, 68.6, 20.9.

3-(Hydroxymethyl)-4-iodophenol (3q)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 9.59 (s, 1H), 7.53-7.51 (d, J = 8.4 Hz, 1H), 7.00-6.99 (d, J = 2.9 Hz, 1H), 6.49-6.46 (dd, J = 8.4 Hz, J = 3.0 Hz, 1H), 5.33 (bs, 1H), 4.32 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 157.8, 144.6, 138.8, 116.1, 115.2, 82.4, 67.1.

2.4 Synthesis of 3i-l and 3n

A solution of I_2 (1.38g, 5.5 mmol) in CHCl₃ was dropped into a stirring solution of the benzyl alcohol (5mmol) and silver trifluoroacetate (1.21g, 5.5 mmol) in CHCl₃ (20 mL) at room temperature over a period of 10 min. The resulting suspension was stirred for 2 h and monitored by TLC. Upon completion, the mixture was filtered through a layer of silica gel and concentrated in vacuo. The iodinated product was purified through column chromatography

(2-Iodo-4-methoxyphenyl)methanol (3i)

White solid; ¹H NMR (400 MHz, d_6 -DMSO) δ 7.7 (s, 1H), 7.29-7.27 (d, J = 8.2 Hz, 1H), 6.95-6.93 (d,

J = 8.4 Hz, 1H), 4.40 (bs, 2H), 3.80 (s, 3H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 156.5, 137.1, 136.8, 127.9, 113.4, 111.1, 61.6, 51.3.

(2-Iodo-5-methoxyphenyl)methanol (3j)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.66-7.64 (d, J = 8.6 Hz, 1H), 7.05-7.04 (d, J = 3 Hz, 1H), 6.60-6.57 (dd, J = 3 Hz, J = 8.6 Hz 1H), 4.60 (s, 2H), 3.79 (s, 3H), 2.39 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 160.2, 143.6, 139.5, 115.2, 114.1, 85.3, 69.1, 55.4.

(5-(Benzyloxy)-2-iodophenyl)methanol (3k)

White solid; ¹H NMR (400 MHz, d_6 -DMSO) δ 7.67-7.64 (d, J = 8.6 Hz, 1H), 7.45-7.32 (m, 5H), 7.18-7.17 (d, J = 3Hz, 1H), 6.74-6.72 (dd, J = 8.6 Hz, J = 3 Hz, 1H), 5.10 (s, 2H), 4.36 (s, 2H), 3.38 (bs, 1H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 158.8, 144.9, 138.9, 136.8, 128.4, 127.8, 127.6, 115.3, 114.7, 85.1, 69.2, 67.1.

3,4,5-Trimethoxy-2-iodobenzyl alcohol (31)

White solid; ¹H NMR (400 MHz, d_6 -DMSO) δ 7.03 (s, 1H), 5.45 (s, 1H), 4.38-4.37 (d, J = 0.36Hz, 2H), 3.82(s, 3H), 3.75-3.75 (d, J = 0.16Hz, 6H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 153.4, 152.0, 140.3, 139.4, 107.5, 83.4, 67.4, 60.5, 60.4, 55.8.

(6-Iodobenzo[d][1,3]dioxol-5-yl)methanol (3n)

White solid; ¹H NMR (400 MHz, d_6 -DMSO) δ 7.33 (s, 1H), 7.03 (s, 1H), 6.03 (s, 2H), 5.39 (bs, 1H), 4.32 (s, 2H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 148.0, 147.0, 137.3, 117.5, 108.0, 101.5, 84.4, 67.1.

2.5 Synthesis of 3m

2'-Iodoacetophenone (2 mmol, 492mg) was dissolved in THF (10 mL) and cooled to 0 °C. NaBH₄ (2.5 mmol, 95mg) and BF₃·OEt₂ (2.5 mmol, 0.35mL) was slowly added into the stirring solution at 0 °C. The reaction mixture was then warmed to room temperature and stirred for 2 h, monitoring by TLC. Upon completion, the reaction was quenched with water (15 mL) at 0 °C and saturated with K₂CO₃. After extraction with EtOAc (3 × 20 mL), the combined organic phases were dried (Na₂SO₄) and

concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc : petroleum = 4:1) to yield the target 3m

1-(2-Iodophenyl)ethanol (3m)

White solid; ¹H NMR (400 MHz, d_6 -DMSO) δ 7.78-7.76 (dd, J = 7.8 Hz, J = 1 Hz, 1H), 7.56-7.53 (dd, J = 7.8 Hz, J = 1.6 Hz, 1H), 7.42-7.38 (td, J = 7.4 Hz, J = 0.8 Hz, 1H), 7.00-6.96 (td, J = 7.4 Hz, J = 1.6 Hz, 1H), 5.38 (bs, 1H), 4.80-4.76 (q, J = 6.4 Hz, 1H), 1.27-1.25 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 148.8, 138.6, 128.8, 128.4, 126.6, 97.1, 71.8, 24.5.

2.6 Synthesis of substituted 2-iodobenzyl alcohol 30

A solution of NaNO₂ (345 mg, 5.0 mmol) in water (2 mL) was added slowly to a cold (0 °C) stirred solution of 3-amino-2-naphthoic acid (1 g, 4.27 mmol), concentrated HCl (6 mL) and crushed ice (5 g) in water (10 mL). After addition was completed, the solution was stirred for additional 30 min below 5 °C. A solution of KI (1.35 g, 8.0 mmol) in water (4 mL) was added slowly. The resulting mixture was stirred for 5 min at 0 °C and then heated to 90 °C for 30 minutes to remove all N₂. The mixture was cooled to room temperature and extracted with EtOAc (5 times). The organics were washed with saturated aqueous NaHSO₃ (several times) and water, and then dried over anhydrous Na₂SO₄. The solvents were removed under *vacuo* to give crude product as reddish yellow solid. The residue **19** (2mmol) was dissolved in THF (10 mL) and cooled to 0 °C. NaBH₄ (2.5mmol) and BF₃·OEt₂(2.5mmol) was slowly added into the stirring solution at 0 °C. The reaction mixture was then warmed to room temperature and stirred for 2 h, monitoring by TLC. Upon completion, the reaction was quenched with water (100 mL) at 0 °C and saturated with K₂CO₃. After extraction with EtOAc (3×20 mL), the combined organic phases were dried (Na₂SO₄) and concentrated in vacuo. The residue was purified by column chromatography (SiO₂; 20% EtOAc in petroleum) to yield the target **30**.

(3-Iodonaphthalen-2-yl)methanol (30)

White solid; ¹H NMR (400 MHz, d_6 -DMSO) δ 8.47 (s, 1H), 7.97 (s, 1H), 7.92-7.90 (d, J = 7.8 Hz, 1H), 7.85-7.83 (d, J = 7.7 Hz, 1H), 7.5-7.48 (m, 2H), 5.53 (bs, 1H), 4.57 (s, 2H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 140.0, 137.6, 133.6, 132.2, 127.6, 126.6, 126.4, 126.2, 125.5, 94.9, 67.3.

3. General procedure for the preparation of 3*H*-Spiro[isobenzofuran-1,3'-isochroman] compounds 4.

To a solution of propargylic compound **2** (1.5 mmol) in DMF (5.0 mL) was added Na₂CO₃ (188 mg, 3mmol). The mixture was stirred for 5 min and Pd(OAc)₂/P(2-Tol)₃ (13.4mg, 0.06 mmol, 10 mol %), and aryl halides **3** (0.60 mmol) were added. The resulting mixture was then heated under an argon atmosphere at 120 °C. When the reaction was considered complete as determined by TLC analysis, the reaction mixture was allowed to cool to room temperature and quenched with a saturated aqueous solution of ammonium chloride, and the mixture was extracted with EtOAc. The combined organic extracts were washed with water and saturated brine. The organic layers were dried over Na₂SO₄, filtered. Solvents were evaporated under reduced pressure. The residue was purified by chromatography on silica gel to afford spriocyclic compound **4**.

4. Spectra Data of 3*H*-Spiro[isobenzofuran-1, 3'-isochroman] compounds. 4'-Methylene-3*H*-spiro[isobenzofuran-1,3'-isochroman](4a)

Pale yellow oil; (65%); ¹H NMR (400 MHz, CDCl₃) δ 7.76-7.74 (m, 1H), 7.44-7.27 (m, 6H), 7.14-7.12 (m, 1H), 5.83 (s, 1H), 5.32-5.29 (d, *J* = 12.8 Hz, 1H), 5.28-5.24 (d, *J* = 15.0 Hz, 1H), 5.20-5.17 (d, *J* = 12.8 Hz, 1H), 5.08 (s, 1H), 4.83-4.80 (d, *J* = 15 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 140.4, 140.3, 139.8, 134.1, 130.8, 129.2, 127.9, 127.6, 127.2, 124.3, 124.0, 123.7, 121.1, 111.3, 109.6, 71.7, 63.7; FT-IR (KBr, cm⁻¹) 3365, 3069, 3035, 2945, 2860, 1655, 1597, 1578, 1461, 1371, 1230, 1074, 1053, 1006, 959, 760; HRMS (ESI): m/z calcd for C₁₇H₁₅O₂ [M+H]⁺251.1067, found 251.1068.

8'-Methyl-4'-methylene-3H-spiro[isobenzofuran-1,3'-isochroman] (4b)

Pale yellow solid; (57%); ¹H NMR (400 MHz, d_6 -DMSO) δ 7.38-7.33 (m, 2H), 7.28-7.19 (m, 3H), 7.12-7.10 (d, J = 7.2 Hz, 1H), 6.76-6.74 (d, J = 7.6 Hz, 1H), 5.63 (s, 1H), 5.51 (s, 1H), 5.19-5.12 (d, J = 13.1 Hz, J = 15.2 Hz, 2H), 4.74-4.71 (d, J = 13.5 Hz, 1H), 4.60-4.57(d, J = 13.5Hz, 1H), 2.40 (s, 3H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 141.3, 141.2, 138.8, 137.9, 134.7, 132.4, 130.2, 128.6, 127.5, 126.9, 122.1, 121.8, 121.4, 117.0, 110.1, 70.9, 64.2, 20.3; FT-IR (KBr, cm⁻¹) 3365, 3071, 3033, 2965, 2860, 1633, 1603, 1460, 1382, 1223, 1058, 1007, 971, 760; HRMS (ESI): m/z calcd for C₁₈H₁₇O₂ [M+H]⁺ 265.1223, found 265.1222.

8'-Fluoro-4'-methylene-3H-spiro[isobenzofuran-1,3'-isochroman] (4c)

White solid; (63%); ¹H NMR (400 MHz, d_6 -DMSO) δ 7.67-7.65 (d, J = 7.8 Hz, 1H), 7.48-7.42 (m, 2H), 7.39-7.34 (m, 2H), 7.27-7.25 (d, J = 7.5 Hz, 1H), 7.20-7.15 (t, J = 8.8 Hz, 1H), 5.94 (s, 1H), 5.18-5.15 (d, J = 13.1 Hz, 1H), 5.11-5.07 (d, J = 13.1 Hz, 1H), 5.01-4.97 (d, J = 15.4 Hz, 2H), 4.92-4.88 (d, J = 15.4 Hz, 1H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 157.7 (d, J = 240 Hz), 140.4, 138.6,138.6, 132.9 (d, J = 5 Hz), 129.2, 128.4 (d, J = 8 Hz), 127.4, 123.5, 121.4, 121.0 (d, J = 17 Hz), 120.1 (d, J = 3 Hz), 114.0 (d, J = 20 Hz), 112.1, 108.3, 71.2, 57.6 (d, J = 5 Hz); FT-IR (KBr, cm⁻¹) 3434, 3106, 3044, 2950, 2864, 1639, 1612, 1575, 1462, 1374, 1239, 1078, 1048, 994, 956, 757; HRMS (ESI): m/z calcd for C₁₇H₁₄FO₂ [M+H]⁺ 269.0972, found 269.0971.

6'-Fluoro-4'-methylene-3H-spiro[isobenzofuran-1,3'-isochroman] (4d)

White solid; (68%); ¹H NMR (400 MHz, d_6 -DMSO) δ 7.67-7.64 (dd, J = 10.6 Hz, J = 2.5 Hz, 1H), 7.45-7.42 (m, 2H), 7.38-7.34 (m, 1H), 7.27-7.21 (m, 2H), 7.19-7.14 (m, 1H), 5.97 (s, 1H), 5.17-5.13 (d, J = 13.1 Hz, 1H), 5.11-5.08 (d, J = 13.1 Hz, 1H), 5.02-4.98 (d, J = 14.9 Hz, 1H), 4.95 (s, 1H), 4.77-4.73 (d, J = 14.9 Hz, 1H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 161.5 (d, J = 240 Hz), 140.3, 139.3, 139.2, 132.6 (d, J = 8 Hz), 130.1 (d, J = 2 Hz), 129.2, 127.5, 126.7 (d, J = 8 Hz), 123.3, 121.4, 115.1 (d, J = 22 Hz), 112.8, 110.3 (d, J = 22 Hz), 108.4, 71.0, 62.1; FT-IR (KBr, cm⁻¹) 3436, 3102, 2921, 2867, 1613, 1585, 1490, 1460, 1365, 1229, 1048, 1001, 959, 768; HRMS (ESI): m/z calcd for C₁₇H₁₄FO₂ [M+H]⁺ 269.0972, found 269.0972.

6'-Chloro-4'-methylene-3H-spiro[isobenzofuran-1,3'-isochroman] (4e)

White solid; (62%); ¹H NMR (400 MHz, d_6 -DMSO) δ 7.87-7.87 (d, J = 2 Hz, 1H), 7.46-7.41 (m, 2H), 7.38-7.33 (m, 2H), 7.24-7.21 (m, 2H), 5.98 (s, 1H), 5.16-5.13 (d, J = 13.0 Hz, 1H), 5.10-5.07 (d, J = 13.0 Hz, 1H), 5.01-4.98 (d, J = 15.3 Hz, 1H), 4.94 (s, 1H), 4.78-4.74 (d, J = 15.3 Hz, 1H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 140.3, 139.1, 138.9, 132.8, 132.5, 131.9, 129.2, 127.7, 127.4, 126.5, 123.7, 123.3, 121.3, 112.8, 108.5, 71.1, 62.2; FT-IR (KBr, cm⁻¹) 3433, 3080, 3047, 2927, 2850, 1641, 1593, 1461, 1363, 1225, 1047, 1000, 946, 764; HRMS (ESI): m/z calcd for C₁₇H₁₄ClO₂ [M+H]⁺ 285.0677, found 285.0676.

6'-bromo-5'-methylene-3H-spiro[isobenzofuran-1,3'-isochroman] (4f)

White solid; (53%); ¹H NMR (400 MHz, d_6 -CDCl₃) δ 7.59-7.56 (d, J = 8.48 Hz, 1H), 7.42-7.39 (m, 2H), 7.36-7.25 (m, 4H), 5.79 (s, 1H), 5.28-5.25 (d, J = 12.7 Hz, 1H), 5.20-5.13 (m, 2H), 5.07 (s, 1H), 4.75-4.71 (d, J = 15.1 Hz, 1H); ¹³C NMR (100 MHz, d_6 -CDCl₃) δ 140.3, 139.4, 139.3, 136.0, 130.3, 129.7, 129.3, 127.7, 127.2, 125.8, 123.6, 121.9, 121.1, 111.8, 109.3, 71.8, 63.0; FT-IR (KBr, cm⁻¹) 3394, 3098, 3076, 2892, 2856, 1635, 1590, 1483, 1466, 1406, 1369, 1229, 1047, 994, 954, 759; HRMS (ESI): m/z calcd for C₁₇H₁₄BrO₂ [M+H]⁺ 329.0177, found 329.0178.

4'-Methylene-6'-(trifluoromethyl)-3H-spiro[isobenzofuran-1,3'-isochroman] (4g)

Pale yellow solid; (57%); ¹H NMR (400 MHz, d_6 -DMSO) δ 8.03-8.01 (d, J = 8.2 Hz, 1H), 7.65-7.62 (m, 2H), 7.47-7.42 (m, 2H), 7.38-73.4 (td, J = 7.6 Hz, J = 1.8 Hz, 1H), 7.24-7.22 (d, J = 7.6 Hz, 1H), 6.05 (s, 1H), 5.18-5.15 (d, J = 13.2 Hz, 1H), 5.12-5.05 (m, 3 H), 4.90-4.82 (d, J = 15.6 Hz, 1H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 140.3, 139.0, 138.9, 135.0, 134.4, 129.2, 128.0 (d, J = 32 Hz), 127.5, 125.1, 124.1 (d, J = 270 Hz), 123.7 (d, J = 4 Hz), 123.3, 121.7 (d, J = 4 Hz), 121.4, 114.0, 108.6, 71.1, 62.3; FT-IR (KBr, cm⁻¹) 3433, 3086, 3051, 2957, 2879, 1639, 1616, 1579, 1504, 1465, 1363, 1338, 1164, 1116, 1047, 997, 958,759; HRMS (ESI): m/z calcd for C₁₈H₁₄F₃O₂ [M+H]⁺ 319.0640, found 319.0939.

6'-Methoxy-4'-methylene-3H-spiro[isobenzofuran-1,3'-isochroman] (4i)

White solid; (65%); ¹H NMR (400 MHz, CDCl₃) δ 744-7.40 (m, 1H), 7.37-7.32 (m, 3H), 7.25-7.24 (d, J = 2.9 Hz, 1H), 7.06-7.04 (d, J = 8.4 Hz, 1H), 6.91-6.89 (d, J = 8.4 Hz, J = 2.5 Hz, 1H), 5.80 (s, 1H), 5.31-5.28 (d, J = 12.7 Hz, 1H), 5.22-5.16 (m, 2H), 5.10 (s, 1H), 4.79-4.75 (d, J = 14.4 Hz, 1H), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.7, 140.5, 140.3, 139.8, 131.8, 129.0, 127.5, 126.6, 125.4, 123.5, 121.0, 114.7, 111.4, 109.3, 108.4, 71.6, 63.3, 55.3; FT-IR (KBr, cm⁻¹) 3433,3055, 3024, 2909, 2868, 1636, 1605, 1579, 1497, 1462, 1384, 1338, 1233, 1050, 1004, 962, 770; HRMS (ESI): m/z calcd for C₁₈H₁₇O₃ [M+H]⁺ 281.1172, found 281.1174.

7'-Mthoxy-4'-methylene-3H-spiro[isobenzofuran-1,3'-isochroman] (4j)

White solid; (63%); ¹H NMR (400 MHz, CDCl₃) δ 7.68-7.66 (d, J = 8.7 Hz, 1H), 7.43-7.39 (m, 1H), 7.35-7.32 (m, 3H), 6.89-6.86 (dd, J = 8.7 Hz, J = 2.6 Hz, 1H), 6.64-6.63 (d, J = 2.6 Hz, 1H), 5.69 (s, 1H), 5.30-5.27 (d, J = 12.6 Hz, 1H), 5.25-5.21 (d, J = 14.7 Hz, 1H), 5.19-5.16 (d, J = 12.6 Hz, 1H), 4.94 (s, 1H), 4.79-4.75 (d, J = 14.7 Hz, 1H), 3.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 140.4, 139.8, 139.7, 135.4, 129.1, 127.5, 125.6, 123.6, 123.5, 121.0, 113.9, 109.6, 109.0, 108.3, 71.6, 63.7, 55.2; FT-IR (KBr, cm⁻¹) 3428, 3055, 3012, 2925, 2868, 1632, 1609, 1579, 1498, 1462, 1365, 1249, 1075, 1006, 961, 766; HRMS (ESI): m/z calcd for C₁₈H₁₇O₃ [M+H]⁺ 281.1172, found 281.1174.

7'-(Benzyloxy)-4'-methylene-3*H*-spiro[isobenzofuran-1,3'-isochroman] (4k)

White solid; (60%); ¹H NMR (400 MHz, CDCl₃) δ 7.69-7.67 (d, J = 8.7 Hz, 1H), 7.47-7.40 (m, 5H), 7.38-7.33 (m, 4H), 6.97-6.94 (dd, J = 8.7 Hz, J = 2.4 Hz, 1H), 6.72-6.72 (d, J = 2.1 Hz, 1H), 5.70 (s, 1H), 5.31-5.28 (d, J = 12.7 Hz, 1H), 5.25-5.21 (d, J = 14.9 Hz, 1H), 5.19-5.16 (d, J = 12.7 Hz, 1H), 5.11 (s, 2H), 4.95 (s, 1H), 4.78-4.74 (d, J = 14.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 158.6, 140.4, 139.8, 139.7, 136.7, 135.4, 129.1, 128.5, 127.9, 127.5, 127.3, 125.6, 123.8, 123.6, 121.0, 114.7, 109.6, 109.5, 109.2, 71.6, 70.0, 63.7; FT-IR (KBr, cm⁻¹) 3402, 3062, 3033, 2921, 2861, 1607, 1574, 1498, 1382, 1359, 1277, 1244, 1074, 1049, 1005, 958, 758; HRMS (ESI): m/z calcd for C₂₄H₂₁O₃ [M+H]⁺ 357.1485, found 357.1484.

5',6',7'-Trimethoxy-4'-methylene-3H-spiro[isobenzofuran-1,3'-isochroman] (4)

Colorless oil; (55%); ¹H NMR (400 MHz, CD₃COCD₃) δ 7.40-7.38 (m, 2H), 7.33-7.30 (m, 2H), 7.20-7.18 (d, J = 7.6 Hz, 1H), 6.67 (s, 1H), 6.21-6.21 (d, J = 1.5 Hz, 1H), 5.18-5.18(d, J = 1.5 Hz, 1H), 5.17-5.08(dd, J = 12.8Hz, J = 21.5 Hz, 2H), 4.97-4.93 (d, J = 14.4 Hz, 1H), 4.62-4.58 (d, J = 14.4 Hz, 1H), 3.87(s, 2H), 3.82(s, 2H), 3.80(s, 2H); ¹³C NMR (100 MHz, CD₃COCD₃) δ 154.1, 153.6, 142.9, 142.1, 141.3, 139.0, 133.0, 129.6, 128.1, 124.2, 121.9, 118.8, 115.7, 111.1, 104.6, 71.9, 64.3, 60.9, 60.2, 56.3. FT-IR (KBr, cm⁻¹) 3455, 2935, 2861, 1655, 1596, 1488, 1461, 1413, 1358, 1337, 1278, 1242, 1118, 1098, 1048, 1013, 958,764; HRMS (ESI): m/z calcd for C₂₄H₂₁O₃ [M+H]⁺ 341.1485, found 341.1484.

1'-Methyl-4'-methylene-3H-spiro[isobenzofuran-1,3'-isochroman] (4m)

Pale yellow solid; (64%); ¹H NMR (400 MHz, d_6 -DMSO) δ 7.76-7.72 (m, 1H), 7.43-7.21 (m, 6H), 6.90-6.88 (d, J = 7.6 Hz, 1H), 5.81-5.75 (s, 1H), 5.20-4.85 (m, 4H), 1.53-1.52 (d, J = 6.6 Hz, 3H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 141.0, 140.9, 140.3, 139.8, 139.7, 139.6, 138.6, 138.3, 130.6, 130.4, 128.9, 128.8, 128.2, 128.0, 127.3, 127.2, 127.1, 127.0, 124.8, 124.3, 124.0, 123.9, 123.5, 122.3, 121.6, 121.2, 110.9, 110.0, 109.0, 107.9, 70.8, 70.2, 67.3, 23.1, 20.4; FT-IR (KBr, cm⁻¹) 3367, 3067, 3032, 2979, 2931, 2864, 1632, 1610, 1576, 1460, 1372, 1234, 1106, 1007, 962, 752; HRMS (ESI): m/z calcd for C₁₈H₁₇O₂ [M+H]⁺ 265.1223, found 265.1224.

8-Methylene-5,8-dihydro-3'H-spiro[[1,3]dioxolo[4,5-g]isochromene-7,1'-isobenzofuran] (4n)

Pale red oil; (56%); ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.39 (m, 1H), 7.37-7.31 (m, 3H), 7.17 (s, 1H), 6.56 (s, 1H), 5.98-5.96 (dd, *J* = 6.8 Hz, *J* = 1.2 Hz, 2H), 5.61 (s, 1H), 5.29-5.26 (d, *J* = 12.7 Hz, 1H), 5.18-5.13 (m, 2H), 4.95 (s, 1H), 4.71-4.67 (d, *J* = 14.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 147.7, 147.2, 140.3, 140.1, 139.7, 129.1, 128.4, 127.5, 124.6, 123.6, 121.0, 109.7, 109.3, 104.1, 103.9, 101.0, 71.6, 63.7; FT-IR (KBr, cm⁻¹) 3372, 3037, 2905, 2862, 1625, 1610, 1561, 1501, 1482, 1377, 1355, 1274, 1243, 1089, 1038, 957, 937, 756; HRMS (ESI): m/z calcd for C₁₈H₁₅O₄ [M+H]⁺ 295.0965, found 295.0966.

-Methylene-1,4-dihydro-3'H-spiro[benzo[g]isochromene-3,1'-isobenzofuran] (40)

Pale yellow solid; (55%); ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 7.90-7.87 (m, 1H), 7.82-7.80 (m, 1H), 7.61 (s, 1H), 7.51-7.46 (m, 2H), 7.44-7.40 (m, 1H), 7.35-7.27 (m, 3H), 6.02 (s, 1H), 5.40-5.33 (m, 2H), 5.24-5.21 (d, *J* = 13.6 Hz, 2H), 4.97-4.94 (d, *J* = 14.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 141.5, 140.5, 140.0, 132.8, 132.8, 132.6, 130.2, 129.0, 128.1, 127.6, 127.3, 126.4, 125.8, 123.3, 123.1, 122.5, 121.0, 113.2, 109.9, 71.7, 64.0; FT-IR (KBr, cm⁻¹) 3432, 3047, 2919, 2854, 1638, 1597, 1499, 1460, 1370, 1316, 1229, 1188, 1094, 1048, 1002, 957, 855, 758; HRMS (ESI): m/z calcd for C₂₁H₁₇O₂ [M+H]⁺ 301.1223, found 301.1225.

3-Methylene-3H,3'H-spiro[benzofuran-2,1'-isobenzofuran] (4p)

Pale yellow oil; (20%); ¹H NMR (400 MHz, CDCl₃) δ 7.52-7.50 (dd, J = 7.5 Hz, J = 0.72 Hz, 1H), 7.47-7.43 (m, 1H), 7.38-7.34 (m, 2H), 7.31-7.27 (m, 1H), 7.25-7.23 (m, 1H), 7.02-6.98 (td, J = 7.5 Hz, J = 0.72 Hz, 1H), 6.88-6.86 (d, J = 8.0 Hz, 1H), 5.80 (s, 1H), 5.44-5.40 (d, J = 12.8 Hz, 1H), 5.27-5.24 (d, J = 12.8 Hz, 1H), 5.09 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 146.0, 139.9, 138.5, 130.9, 129.6, 128.2, 124.1, 123.1, 121.1, 121.0, 120.8, 118.9, 110.4, 108.6, 72.6; FT-IR (KBr, cm⁻¹) 3394, 3051, 3034, 2924, 2870, 1645, 1608, 1594, 1463, 1357, 1280, 1267, 1242, 1057, 990, 912, 750; HRMS (ESI): m/z calcd for C₁₆H₁₃O₂ [M+H]⁺237.0910, found 237.0908.

4'-methylene-7H-spiro[[1,3]dioxolo[4,5-f]isobenzofuran-5,3'-isochroman] (4s)

Pale red oil; (52%); ¹H NMR (400 MHz, CDCl₃) δ 7.73-7.71 (m, 1H), 7.32-7.27 (m, 2H), 7.14-7.10 (m, 1H), 6.73 (s, 2H), 6.03-5.98 (dd, *J* = 16.6 Hz, *J* = 1.2 Hz, 2H), 5.81 (s, 1H), 5.25-5.17 (m, 2H), 5.11 (s, 1H), 5.08-5.04 (d, *J* = 12.2 Hz, 1H), 4.81-4.77 (d, *J* = 14.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 149.2, 147.8, 140.4, 134.1, 133.8, 132.9, 130.7, 127.9, 127.1, 124.3, 124.0 1112, 109.6, 104.0, 101.6, 101.2, 71.6, 63.7; FT-IR (KBr, cm⁻¹) 3395, 3066, 3021, 2951, 2899, 2860, 1617, 1600, 1577, 1501, 1478, 1387, 1368, 1278, 1263, 1061, 1032, 1011, 962, 938, 773, 733; HRMS (ESI): m/z calcd for C₁₈H₁₅O₄ [M+H]⁺295.0965, found 295.0963.

4-Methylene-3'H-spiro[isochroman-3,1'-naphtho[2,3 c]furan] (4t)

White solid; (54%); ¹H NMR (400 MHz, d_6 -DMSO) δ 7.98-7.95 (m, 2H), 7.91 (s, 1H), 7.85-7.82 (m, 1H), 7.79 (s, 1H), 7.56-7.47 (m, 2H), 7.35-7.33 (m, 2H), 7.22-7.20 (m, 1H), 5.94 (s, 1H), 5.30-5.26 (d, J = 13.6 Hz, 1H), 5.25-5.21 (d, J = 13.6 Hz, 1H), 5.09-5.05 (d, J = 15.1 Hz, 1H), 5.02 (s, 1H), 4.80-4.76 (d, J = 15.1 Hz, 1H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 139.9, 138.7, 138.4, 133.9, 133.5, 132.5, 130.4, 128.5, 127.9, 127.7, 127.2, 126.5, 125.8, 124.4, 123.9, 122.3, 119.5, 111.6, 108.2, 70.2, 62.6; FT-IR (KBr, cm⁻¹) 3431, 3057, 2919, 2865, 1629, 1608, 1503, 1486, 1461, 1442, 1370, 1312, 1232, 1209, 1105, 1065, 1050, 1009, 958, 900, 878, 777; HRMS (ESI): m/z calcd for C₂₁H₁₇O₂ [M+H]⁺ 301.1223, found 301.1224.

5. Synthesis of 1a

Step 1

5 (2 mmol, 672 mg) was dissolved in THF (10 mL) and cooled to 0 °C. NaBH₄ (2.5 mmol, 95 mg) and BF₃·OEt₂ (2.5 mmol, 0.35mL) was slowly added into the stirring solution at 0 °C. The reaction mixture was then warmed to room temperature and stirred for 2 h, monitoring by TLC. Upon completion, the reaction was quenched with water (15 mL) at 0 °C and saturated with K₂CO₃. After extraction with EtOAc (3 × 20 mL), the combined organic phases were dried (Na₂SO₄) and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc : petroleum = 4:1) to yield the target **6** (642 mg, 95%).

Step 2

6 (2 mmol, 676 mg) was dissolved in DMF (2.5mL), DMAP (0.04 mmol, 4.88 mg) and imidazole (2.4mmol, 163 mg) were slowly added into the stirring solution and stirred for 0.5 h. The mixed reaction was then added TBSCl (3 mmol, 450 mg) and stirred for 6 h, monitoring by TLC. Upon completion, the reaction was quenched with water (15 mL) and saturated with K₂CO₃. After extraction with EtOAc (3×20 mL), the combined organic phases were dried (Na₂SO₄) and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc : petroleum = 16:1) to yield the target **7** (832 mg, 92%).

Step 3

To a stirred solution of 7 (4 mmol, 1.8 g), Pd(PPh₃)₂Cl₂ (141 mg, 0.2 mmol), CuI (76 mg,0.4 mmol) in NEt₃ (50 mL) was added propargylic alcohol (0.60 mL, 10 mmol) at RT and continued stir for 20 h at the same temperature, water (50 mL) the reaction mixture was diluted with water at the same temperature, and stirring was continued for 30 min. The resulting mixture was extracted with EtOAc (3 \times 100 mL). The combined extracts were washed with brine, and the residue upon workup was chromatographed on silica gel with (EtOAc : petroleum = 4:1) as eluent to give the propargylic alcohol **8** (836 mg, 55%).

Step 4

To a stirred solution of propargylic alcohol 8 (2 mmol, 760 mg) and pyridine (4 mmol, 0.35 mL) in

 CH_2Cl_2 (10 mL) was added dropwise methyl chlorocarbonate (8 mmol, 0.6 mL) at 0 °C, and stirring was continued for 1 h at room temperature. The reaction mixture was diluted with water and extracted with EtOAc (3 × 20 mL). The combined extracts were washed with aqueous NH₄Cl and brine, and the residue upon workup was chromatographed on silica gel with (EtOAc : petroleum = 8:1) as eluent to give the target **9** (745 mg, 85%).

Step 5

To a stirred solution of **9** (2 mmol, 876 mg) in THF (20 mL) was added TBAF (8 mmol, 2.08 g) at room temperature, and stirring was continued for 30 min at the same temperature. The reaction mixture was quenched with 1.0 M HCl, and extracted with EtOAc (3×20 mL). The combined extracts were washed with aqueous NH₄Cl and brine, and the residue upon workup was chromatographed on silica gel with (EtOAc : petroleum = 2:1) as eluent to give the target **10** (518 mg, 80%).

Step 6

To a solution of propargylic compound **10** (1.5 mmol, 486 mg) in DMF (5.0 mL) was added Na₂CO₃ (188 mg, 3 mmol). The mixture was stirred for 5 min and Pd(OAc)₂/P(2-Tol)₃ (13.4mg, 0.06 mmol, 10 mol %), and **6** (0.60 mmol,196 mg) were added. The resulting mixture was then heated under an argon atmosphere at 120 °C. When the reaction was considered complete as determined by TLC analysis, the reaction mixture was allowed to cool to room temperature and quenched with a saturated aqueous solution of ammonium chloride, and the mixture was extracted with EtOAc. The combined organic extracts were washed with water and saturated brine. The organic layers were dried over Na₂SO₄, filtered. Solvents were evaporated under reduced pressure. The residue was purified by chromatography on silica gel to afford spriocyclic compound **11** (124 mg, 45%).

Step 7

To a solution of **11** (0.2 mmol, 91.6 mg) in CH_2Cl_2 (10 mL) and the solution was cooled down to -78 °C. O₃ was directed into the solution and TLC was used to indicate the conversion of the substrate every 2 min. After about 10 min, upon complete conversion, the resulting solution was added Me₂S and the solution was allowed to warm up to room temperature and stirred for another 1 h. The resulting solution was concentrated in vacuo and the crude product was purified by column chromatography on silica gel to give the pure product **1a** (46 mg, 50%).

(2-Iodo-3,4,5-trimethoxy-6-methylphenyl)methanol (6)

White solid; (95%); ¹H NMR (400 MHz, CD₃COCD₃) δ 4.83 (s, 1H), 4.82 (s, 1H), 3.86 (s, 3H), 3.80 (s, 3H), 3.79 (s, 3H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CD₃COCD₃) δ 153.4, 152.0, 146.5, 129.0, 94.5, 67.4, 61.0, 60.7, 60.7, 12.7.

Tert-butyl((2-iodo-3,4,5-trimethoxy-6-methylbenzyl)oxy)dimethylsilane (7)

Colorless oil; (92%); ¹H NMR (400 MHz, CD₃COCD₃) δ 4.93 (s, 2H), 3.87 (s, 3H), 3.81 (s, 3H), 3.80 (s, 3H), 2.33 (s, 3H), 0.93 (s, 9H), 0.16 (s, 6H); ¹³C NMR (100 MHz, CD₃COCD₃) δ 153.4, 152.0, 146.6, 137.4, 129.1, 94.5, 68.9, 61.0, 60.8, 60.7, 26.3, 18.9, 12.7, -4.8.

3-(2-(((Tert-butyldimethylsilyl)oxy)methyl)-4,5,6-trimethoxy-3-methylphenyl)prop-2-yn-1-ol (8)

Colorless oil; (55%); ¹H NMR (400 MHz, CD₃COCD₃) δ 4.89 (s, 2H), 4.49-4.48 (d, J = 5.6 Hz, 2H), 4.34-4.31 (t, J = 5.9 Hz, 1H), 3.85 (s, 6H), 3.81 (s, 3H), 2.26 (s, 3H), 0.89 (s, 9H), 0.09 (s, 6H); ¹³C NMR (100 MHz, CD₃COCD₃) δ 153.8, 153.4, 146.6, 137.3, 128.5, 114.3, 96.5, 79.3, 62.1, 61.2, 61.1, 60.8, 51.2, 26.2, 18.8, 11.9, -5.04.

3-(2-(((Tert-butyldimethylsilyl)oxy)methyl)-4,5,6-trimethoxy-3-methylphenyl)prop-2yn-1-ylmethyl carbonate (9)

Colorless oil; (85%); ¹H NMR (400 MHz, CD₃COCD₃) δ 5.06 (s, 2H), 4.87 (s, 2H), 3.86 (s, 3H) 3.85 (s, 3H), 3.82 (s, 3H), 3.79 (s, 3H), 2.26 (s, 3H), 0.90 (s, 9H), 0.10 (s, 6H); ¹³C NMR (100 MHz, CD₃COCD₃) δ 156.0, 154.2, 154.1, 146.6, 137.6, 128.6, 113.2, 90.4, 82.2, 62.0, 61.4, 61.1, 60.8, 56.7, 55.3, 26.2, 18.8, 11.9, -5.0.

3-(2-(Hydroxymethyl)-4,5,6-trimethoxy-3-methylphenyl)prop-2-yn-1-yl methyl carbonate (10)

Colorless oil; (80%); ¹H NMR (400 MHz, CD₃COCD₃) δ 5.04 (s, 2H), 4.74 (s, 2H), 3.85 (s, 3H) 3.84 (s, 3H), 3.82 (s, 3H), 3.79 (s, 3H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CD₃COCD₃) δ 156.0, 154.2, 154.0, 146.5, 138.7, 128.3, 113.3, 90.2, 82.2, 61.3, 61.1, 60.8, 60.6, 56.8, 55.3, 11.8.

5,5',6,6',7,7'-Hexamethoxy-4,8'-dimethyl-4'-methylene-3*H*-spiro[isobenzofuran-1,3'-isochroman] (11)

Colorless oil; (45%); ¹H NMR (400 MHz, CD₃COCD₃) δ 6.18-6.18 (d, J = 1.6 Hz, 1H), 5.29-5.29 (d, J = 1.6 Hz, 1H), 5.02 (s, 2H), 4.72-4.71 (d, J = 1.6 Hz, 2H), 3.89 (s, 3H), 3.84 (s, 3H), 3.84 (s, 3H), 3.82 (s, 3H), 3.81 (s, 3H), 3.80 (s, 3H), 3.58 (s, 3H), 2.10 (s, 3H), 2.09 (s, 3H); ¹³C NMR (100 MHz, CD₃COCD₃) δ 154.1, 151.9, 151.3, 147.6, 146.9, 146.7, 139.1, 135.9, 131.3, 130.2, 122.7, 122.3, 120.1, 116.7, 111.7, 71.4, 61.7, 61.1, 61.0, 60.9, 60.9, 60.8, 60.0, 12.0, 10.5.

Colorless oil; (50%); ¹H NMR (400 MHz, d_6 -DMSO) δ 5.14-5.10 (d, J = 12.7 Hz, 1H), 5.06-5.02 (d, J = 16 Hz, 1H), 5.04-5.01 (d, J = 12.7 Hz, 1H), 4.88-4.84 (d, J = 16 Hz, 1H), 3.88 (s, 3H), 3.82 (s, 3H), 3.79 (s, 3H), 3.78 (s, 3H), 3.75 (s, 3H), 3.68 (s, 3H), 2.06 (s, 3H),; ¹³C NMR (100 MHz, d_6 -DMSO) δ 184.9, 156.3, 153.4, 153.4, 146.2, 145.3, 136.6, 135.1, 125.3, 121.9, 119.1, 118.1, 108.0, 72.6, 61.2, 61.0, 60.8, 60.7, 60.5, 60.4, 12.012.0, 10.2.

6. Reference

- 1. M. Yoshida et al. Tetrahedron, 61 (2005), 4381-4393
- 2. Muhammet Uyanik et al. J. Am. Chem. Soc. 2009, 131, 251-262
- 3. Yepeng Luan et al. J. Nat. Prod. 2014, 77, 1718-172

7. Crystallographic data of 4c

Structure of 4c

Crystal data		
Moiety formula: C17H13FO2	$D_x = 1.347 \text{ Mg m}-3$	
$M_r = 268.27$	Monoclinic, P21/n	
Cell: $a = 10.848 (2) \text{ Å}$. $b = 8.1961 (16) \text{ Å}$	Extinction coefficient: 0.158 (9)	
$c = 15.304 (3) \text{ Å}, \beta = 103.597 (3)^{\circ}$		
Z = 4	T = 296 K	
F(000) = 560	S = 1.00	
$T_{min} = 0.972, T_{max} = 0.976$	$h = -12 \rightarrow 12$	
V = 1322.5 (4) Å3	k = −9→9	
wR(F2) = 0.123	$1 = -18 \rightarrow 13$	
Reflections: 2326	$R_{int} = 0.048$	

8. Copies of ¹H and ¹³C Spectra

S31

