Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supplementary Materials

Imidazo[1,5-*a*]pyridin-3-ylidenes as π-Accepting Carbene Ligands: Substituent Effects on Properties of N-Heterocyclic Carbenes

Yuma Koto, Fumitoshi Shibahara,* Toshiaki Murai*

Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu, Gifu 501-1193, Japan

General remarks	2
Materials	2
Synthetic Procedures and Characterization of Compounds	3
X-ray diffraction analyses (Procedure, Tables S1-36, and Figures S1-6)	27
Discussion of polymerization of phenylacetylene with complexes 5b-d	95
References	97
Copies of ¹ H and ¹³ C NMR of Novel Compounds	98

General remarks

The infrared (IR) spectra were obtained on JASCO FT/IR 410 spectrometer and PerkinElmer Spectrum 400 FT-IR/FT-FIR Spectrometer. ¹H, ¹³C, ¹⁹F and ⁷⁷Se NMR spectra were recorded in CDCl₃ or DMSO- d_6 . Chemical shifts of ¹H and ¹³C are reported in δ , and are referenced to tetramethylsilane ($\delta = 0$), CDCl₃ and DMSO- d_6 as internal standards, respectively. ¹⁹F chemical shifts are expressed in δ relative to the external standard CF₃COOH (δ = -76.55). ⁷⁷Se chemical shifts are expressed in δ relative to the external standard PhSeSePh (δ = 463). Mass spectra (MS) and high-resolution mass spectra (HRMS) were obtained by ionizing samples via electron ionization (EI) or fast atom bombardment ionization (FAB) in positive mode using a magnetic sector analyzer. Elemental analysis was performed by Organic Elemental Microanalysis Laboratory, Kyoto University. Preparative recycling gel permeation chromatography (GPC) was carried out using CHCl₃ as the eluent. The molecular weight distribution of the polymers was measured by size exclusion chromatography (SEC) using THF as the eluent at 40 °C on Tosoh HLC-8020 SEC system equipped with Tosoh TSK gel columns (G2000HXL and G4000HXL) and Tosoh UV-8010 UV detector (254 nm). The number average molecular weight (M_n) and the polydispersity (M_w/M_n) of the polymers were calculated from SEC eluograms based on polystylene calibration.

Materials

Unless otherwise stated, all compounds were obtained from common commercial Diphenyliodonium tetrafluoroborate,^{S1} suppliers and used as received. 1-ethynyl-2,3,4,5,6-pentafluorobenzene^{S2} were prepared according to literature procedures. All solvents were purified by distillation over the drying agents indicated and were transferred under argon: CH₂Cl₂ (P₂O₅), toluene (Na), 1,4-dioxane (Na), MeCN, DMF (CaH₂), Et₃N (CaH₂), 'Pr₂NEt (CaH₂). Et₂O (dehydrated) and THF (dehydrated) were purchased from Kanto Chemical Co. and used without further purification. Column chromatography was performed on silica gel 60N (spherical, neutral, 40-50 mm) from Kanto Chemical Co., Ltd. All manipulations were carried out under an argon atmosphere unless otherwise noted.

1-Bromoimidazo[1,5-*a*]pyridine (2Br)

Prepared according to literature procedure.^{S3 1}H NMR (400 MHz, CDCl₃) δ 6.60 (dd, *J* = 7.1, 6.3 Hz, 1H, Ar), 6.77 (dd, *J* = 9.3, 6.3 Hz, 1H, Ar), 7.36 (d, *J* = 9.3 Hz, 1H, Ar), 7.89 (d, *J* = 7.1 Hz, 1H, Ar), 8.04 (s, 1H, Ar).

1-lodoimidazo[1,5-a]pyridine (2l)

To a solution of imidazo[1,5-*a*]pyridine (590 mg, 5.0 mmol, 1.0 equiv) in THF (25 mL) was added l₂ (1.3 g, 5.0 mmol, 1.0 equiv) at room temperature under Ar atmosphere. The resulting mixture was stirred under reflux for 1 h and then cooled to room temperature. The reaction mixture was quenched with saturated Na₂S₂O₃ aq, neutralized with NaHCO₃ aq, and extracted with CH₂Cl₂. The combined organic layer was dried over MgSO₄, filtrated, and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 4/1) to give 1-iodoimidazo[1,5-*a*]pyridine (420 mg, 34%) as a brownish syrup. R_f = 0.35 (*n*-hexane/EtOAc = 1/1); ¹H NMR (400 MHz, CDCl₃) δ 6.61 (dd, *J* = 7.1, 6.3 Hz, 1H, Ar), 6.76 (dd, *J* = 9.3, 6.3 Hz, 1H, Ar), 7.32 (d, *J* = 9.3 Hz, 1H, Ar), 7.91 (d, *J* = 7.1 Hz, 1H, Ar), 8.12 (s, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 72.3, 113.6, 118.5, 120.4, 122.6, 129.2, 132.3 (Ar); IR (KBr) 3074, 2929, 2360, 1929, 1749, 1629, 1559, 1523, 1506, 1430, 1356, 1324, 1305, 1292, 1260, 1237, 1174, 1139, 998, 973, 911, 827, 804, 757, 743, 649, 561 cm⁻¹; MS (EI): *m/z*: 244 [*M*]⁺; HRMS (EI): *m/z* calcd for C₇H₅IN₂: 243.9497 [*M*]⁺; found: 243.9512.

General procedure for the synthesis of 1-aryimidazo[1,5-a]pyridines

A flame dried and argon-flushed 2-neck flask equipped with refluxing condenser and dropping funnel was charged with 1-bromoimidazo[1,5-*a*]pyridine (1.0 equiv), Ni(dppe)Cl₂ (5.0 mol%) and anhydrous THF (0.50 M). The mixture was cooled to 0 °C, and Grignard reagent (THF solution, 3.0 equiv) was added dropwise via dropping funnel. After the addition, the reaction mixture was stirred under reflux for indicated time and then cooled to room temperature. The reaction mixture was quenched with saturated NH₄Cl aq., extracted with CH₂Cl₂. The combined organic layer was dried over MgSO₄, filtrated, and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel to give 1-arylimidazo[1,5-*a*]pyridine.

1-(2-Methoxyphenyl)imidazo[1,5-a]pyridine (3a)

5.0 mmol scale; 0.46 M of (2-methoxyphenyl)magnesium bromide was used; Reflux for 20 h; Pinkish solid; 61% yield; $R_f = 0.30$ (*n*-hexane/EtOAc = 1/1); m.p. 155-158 °C; ¹H NMR (400 MHz, CDCl₃) δ 3.87 (s, 3H, OMe), 6.56 (dd, J = 7.3, 6.3 Hz, 1H, Ar), 6.70 (dd, J = 9.3, 6.3 Hz, 1H, Ar), 7.02 (d, J = 8.3 Hz, 1H, Ar), 7.07 (dd, J = 7.3, 6.3 Hz, 1H, Ar), 7.32 (dd, J = 8.3, 6.3 Hz, 1H, Ar), 7.55 (d, J = 9.3 Hz, 1H, Ar), 7.70 (d, J = 7.3 Hz, 1H, Ar), 7.90 (d, J = 7.3 Hz, 1H, Ar), 8.23 (s, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 55.4 (OMe), 111.1, 112.8, 118.7, 120.4, 120.9, 122.1, 123.8, 127.4, 128.2, 131.1, 156.3 (Ar); IR (KBr) 3112, 3083, 3029, 2937, 2833, 1935, 1891, 1807, 1780, 1632, 1598, 1577, 1555, 1529, 1519, 1492, 1462, 1430, 1411, 1335, 1323, 1306, 1273, 1244, 1179, 1155, 1092, 1047, 1021, 1001, 970, 931, 913, 849, 837, 794, 779, 754, 741, 720, 689, 678, 614, 594, 571, 541, 516 cm⁻¹; MS (EI): m/z 224 [M]⁺; HRMS (EI) m/z calcd for C₁₄H₁₂N₂O 224.0950 [M]⁺; found: 224.0955.

1-(4-Methoxyphenyl)imidazo[1,5-a]pyridine (3b)

1.7 mmol scale; 0.40 M of (4-methoxyphenyl)magnesium bromide was used; Reflux for 3 h; Yellow solid; 69% yield; $R_f = 0.30$ (*n*-hexane/EtOAc = 1/1); m.p. 100-101 °C; ¹H NMR (400 MHz, CDCl₃) δ 3.86 (s, 3H, OMe), 6.58 (dd, J = 7.3, 6.3 Hz, 1H, Ar), 6.75 (dd, J = 9.3, 6.3 Hz, 1H, Ar), 7.01 (d, J = 8.8 Hz, 2H, Ar), 7.75 (d, J = 9.3 Hz, 1H, Ar), 7.81 (d, J = 8.8 Hz, 2H, Ar), 7.87 (d, J = 7.3 Hz, 1H, Ar), 8.23 (s, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 55.3 (OMe), 112.9, 114.2, 118.9, 119.4, 122.4, 125.8, 127.1, 127.6, 131.3, 158.4 (Ar), A peak was not observed; IR (KBr) 3114, 3003, 2924, 2840, 1900, 1628, 1609, 1574, 1538, 1517, 1503, 1455, 1413, 1328, 1309, 1286, 1249, 1221, 1177, 1129, 1105, 1127, 1102, 971, 915, 836, 776, 751, 729, 679, 663, 634, 579, 531, 515 cm⁻¹; MS (EI): m/z: 224 [M]⁺; HRMS (EI): m/z calcd for C₁₄H₁₂N₂O 224.0950 [M]⁺; found 224.0947.

1-Phenylimidazo[1,5-*a*]pyridine (3c)

3.3 mmol scale; 0.70 M of phenylmagnesium bromide was used; Reflux for 1 h; Yellow solid; 62% yield; $R_{\rm f}$ = 0.50 (*n*-hexane/EtOAc = 1/1); m.p. 97-99 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.60 (dd, *J* = 7.3, 6.3 Hz, 1H, Ar), 6.79 (dd, *J* = 9.3, 6.3 Hz, 1H, Ar), 7.30 (dd, *J* = 7.8, 7.3 Hz, 1H, Ar), 7.47 (t, *J* = 7.8 Hz, 2H, Ar) 7.82 (d, *J* = 9.3 Hz, 1H, Ar), 7.89 (d, *J* = 7.3 Hz, 2H, Ar), 7.95 (d, *J* = 7.3 Hz, 1H, Ar), 8.21 (s, 1H; Ar); ¹³C NMR (100 MHz, CDCl₃) δ 113.0, 118.9, 120.0, 122.6, 126.42, 126.44, 127.5, 128.8 (2C), 131.4, 135.1

(Ar); IR (KBr): 3114, 3076, 3033, 1765, 1631, 1600, 1572, 1538, 1515, 1490, 1454, 1444, 1415, 1330, 1304, 1238, 1221, 1156, 1134, 1121, 1070, 1002, 964, 912, 829, 769, 755, 722, 700, 676, 614, 586, 566, 518 cm⁻¹; MS (EI): m/z: 194 $[M]^+$; HRMS (EI): m/z calcd for C₁₃H₁₀N₂ 194.0844 $[M]^+$; found: 194.0822.

1-(4-Trifluoromethylphenyl)imidazo[1,5-a]pyridine (3d)

1.9 mmol scale; 0.20M of 4-trifluoromethylphenylmagnesium bromide and 10 mol% of Ni(dppp)Cl₂ was used; Reflux for 1 h; Pale yellow solid; 17% yield; $R_f = 0.35$ (*n*-hexane/EtOAc = 1/1); m.p. 109-112 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.62 (dd, J = 6.8, 6.1 Hz, 1H, Ar), 6.85 (dd, J = 9.5, 6.8 Hz, 1H, Ar), 7.67 (d, J = 8.1 Hz, 2H, Ar), 7.79 (d, J = 9.5 Hz, 1H, Ar), 7.95 (d, J = 6.1 Hz, 1H, Ar), 7.97 (d, J = 8.1Hz, 2H, Ar), 8.17 (s, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 113.3, 118.5, 121.2, 122.9, 124.4 (q, ¹ $_{J_{C-F}} = 272.1$ Hz, CF₃), 125.7 (q, ³ $_{J_{C-F}} = 3.3$ Hz, CHCCF₃), 126.1, 127.3, 127.9 (Ar), 128.0 (q, ² $_{J_{C-F}} = 33.1$ Hz, CHCF₃), 129.7, 138.4 (Ar); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7; IR (KBr) 3099, 1615, 1525, 1504, 1459, 1409, 1325, 1247, 1187, 1165, 1101, 1067, 1006, 969, 915, 844,821, 803, 752, 738, 704, 676, 630, 593, 566 cm⁻¹; MS (EI): *m/z*: 262 [*M*]⁺; HRMS (EI): *m/z* calcd for C₁₄H₉F₃N₂ 262.0718, [*M*]⁺; found 262.0717.

1-Pentafluorophenylimidazo[1,5-*a*]pyridine (3e)

A flame dried and argon-flushed 2-neck flask equipped with refluxing condenser and dropping funnel was charged with CuBr (1.2 g, 4.0 equiv) and anhydrous THF (4.0 mL). pentafluorophenylmagnesium bromide (0.45 M in Et₂O, 1.7 equiv) was added dropwise at room temperature and stirred for 1 h. The solution of 1-bromoimidazo[1,5-a]pyridine (390 mg, 2.0 mmol, 1.0 equiv) in anhydrous toluene (2.0 mL) and anhydrous 1,4-dioxane (2.0 mL) was added dropwise via dropping funnel to the reaction mixture. After the addition, the reaction mixture was stirred at 90 °C for 12 h and then cooled to room temperature. The reaction mixture was guenched with saturated NH₄CI ag, extracted with CH₂Cl₂. The combined organic layer was dried over MgSO₄, filtrated, and concentrated in vacuo. The residue was purified by GPC to give 1-(pentafluorophenyl)imidazo[1,5-a]pyridine in 5.4% yield as a pale yellow solid. $R_{\rm f}$ = 0.35 (*n*-hexane/EtOAc = 1/1); m.p. 135-136 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.71 (d, J = 6.8 Hz, 1H, Ar), 6.90 (dd, J = 9.3, 6.3 Hz, 1H, Ar), 7.37 (d, J = 9.3 Hz, 1H, Ar), 8.01 (d, J = 6.8 Hz, 1H, Ar), 8.30 (s, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 109.8 (td, $J_{C-F} = 16.5$,

 $\mathbf{5}$

4.1 Hz), 113.4, 116.9, 118.0 (t, $J_{C-F} = 3.3$ Hz), 121.4, 122.6, 128.6, 129.3, 137.9 (dm, $J_{C-F} = 249.8$ Hz), 140.3 (dm, $J_{C-F} = 253.1$ Hz), 144.52 (dm, $J_{C-F} = 248.9$ Hz) (Ar). ¹⁹F NMR (376 MHz, CDCl₃) δ –162.8 (ddd, J = 22.9, 21.4, 7.6 Hz, 2F), –156.4 (t, J = 21.4 Hz, 1F), –141.3 (dd, J = 22.9, 7.6 Hz, 2F); IR (KBr) 3112, 2924, 2853, 1921, 1542, 1529, 1492, 1450, 1338, 1308, 1244, 1104, 1028, 1004, 980, 821, 804, 745, 733, 672, 426 cm⁻¹; MS (EI): m/z: 284 [M]⁺; HRMS (EI): m/z calcd for C₁₃H₅F₅N₂ 284.0373 [M]⁺; found 284.0380.

1-(4-Methoxyphenyl)ethynyl) imidazo[1,5-a]pyridine (3f)

Prepared according to literature procedure.^{S3 1}H NMR (400 MHz, CDCl₃) δ 3.84 (s, 3H, OMe), 6.67 (dd, *J* = 7.3, 6.3 Hz, 1H, Ar), 6.83-6.92 (m, 3H, Ar), 7.53 (d, *J* = 8.8 Hz, 1H, Ar), 7.66 (d, *J* = 9.3 Hz, 1H, Ar), 7.96 (d, *J* = 7.3 Hz, 1H, Ar), 8.13 (s, 1H, Ar).

1-(Phenylethynyl)imidazo[1,5-a]pyridine (3g)

Prepared according to literature procedure.^{S3 1}H NMR (400 MHz, CDCl₃) δ 6.63 (t, *J* = 6.6 Hz, 1H, Ar), 6.85 (dd, *J* = 9.0, 6.6 Hz, 1H, Ar), 7.30-7.38 (m, 3H, Ar), 7.58 (d, *J* = 8.3 Hz, 2H, Ar), 7.64 (d, *J* = 9.0 Hz, 1H, Ar), 7.92 (d, *J* = 7.0 Hz, 1H, Ar), 8.06 (s, 1H, Ar).

1-((4-Trifluoromethylphenyl)ethynyl)imidazo[1,5-a]pyridine (3h)

Prepared according to literature procedure.^{S3 1}H NMR (400 MHz, CDCl₃) δ 6.74 (dd, *J* = 6.8, 6.3 Hz, 1H, Ar), 6.96 (dd, *J* = 8.3, 6.3 Hz, 1H, Ar), 7.61 (d, *J* = 8.3 Hz, 2H, Ar), 7.66-7.71 (dm 3H, Ar), 8.02 (d, *J* = 6.8 Hz, 1H, Ar), 8.23 (s, 1H, Ar).

1-((Pentafluorophenyl)ethynyl)imidazo[1,5-a]pyridine (3i)

To a solution of 1-iodoimidazo[1,5-a]pyridine (240 mg, 1.0 mmol, 1.0 equiv), $Pd(PPh_3)Cl_2$ (70 mg, 0.10 mmol, 10 mol%), Cul (19 mg, 0.10 mmol, 10 mol%) and 1-ethynyl-2,3,4,5,6-pentafluorobenzene (250 mg, 1.3 equiv) in Et₃N (3.0 mL) under argon atmosphere was stirred at 80 °C for 20 h. The reaction mixture was concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (*n*-hexane/EtOAc = 2/1) to give 1-((pentafluorophenyl)ethynyl)imidazo[1,5-a]pyridine in 73% yield as a yellow solid. R_f = 0.35 (*n*-hexane/EtOAc = 1/1); m.p. 176-179 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.75 (dd, *J* = 7.1, 6.6 Hz, 1H; Ar), 6.99 (dd, *J* = 9.3, 6.6 Hz, 1H; Ar), 7.66 (d, *J* = 9.3 Hz, 1H; Ar), 8.01 (d, *J* = 7.1 Hz, 1H; Ar), 8.15 (s, 1H; Ar). ¹³C NMR (100 MHz, CDCl₃) δ 76.3 (q, *J*_{C-F} = 4.1 Hz, CC), 95.3 (q, *J*_{C-F} = 3.3 Hz, CC), 100.7

(td, J_{C-F} = 18.2, 4.1 Hz), 112.8, 114.1, 118.1, 122.4, 123.0, 128.2, 134.4, 137.4 (dm, J_{C-F} = 250.6 Hz), 141.0 (dm, J_{C-F} = 256.4 Hz), 146.5 ppm (dm, J_{C-F} = 253.1 Hz) (Ar); ¹⁹F NMR (376 MHz, CDCl₃) δ –158.5 (m, 2F), –150.2 (t, *J*=20.6 Hz, 1F), –132.7 ppm (m, 2F); IR (KBr) 3104, 2924, 2854, 2360, 2239, 2211, 1632, 1570, 1537, 1508, 1496, 1467, 1442, 1358, 1338, 1299, 1237, 1134, 1062, 1031, 984, 957, 915, 784, 755, 701, 666, 596, 571, 523 cm⁻¹; MS (EI): *m/z*: 308 [*M*]⁺; HRMS (EI): *m/z* calcd for C₁₅H₅F₅N₂ 308.0373 [*M*]⁺; found 308.0380.

General procedure for the synthesis of imidazo[1,5-a]pyridinium salts

To a solution of a 1-substitutedimidazo[1,5-*a*]pyridine (1.0 equiv) in anhydrous THF (1.0 M) was added MeI (5.0 equiv) at room temperature under an Ar atmosphere and the mixture was stirred under reflux for overnight. Then the reaction mixture was cooled to room temperature. To this was added Et₂O (2.0 mL) and stirred at 0 °C. The precipitate formed was filtered, washed with cold Et₂O and dried *in vacuo* to afford an imidazo[1,5-*a*]pyridinium salt.

1-(2-Methoxyphenyl)-2-methylimidazo[1,5-a]pyridinium iodide (4a)

1.0 mmol scale; Colorless powder; 88% yield; $R_{\rm f}$ = 0.35 (CH₂Cl₂/MeOH = 10/1); mp 220-221 °C; ¹H NMR (400 MHz, CDCl₃) δ 3.83 (s, 3H, OMe), 4.07 (s, 3H, NMe), 7.03 (t, J = 6.8 Hz, 1H, Ar), 7.11 (m, 2H, Ar), 7.15 (dd, J = 7.3, 1.0 Hz, 1H, Ar), 7.32 (d, J = 7.8 Hz, 2H, Ar), 7.60 (dd, J = 7.3, 2.0 Hz, 1H, Ar), 8.96 (d, J = 6.8 Hz, 1H, Ar) 11.17 (s, 1H, Ar); ¹³C NMR (100 MHz, DMSO- d_6) δ 35.2 (NMe), 55.8 (OMe), 112.4, 112.8, 117.7, 117.8, 121.2, 121.8, 124.3, 124.9, 127.1, 127.3, 132.7, 132.9, 157.7 (Ar); IR (KBr) 3050, 3003, 2925, 2850, 1650, 1604, 1582, 1545, 1493, 1469, 1443, 1406, 1326, 1277, 1246, 1191, 1164, 1145, 1115, 1052, 1015, 945, 837, 780, 760, 742, 725, 694, 655, 573, 557, 530 cm⁻¹; MS (FAB): *m/z*: 239 [*M*–I]⁺; HRMS (FAB): *m/z* calcd for C₁₅H₁₅N₂O 239.1179 [*M*–I]⁺; found 239.1181.

1-(4-Methoxyphenyl)-2-methylimidazo[1,5-a]pyridinium iodide (4b)

0.50 mmol scale; Colorless powder; 94% yield; $R_{\rm f}$ = 0.30 (CH₂Cl₂/MeOH = 10/1); m.p. 173-174 °C; ¹H NMR (400 MHz, CDCl₃) δ 3.92 (s, 3H, OMe), 4.20 (s, 3H, NMe), 7.07 (dd, *J* = 7.3, 6.8 Hz, 1H, Ar), 7.13 (d, *J* = 8.8 Hz, 2H, Ar), 7.14 (dd, *J* = 9.3, 6.3 Hz, 1H, Ar), 7.42 (d, *J* = 8.8 Hz, 2H, Ar), 7.47 (d, *J* = 9.3 Hz, 1H, Ar), 8.93 (d, *J* = 7.3 Hz, 1H, Ar),

11.16 (s, 1H, Ar); ¹³C NMR (100 MHz, DMSO- d_6) δ 35.3 (NMe), 55.5 (OMe), 114.9, 116.6, 117.6, 117.7, 124.1, 124.5, 124.7, 126.5, 126.6, 131.8, 160.6 (Ar); IR (KBr) 3156, 3006, 2956, 2931, 2831, 1646, 1609, 1577, 1550, 1510, 1462, 1444, 1428, 1395, 1358, 1333, 1308, 1293, 1243, 1217, 1180, 1119, 1041, 1017, 941, 864, 844, 814, 795, 763, 727, 682, 649, 625, 584, 568, 516 cm⁻¹; MS (FAB): *m/z*: 239 [*M*–I]⁺; HRMS (FAB): *m/z* calcd for C₁₅H₁₅N₂O 239.1179 [*M*–I]⁺; found 239.1174.

2-Methyl-1-phenylimidazo[1,5-a]pyridinium iodide (4c)

0.50 mmol scale; Hygroscopic brownish solid; 90% yield; $R_f = 0.30 (CH_2Cl_2/MeOH = 10/1)$; m.p. 84-86 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 4.09 (s, 3H, NMe), 7.22-7.30 (m, 2H, Ar), 7.63-7.72 (m, 6H, Ar), 8.67 (d, J = 6.8 Hz, 1H, Ar), 9.84 ppm (s, 1H, Ar); ¹³C NMR (100 MHz, DMSO- d_6) δ 35.5 (NMe), 117.5, 117.8, 124.2, 124.4, 124.7, 125.2, 126.7, 127.1, 129.4, 130.2 ppm (Ar); IR (KBr) 3106, 3020, 2998, 2958, 1950, 1650, 1551, 1508, 1489, 1440, 1412, 1331, 1289, 1243, 1194, 1158, 1114, 1064, 1026, 1001, 956, 922, 789, 749, 691, 632, 585, 553, 524 cm⁻¹; MS (FAB): m/z: 209 [M–I]⁺; HRMS (FAB): m/z calcd for C₁₄H₁₃N₂ 209.1073 [M–I]⁺; found 209.1088.

2-Methyl-1-(4-(trifluoromethyl)phenyl)imidazo[1,5-a]pyridinium iodide (4d)

0.76 mmol scale, Off-white powder; 84% yield; $R_{\rm f}$ = 0.20 (CH₂Cl₂/MeOH = 10/1); m.p. 173-175 °C; ¹H NMR (400 MHz, CDCl₃) δ 4.28 (s, 3H, NMe), 7.14 (dd, *J* = 7.1, 6.6 Hz, 1H, Ar), 7.25 (dd, *J* = 9.3, 6.6 Hz, 1H, Ar), 7.50 (d, *J* = 9.3 Hz, 1H, Ar), 7.72 (d, *J* = 8.1 Hz, 2H, Ar), 7.91 (d, *J* = 8.1 Hz, 2H, Ar), 9.00 (d, *J* = 7.1 Hz, 1H, Ar), 11.26 (s, 1H, Ar). ¹³C NMR (100 MHz, CDCl₃) δ 36.7 (NMe), 116.9, 118.0, 123.4 (Ar), 123.4 (q, ¹*J*_{C-F} = 272.9 Hz, CF₃), 124.4, 126.0 (Ar), 126.7 (q, ³*J*_{C-F} = 3.3 Hz, CHCCF₃), 127.6, 127.91, 127.93, 131.1 (Ar), 132.6 (q, ²*J*_{C-F} = 33.1 Hz, CHCF₃). ¹⁹F NMR (376 MHz, CDCl₃) δ – 63.5; IR (KBr) 3114, 3048, 2352, 1651, 1615, 1550, 1507, 1456, 1413, 1325, 1222, 1195, 1168, 1124, 1069, 1035, 1014, 955, 850, 786, 762, 742, 707, 651, 609, 581, 560, 531, 513 cm⁻¹; MS (FAB): *m/z*: 277 [*M*–I]⁺; HRMS (FAB): *m/z* calcd for C₁₅H₁₂F₃N₂ 277.0947 [*M*–I]⁺; Found 277.0939.

2-Methyl-1-(pentafluorophenyl)imidazo[1,5-a]pyridinium iodide (4e)

0.4 mmol scale; Brownish powder; 82% yield; $R_f = 0.40$ (CH₂Cl₂/MeOH = 10/1); m.p. 117-118 °C; ¹H NMR (400 MHz, CDCl₃) δ 4.27 (s, 3H, NMe), 7.22-7.26 (m, 1H, Ar),

7.38-7.39 (m, 2H, Ar), 9.19 (d, J = 7.3, 1H, Ar), 11.68 (s, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 36.8 (NMe), 99.6 (td, $J_{C-F} = 17.4$, 4.1 Hz), 109.2, 116.5, 118.2, 125.0, 127.5, 129.4, 129.7, 138.3 (dm, $J_{C-F} = 258.9$ Hz), 143.6 (dm, $J_{C-F} = 261.3$ Hz), 145.0 (dm, $J_{C-F} = 253.0$ Hz) (Ar); ¹⁹F NMR (376 MHz, CDCl₃) δ –153.4 (m, 2F), –141.3 (t, J = 21.4 Hz, 1F), –131.7 (m, 2F); IR (KBr) 3116, 3077, 3035, 3000, 1664, 1577, 1555, 1525, 1497, 1470, 1310, 1269, 1184, 1152, 1069, 1043, 987, 953, 876, 822, 769, 748, 649, 624, 426 cm⁻¹; MS (FAB): *m/z*: 299 [*M*–I]⁺; HRMS (FAB): *m/z* calcd for C₁₄H₈F₅N₂ 299.0602 [*M*–I]⁺; found 299.0596.

1-((4-Methoxyphenyl)ethynyl)-2-methylimidazo[1,5-a]pyridinium iodide (4f)

0.79 mmol scale, Brownish yellow powder; 70% yield; $R_f = 0.20 (CH_2Cl_2/MeOH = 10/1)$; m.p. 218-220 °C; ¹H NMR (400 MHz, CDCl₃) δ 3.88 (s, 3H, OMe), 4.34 (s, 3H, NMe), 6.96 (d, J = 9.0 Hz, 2H, Ar), 7.14 (dd, J = 7.2, 6.7 Hz, 1H, Ar), 7.31 (dd, J = 9.4, 6.7 Hz, 1H, Ar), 7.56 (d, J = 9.0 Hz, 2H, Ar), 7.73 (d, J = 9.4 Hz, 1H, Ar), 9.09 (d, J = 7.2 Hz, 1H, Ar), 11.26 (s, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 36.0 (OMe), 55.5 (NMe), 70.9 (CC), 103.7 (CC), 109.5, 111.9, 114.5, 117.6, 118.3, 125.1, 126.3, 127.2, 131.1, 133.7, 162.3 (Ar); IR (KBr) 3111, 3030, 3000, 2960, 2545, 2360, 2217, 1651, 1603, 1553, 1509, 1464, 1442, 1416, 1371, 1333, 1288, 1253, 1198, 1173, 1142, 1115, 1023, 955, 876, 835, 799, 761, 634, 583, 548, 530, 512 cm⁻¹; MS (FAB): m/z: 263 [M–I]⁺; HRMS (FAB): m/z calcd for C₁₇H₁₅N₂O 263.1179 [M–I]⁺; found 263.1179.

2-Methyl-1-(phenylethynyl)imidazo[1,5-a]pyridinium iodide (4g)

1.3 mmol scale; Brownish yellow powder; 82% yield; $R_{\rm f}$ = 0.20 (CH₂Cl₂/MeOH = 10/1); m.p. 219-221 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 4.21 (s, 3H, NMe), 7.31 (t, *J* = 6.8 Hz, 1H, Ar), 7.47 (dd, *J* = 9.3, 6.8 Hz, 1H, Ar), 7.51-7.54 (m, 3H, Ar), 7.75-7.77 (m, 2H, Ar), 8.04 (d, *J* = 9.3 Hz, 1H, Ar), 8.73 (d, *J* = 6.8 Hz, 1H, Ar), 9.81 (s, 1H, Ar); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 35.6 (NMe), 73.6, (CC), 101.6 (CC), 107.8, 117.6, 118.3, 120.5, 125.4, 127.1, 128.2, 129.1, 130.3, 131.5, 131.7 (Ar); IR (KBr) 3106, 3021, 2998, 2958, 1950, 1650, 1551, 1508, 1489, 1440, 1412, 2331, 1289, 1243, 1194, 1158, 1141, 1114, 1068, 1026, 100, 955, 922, 789, 749, 691, 633, 585, 553, 524 cm⁻¹; MS (FAB): *m/z*: 233 [*M*–I]⁺; HRMS (FAB): *m/z* calcd for C₁₆H₁₃N₂ 233.1073 [*M*–I]⁺; found 233.1071. **2-Methyl-1-((4-trifluoromethylphenyl)ethynyl)imidazo[1,5-a]pyridinium iodide (4h)** 1.0 mmol scale; Brownish yellow powder; 91% yield; $R_f = 0.20$ (CH₂Cl₂/MeOH = 10/1); m.p. 227-228 °C; ¹H NMR (400 MHz, CDCl₃) δ 4.39 (s, 3H, NMe), 7.20 (dd, J = 7.3, 6.8 Hz, 1H, Ar), 7.39 (dd, J = 9.3, 6.8 Hz, 1H, Ar), 7.71-7.78 (m, 5H, Ar), 9.14 (d, J = 7.3 Hz, 1H, Ar), 11.35 (s, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 35.7 (NMe), 76.1, 100.1 (CC), 107.2, 117.6, 118.4 (Ar), 124.0 (q, ¹ $J_{C-F} = 272.1$ Hz, CF₃), 124.9, 125.6 (Ar), 125.9 (q, ³ $J_{C-F} = 3.3$ Hz, CHCCF₃), 127.6, 128.7(Ar), 129.7 (q, ² $J_{C-F} = 32.3$ Hz, CCF₃), 132.1, 132.3 (Ar); ¹⁹F NMR (376 MHz, CDCl₃) δ –59.4; IR (KBr) 3122, 3063, 3033, 2360, 2216, 1928, 1652, 1610, 1552, 1505, 1460, 1439, 1405, 1391, 1320, 1284, 1173, 1127, 1108, 1062, 1014, 994, 957, 876, 842, 833, 748, 688, 624, 593, 546, 518 cm⁻¹; MS (FAB): *m/z*: 301 [*M*–I]⁺; HRMS (FAB): *m/z* calcd for C₁₇H₁₂F₃N₂ 301.0947 [*M*–I]⁺; found 301.0939.

2-Methyl-1-((pentafluorophenyl)ethynyl)imidazo[1,5-a]pyridinium iodide (4i)

0.50 mmol scale; Yellow powder; 90% yield; $R_{\rm f}$ = 0.15 (CH₂Cl₂/MeOH = 10/1); m.p. 183-185 °C; ¹H NMR (400 MHz, CDCl₃) δ 4.38 (s, 3H, NMe), 7.24 (dd, *J* = 7.3, 6.8 Hz, 1H, Ar), 7.46 (dd, *J* = 9.3, 6.8 Hz, 1H, Ar), 7.77 (d, *J* = 9.3 Hz, 1H, Ar), 9.23 (d, *J* = 7.3 Hz, 1H, Ar), 11.52 (s, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 36.6 (NMe), 83.9 (CC), 86.9 (CC), 98.0 (td, *J*_{C-F} = 17.9, 3.8 Hz), 106.9, 116.9, 118.5, 125.7, 128.1, 128.7, 131.8 (dd, *J*_{C-F} = 280.0, 13.2 Hz), 132.5, 137.7 (dm, *J*_{C-F} = 257.5 Hz), 142.6 (dm, *J*_{C-F} = 261.2 Hz), 146.8 (dm, *J*_{C-F} = 255.6 Hz) (Ar); ¹⁹F NMR (376 MHz, CDCl₃) δ -155.8 (m, 2F), -143.9 (t, *J*=20.6 Hz, 1F), -130.6 (m, 2F); IR (KBr) 3114, 3026, 2219, 1646, 1556, 1522, 1497, 1444, 1399, 1362, 1331, 1273, 1187, 1147, 1132, 1106, 11341, 986, 939, 867, 786, 761, 712, 629, 565 cm⁻¹; MS (FAB): *m/z*: 323 [*M*–I]⁺; HRMS (FAB) : *m/z* calcd for C₁₆H₈F₅N₂ 323,0602 [*M*–I]⁺; found 323.0608.

1,2-Diphenylimidazo[1,5-a]pyridinium tetrafluoroborate (4j)

A screw-capped reaction tube was charged with 1-phenylimidazo[1,5-*a*]pyridine (97 mg, 0.50 mmol, 1.0 equiv), diphenyliodonium tetrafluoroborate (280 mg, 0.75 mmol, 1.5 equiv), $Cu(OAc)_2 \cdot H_2O$ (4.9 mg, 0.025 mmol, 5.0 mol%) and anhydrous DMF (2 mL). The resulting mixture was stirred at 100 °C for 4 h. After cooled down to room temperature, the solvent was removed *in vacuo*. The residue was purified by flash column chromatography on silica gel to give 1,2-diphenylimidazo[1,5-*a*]pyridinium

tetrafluoroborate in 85% yield as a brownish yellow solid. $R_f = 0.20$ (CH₂Cl₂/acetone = 5/1); m.p. 229-231 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 7.33-7.40 (m, 4H, Ar), 7.46-7.49 (m, 3H, Ar), 7.54-7.63 (m, 5H, Ar), 7.83 (d, J = 9.3 Hz, 1H, Ar), 8.65 (d, J = 7.8 Hz, 1H, Ar), 10.19 (s, 1H, Ar); ¹³C NMR (100 MHz, DMSO- d_6) δ 117.9, 118.6, 124.1, 124.4, 124.8, 125.7, 126.7, 126.9, 127.6, 129.1, 129.8, 129.9, 130.2, 130.8, 133.9 (Ar); IR (KBr) 3141, 3086, 1654, 1595, 1547, 1500, 1063, 770, 700 cm⁻¹; MS (FAB): *m/z*: 271 [*M*–BF₄]⁺; HRMS (FAB): *m/z* calcd for C₁₉H₁₅N₂ 271.1230 [*M*–BF₄]⁺; found 271.1237.

General procedure for the synthesis of Ag(L)I complexes

To a solution of imidazo[1,5-a]pyridinium salt (1.0 equiv) in anhydrous CH_2CI_2 (0.10 M) was added Ag_2O (0.90 equiv) at room temperature under an argon atmosphere and the mixture was stirred in darkness at room temperature for 2 h. Then the reaction mixture was filtrated and filtrate or residue was concentrated/dried *in vacuo*. At this point, formation of Ag(L)I complex (L = NHC) was comfirmed by ¹H NMR, The product was used for next reaction without further purification.

lodo(1-(2-methoxyphenyl)-2-methylimidazo[1,5-a]pyridin-3-ylidene)silver (I) (S1a)

Soluble in CH₂Cl₂. ¹H NMR (400 MHz, CDCl₃) δ 3.84 (s, 3H, OMe), 3.92 (s, 3H, NMe), 6.67 (dd, *J* = 7.1, 6.3 Hz, 1H, Ar), 6.82 (dd, *J* = 9.3, 6.3 Hz, 1H, Ar), 7.08 (d, *J* = 8.3, 1H, Ar), 7.12 (t, *J* = 7.3 Hz, 1H, Ar), 7.14 (d, *J* = 9.3 Hz, 1H, Ar), 7.29 (d, *J* = 7.3 Hz, 1H, Ar), 7.53 (dd, *J* = 8.3, 7.3 Hz, 1H, Ar), 8.25 (d, *J* = 7.1 Hz, 1H, Ar). Other characteritic data were not collected due to low solubulity.

lodo(1-(4-methoxyphenyl)-2-methylimidazo[1,5-a]pyridin-3-ylidene)silver (I) (S1b)

Soluble in CH₂Cl₂. ¹H NMR (400 MHz, CDCl₃) δ 3.89 (s, 3H, OMe), 4.06 (s, 3H, NMe), 6.61 (dd, *J* = 7.1, 6.3 Hz, 1H, Ar), 6.79 (dd, *J* = 9.3, 6.3 Hz, 1H, Ar), 7.05 (d, *J* = 8.8 Hz, 2H, Ar), 7.19 (d, *J* = 9.3 Hz, 1H, Ar), 7.33 (d, *J* = 8.8 Hz, 2H, Ar), 8.50 (d, *J* = 7.1 Hz, 1H, Ar). Other characteritic data were not collected due to low solubulity.

lodo(2-methyl-1-phenylimidazo[1,5-a]pyridin-3-ylidene)silver (I) (S1c)

Soluble in CH₂Cl₂. ¹H NMR (400 MHz, CDCl₃) δ 4.03 (s, 3H, NMe), 6.56 (t, *J* = 7.8 Hz, 1H, Ar), 6.76 (dd, *J* = 9.3, 6.3 Hz, 1H, Ar), 7.17 (d, *J* = 9.3 Hz, 1H, Ar), 7.35 (d, *J* = 6.8 Hz, 2H, Ar), 7.42-7.49 (m, 3H, Ar), 8.44 (d, *J* = 6.8, 1H, Ar). Other characteritic data

were not collected due to low solubulity.

lodo(2-methyl-1-(4-(trifluoromethyl)phenyl)imidazo[1,5-a]pyridin-3-ylidene)silver (I) (S1d)

Insoluble in CH₂Cl₂. ¹H NMR (400 MHz, CDCl₃) δ 4.00 (s, 3H, NMe), 6.69 (dd, *J* = 7.2, 6.3 Hz, 1H, Ar), 6.90 (dd, *J* = 9.4, 6.3 Hz, 1H, Ar), 7.22 (d, *J* = 9.4 Hz, 1H, Ar), 7.52 (d, *J* = 8.1 Hz, 2H, Ar), 7.77 (d, *J* = 8.1 Hz, 2H, Ar), 8.22 (d, *J* = 7.1 Hz, 1H, Ar). Other characteritic data were not collected due to low solubulity.

lodo(2-methyl-1-(pentafluorphenyl)imidazo[1,5-a]pyridin-3-ylidene)silver (I) (S1e)

Soluble in CH₂Cl₂. ¹H NMR (400 MHz, CDCl₃) δ 4.08 (s, 3H, NMe), 6.81 (dd, *J* = 7.3, 5.9 Hz, 1H, Ar), 7.05 (dd, *J* = 9.3, 5.9 Hz, 1H; Ar), 7.10 (d, *J* = 9.3 Hz, 1H, Ar), 8.69 (d, *J* = 7.3 Hz, 1H, Ar). Other characteritic data were not collected due to low solubulity.

lodo(1-((4-methoxyphenyl)ethynyl)-2-methylimidazo[1,5-a]pyridin-3-ylidene)silver (I) (S1f)

Insoluble in CH₂Cl₂. ¹H NMR (400 MHz, CDCl₃) δ 3.87 (s, 3H, OMe), 4.16 (s, 3H, NMe), 6.76 (t, *J* = 7.3 Hz, 1H, Ar), 6.94 (d, *J* = 8.8 Hz, 2H, Ar), 7.03 (dd, *J* = 9.3, 6.8 Hz, 1H, Ar), 7.50 (d, *J* = 8.8 Hz, 2H, Ar), 7.51 (t, *J* = 9.3 Hz, 1H, Ar), 8.30 (d, *J* = 7.3 Hz, 1H, Ar). Other characteritic data were not collected due to low solubulity.

lodo(2-methyl-1-(phenylethnyl)imidazo[1,5-a]pyridin-3-ylidene)silver (I) (S1g)

Insoluble in CH₂Cl₂. ¹H NMR (400 MHz, CDCl₃) δ 4.18 (s, 3H, NMe), 6.79 (dd, *J* = 7.3, 6.3 Hz, 1H, Ar), 7.07 (dd, *J* = 9.3, 6.3 Hz, 1H, Ar), 7.42-7.43 (m, 3H, Ar), 7.52-7.58 (m, 3H, Ar), 8.33 (d, *J* = 7.3 Hz, 1H, Ar). Other characteritic data were not collected due to low solubulity.

lodo(2-methyl-1-((4-(trifluoromethyl)phenyl)ethynyl)imidazo[1,5-a]pyridin-3-yliden e)silver (I) (S1h)

Insoluble in CH₂Cl₂. ¹H NMR (400 MHz, CDCl₃) δ 4.20 (s, 3H, NMe), 6.83 (dd, *J* = 7.3, 6.3 Hz, 1H), 7.13 (dd, *J* = 9.3, 6.3 Hz, 1H), 7.56 (d, *J* = 9.3 Hz, 1H, Ar), 7.67 (s, 4H, Ar), 8.36 (br s, 1H, Ar). Other characteritic data were not collected due to low solubulity.

lodo(2-methyl-1-((pentafluorophenyl)ethynyl)imidazo[1,5-a]pyridin-3-ylidene)silve r (I) (S1i)

Insoluble in CH₂Cl₂. ¹H NMR (400 MHz, CDCl₃) δ 4.19 (s, 3H, NMe), 6.89 (dd, *J* = 7.2, 6.7 Hz, 1H, Ar), 7.21 (dd, *J* = 9.0, 6.7 Hz, 1H, Ar), 7.58 (d, *J* = 9.0 Hz, 1H, Ar), 8.38 (d, *J* = 7.2 Hz, 1H, Ar). Other characteritic data were not collected due to low solubulity.

General procedure for the synthesis of Rh(cod)(L)Cl complexes

To a solution or slurry of Ag(L)I (L = NHC) in anhyrous CH_2CI_2 (0.25 M) was added [Rh(cod)CI]₂ (0.50 equiv) at room temperature under an argon atmosphere and the mixture was stirred in darkness at room temperature for 4 h. The reaction mixture was filtrated through celite plug and filtrate was evaporated *in vacuo*. The residue was purified by flash column chromatography on silica gel to give Rh(cod)(L)Cl complexes.

Chloro(1,5-cyclooctadiene)(1-(2-methoxyphenyl)-2-methylimidazo[1,5-*a*]pyridin-3ylidene)rhodium (I) (5a)

0.20 mmol scale, Yellow solid; 85% yield (over 2 steps); $R_f = 0.38$ (*n*-hexane/EtOAc = 2/1); m.p. 106-110 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.96-2.04 (m, 4H, CH₂(cod)), 2.39-2.54 (m, 4H, CH₂(cod)), 3.36-3.44 (m, 2H, CH(cod)), 3.81 (s, 3H, OMe), 4.14 (s, 3H, NMe), 5.09-5.13 (m, 2H, CH(cod)), 6.53 (dd, *J* = 7.3, 6.3 Hz, 1H, Ar), 6.65 (dd, *J* = 9.3, 6.3 Hz, 1H, Ar), 6.95 (d, *J* = 9.27 Hz, 1H, Ar), 7.02 (d, *J* = 8.3 Hz, 1H, Ar), 7.06 (t, *J* = 7.3 Hz, 1H, Ar), 7.26 (d, *J* = 7.3 Hz, 1H, Ar), 7.45 (t, *J* = 8.3 Hz, 1H, Ar), 8.91 (d, *J* = 7.3 Hz, 1H; Ar); ¹³C NMR (100 MHz, CDCl₃) δ 28.8 (CH₂(cod)), 29.2 (CH₂(cod)), 32.8 (CH₂(cod)), 33.3 (CH₂(cod)), 36.9 (NMe), 55.4 (OMe), 68.2 (d, ¹*J*_{C-Rh} = 14.9 Hz, CH(cod)), 68.7 (d, ¹*J*_{C-Rh} = 14.1 Hz, CH(cod)), 98.8 (d, ¹*J*_{C-Rh} = 6.6 Hz, CH(cod)), 99.2 (d, ¹*J*_{C-Rh} = 6.6 Hz, CH(cod)), 111.0, 112.4, 116.6, 117.3, 121.0, 121.6, 128.2, 129.2, 131.0, 132.1, 132.4, 157.7 (Ar), 172.2 (d, ¹*J*_{C-Rh} = 52.9 Hz, N₂C); IR (KBr) 2933, 2875, 2829, 1493, 1462, 1342, 1246, 1020, 753, 729 cm⁻¹; MS (FAB): *m/z*: 484 [*M*]⁺; HRMS (FAB): *m/z* calcd for C₂₃H₂₆CIN₂ORh 484.0789 [*M*]⁺; found 484.0779.

Chloro(1,5-cyclooctadiene)(1-(4-methoxyphenyl)-2-methylimidazo[1,5-*a*]pyridin-3ylidene)rhodium (I) (5b)

0.20 mmol scale, Yellow solid; 74% yield (over 2 steps); $R_{\rm f}$ = 0.43 (*n*-hexane/EtOAc, 2:1); m.p. 148-155 °C (decomposed); ¹H NMR (400 MHz, CDCl₃) δ 1.95-2.06 (m, 4H,

CH₂(cod)), 2.39-2.53 (m, 4H, CH₂(cod)), 3.35-3.42 (m, 2H, CH(cod)), 3.88 (s, 3H, OMe), 4.26 (s, 3H, NMe), 5.09-5.19 (m, 2H, CH(cod)), 6.54 (dd, J = 7.3, 6.3 Hz, 1H, Ar), 6.68 (dd, J = 9.3, 6.3 Hz, 1H, Ar), 7.02 (d, J = 8.8 Hz, 2H, Ar), 7.06 (d, J = 9.3 Hz, 1H, Ar), 7.30 (d, J = 8.8 Hz, 2H, Ar), 8.91 (d, J = 7.3 Hz, 1H, Ar). ¹³C NMR (100 MHz, CDCl₃) δ 28.8 (CH₂(cod)), 29.2 (CH₂(cod)), 32.8 (CH₂(cod)), 33.2 (CH₂(cod)), 37.2 (NMe), 55.4 (OMe), 68.2 (d, ¹ J_{C-Rh} = 14.9 Hz, CH(cod)), 68.6 (d, ¹ J_{C-Rh} = 14.9 Hz, CH(cod)), 99.0 (d, ¹ J_{C-Rh} = 6.6 Hz, CH(cod)), 99.3 (d, ¹ J_{C-Rh} = 7.4 Hz, CH(cod)), 112.7, 114.5, 117.3, 120.1, 121.8, 124.3, 128.2, 128.7, 131.1, 159.9, 172.5 (d, ¹ J_{C-Rh} = 52.1 Hz, N₂C); IR (KBr) 2931, 2874, 2830, 1610, 1512, 1343, 1288, 1249, 1177, 1024, 833, 747 cm⁻¹; MS (FAB): *m/z*: 484 [*M*]⁺; HRMS (FAB): *m/z* calcd for C₂₃H₂₆CIN₂ORh 484.0789 [*M*]⁺; found 484.0788.

Chloro(1,5-cyclooctadiene)(2-methyl-1-phenylimidazo[1,5-*a*]pyridin-3-ylidene)rho dium (I) (5c)

0.20 mmol scale; Yellow solid; quantitative yield (over 2 steps); $R_{\rm f} = 0.25$ (*n*-hexane/EtOAc = 2/1); m.p. 157-162 °C (decomposed); ¹H NMR (400 MHz, CDCl₃) δ 1.92-1.97 (m, 4H, CH₂(cod)), 2.35-2.46 (m, 4H, CH₂(cod)), 3.29-3.34 (m, 2H, CH(cod)), 4.24 (s, 3H, NMe), 5.05-5.10 (m, 2H, CH(cod)), 6.50 (dd, *J* = 7.3, 6.3 Hz, 1H, Ar), 6.65 (dd, *J* = 9.3, 6.3 Hz, 1H, Ar), 7.05 (d, *J* = 9.3 Hz, 1H, Ar), 7.32 (d, *J* = 7.3 Hz, 2H, Ar), 7.38 (t, *J* = 7.3 Hz, 1H, Ar), 7.05 (d, *J* = 9.3 Hz, 2H, Ar), 8.88 (d, *J* = 7.3 Hz, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 28.9 (CH₂(cod)), 29.3 (CH₂(cod)), 33.0 (CH₂(cod)), 33.3 (CH₂(cod)), 37.5 (NMe), 68.4 (d, ¹*J*_{C-Rh} = 14.1 Hz, CH(cod)), 68.8 (d, ¹*J*_{C-Rh} = 15.1 Hz, CH(cod)), 99.3 (d, ¹*J*_{C-Rh} = 6.5 Hz, CH(cod)), 99.6 (d, ¹*J*_{C-Rh} = 7.5 Hz, CH(cod)), 112.9, 117.3, 122.4, 124.5, 128.1, 128.5, 128.8, 129.0, 129.1, 129.7 (Ar), 173.4 (d, ¹*J*_{C-Rh} = 51.7 Hz, N₂C); IR (KBr) 2990, 2930, 2876, 2832, 1646, 1457, 1373, 1345, 1311, 1254, 949, 761, 751, 704 cm⁻¹; MS (FAB): *m/z*: 454 [*M*]⁺; HRMS (FAB): *m/z* calcd for C₂₂H₂₄CIN₂Rh 454.0683 [*M*]⁺ Found 454.0679.

Chloro(1,5-cyclooctadiene)(2-methyl-1-(4-(trifluoromethyl)phenyl)imidazo[1,5-*a*]p yridin-3-ylidene)rhodium (I) (5d)

0.10 mmol scale; Pale yellow solid; 85% yield (over 2 steps); $R_f = 0.20$ (*n*-Hexane/EtOAc = 2/1); m.p. 174-178 °C (decomposed); ¹H NMR (400 MHz, CDCl₃) δ 1.97-2.09 (m, 4H, CH₂(cod)), 2.40-2.54 (m, 4H, CH₂(cod)), 3.34-3.44 (m, 2H, CH(cod)),

4.35 (s, 3H, NMe), 5.12-5.21 (m, 2H, CH(cod)), 6.63 (dd, J = 7.3, 6.3 Hz, 1H, Ar), 6.81 (dd, J = 9.3, 6.3 Hz, 1H, Ar), 7.13 (d, J = 9.3 Hz, 1H, Ar), 7.39 (d, J = 8.3 Hz, 2H, Ar), 7.65 (d, J = 8.3 Hz, 2H, Ar), 8.38 (d, J = 7.3 Hz, 1H, Ar), 9.01 (s, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 28.8 (CH₂(cod)), 29.1 (CH₂(cod)), 32.8 (CH₂(cod)), 33.2 (CH₂(cod)), 37.5 (NMe), 68.4 (d, ¹ $J_{C-Rh} = 14.9$ Hz, CH(cod)), 68.9 (d, ¹ $J_{C-Rh} = 14.9$ Hz, CH(cod)), 99.6 (d, ¹ $J_{C-Rh} = 6.6$ Hz, CH(cod)), 99.8 (d, ¹ $J_{C-Rh} = 7.4$ Hz, CH(cod)), 113.1, 116.6, 122.8, 123.4, 123.8 (q, ¹ $J_{C-F} = 272.1$ Hz, CF₃), 126.1 (q, ³ $J_{C-F} = 3.3$ Hz; CHCCF₃), 128.6, 129.4, 129.6, 130.4 (q, ² $J_{C-F} = 33.1$ Hz, CCF₃), 131.7, 175.0 (d, ¹ $J_{C-Rh} = 52.1$ Hz, N₂C); ¹⁹F NMR (376 MHz, CDCl₃) δ –59.1; IR (KBr) 2992, 2935, 2912, 2878, 2830, 1614, 1520, 1321, 1253, 1178, 1107, 1069, 843, 750, 740, 617 cm⁻¹; MS (FAB): *m/z*: 522 [*M*]⁺; HRMS (FAB): *m/z* calcd for C₂₃H₂₃ClF₃N₂Rh 522.0557 [*M*]⁺; found 522.0552.

Chloro(1,5-cyclooctadiene)(2-methyl-1-(pentafluorophenyl))imidazo[1,5-*a*]pyridin-3-ylidene)rhodium (l) (5e)

0.089 mmol scale; Yellow solid; 79% yield (over 2 steps); $R_{\rm f}$ = 0.58 (*n*-hexane/EtOAc = 1/1); m.p. 159-164 °C (decomposed); ¹H NMR (400 MHz, CDCl₃) δ 1.97-2.09 (m, 4H, CH₂(cod)), 2.44-2.54 (m, 4H, CH₂(cod)), 3.32-3.42 (m, 2H, CH(cod)), 4.27 (s, 3H, NMe), 5.13-5.24 (m, 2H, CH(cod)), 6.71 (dd, *J* = 7.3, 5.9 Hz, 1H, Ar), 6.93-6.94 (m, 2H, Ar), 9.07 (d, *J* = 7.3 Hz, 1H; Ar); ¹³C NMR (100 MHz, CDCl₃) δ 28.8 (CH₂(cod)), 29.1 (CH₂(cod)), 32.8 (CH₂(cod)), 33.1 (CH₂(cod)), 37.2 (NMe), 68.7 (d, ¹*J*_{C-Rh} = 14.1 Hz, CH(cod)), 69.0 (d, ¹*J*_{C-Rh} = 14.1 Hz, CH(cod)), 100.0 (d, ¹*J*_{C-Rh} = 6.6 Hz, CH(cod)), 100.1 (d, ¹*J*_{C-Rh} = 6.6 Hz, CH(cod)), 103.3 (td, *J*_{C-F} = 18.2, 4.1 Hz), 108.0, 113.1, 116.3, 124.6, 129.1, 131.1, 138.0 (dm, ¹*J*_{C-F} = 253.9 Hz), 142.1 (dm, ¹*J*_{C-F} = 253.1 Hz), 144.6 (dm, ¹*J*_{C-F} = 250.6 Hz) (Ar), 177.4 (d, ¹*J*_{C-Rh} = 52.9 Hz; N₂C); ¹⁹F NMR (376 MHz, CDCl₃) δ -156.5 (td, *J* = 22.1, 8.4 Hz, 1F), -155.7 (m, 1F), -146.7 (t, *J* = 21.4 Hz, 1F), -133.8 (dd, *J* = 23.7, 7.6 Hz, 1F), -131.9 (d, *J* = 22.9 Hz, 1F); IR (KBr) 2918, 2882, 2834, 1521, 1494, 1066, 990, 825, 741 cm⁻¹; MS (FAB): *m/z*: 509 [*M*-Cl]⁺; HRMS (FAB): *m/z* calcd for C₂₂H₁₉F₅N₂Rh 509.0523 [*M*-Cl]⁺; found 509.0537.

Chloro(1,5-cyclooctadiene)(1-((4-methoxyphenyl)ethynyl)-2-methylimidazo[1,5-*a*] pyridin-3-ylidene)rhodium (I) (5f)

0.20 mmol, Yellow solid; 87% yield (over 2 steps); $R_f = 0.40$ (*n*-hexane/EtOAc = 2/1); m.p. 130-134 °C (decomposed); ¹H NMR (400 MHz, CDCl₃) δ 1.99-2.07 (m, 4H, CH₂(cod)), 2.41-2.50 (m, 4H, CH₂(cod)), 3.27-3.37 (m, 2H, CH(cod)), 3.85 (s, 3H, OMe), 4.37 (s, 3H, NMe), 5.13-5.17 (m, 2H, CH(cod)), 6.64 (dd, J = 7.1, 6.3 Hz, 1H, Ar), 6.88 (dd, J = 9.3, 6.3 Hz, 1H, Ar), 6.91 (d, J = 8.8 Hz, 2H, Ar), 7.33 (d, J = 9.3 Hz, 1H, Ar), 7.47 (d, J = 8.8 Hz, 2H, Ar), 8.98 (d, J = 7.1 Hz, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 28.7 (CH₂(cod)), 29.1 (CH₂(cod)), 32.8 (CH₂(cod)), 33.1 (CH₂(cod)), 37.1 (NMe), 55.3 (OMe), 68.4 (d, ¹ J_{C-Rh} = 14.9 Hz, CH(cod)), 68.8 (d, ¹ J_{C-Rh} = 14.9 Hz, CH(cod)), 74.2 (CC), 99.6 (d, ¹ J_{C-Rh} = 6.6 Hz, CH(cod)), 99.8 (d, ¹ J_{C-Rh} = 6.6 Hz, CH(cod)), 100.7 (CC), 108.7, 113.3, 114.1 (2C), 117.5, 123.6, 129.1, 132.9, 133.5, 160.1 (Ar), 175.1 (d, ¹ J_{C-Rh} = 52.1 Hz, N₂C); IR (KBr) 2932, 2869, 2826, 2200, 1603, 1508, 1307, 1247, 1177, 1028, 832, 755 cm⁻¹; MS (FAB): *m/z*: 508 [*M*]⁺; HRMS (FAB): *m/z* calcd for C₂₅H₂₆ClN₂ORh 508.0789 [*M*]⁺; found 508.0798.

Chloro(1,5-cyclooctadiene)(2-methyl-1-(phenylethynyl)imidazo[1,5-*a*]pyridin-3-yli dene)rhodium (I) (5g)

0.20 mmol scale; Yellow solid; 96% yield (over 2 steps); $R_f = 0.25$ (*n*-hexane/EtOAc = 2/1); m.p. 137-144 °C (decomposed); ¹H NMR (400 MHz, CDCl₃) δ 1.95-2.07 (m, 4H, CH₂(cod)), 2.41-2.54 (m, 4H, CH₂(cod)), 3.26-3.40 (m, 2H, CH(cod)), 4.39 (s, 3H, NMe), 5.13-5.18 (m, 2H, CH(cod)), 6.66 (dd, *J* = 7.3, 6.3 Hz, 1H, Ar), 6.95 (dd, *J* = 9.3, 6.3 Hz, 1H, Ar), 7.36 (d, *J* = 9.3 Hz, 1H, Ar), 7.38-7.42 (m, 3H, Ar), 7.50-7.55 (m, 2H, Ar), 8.99 (d, *J* = 7.3 Hz, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 28.8 (CH₂(cod)), 29.1 (CH₂(cod)), 32.8 (CH₂(cod)), 33.1 (CH₂(cod)), 37.1 (NMe), 68.5 (d, ¹*J*_{C-Rh} = 14.9 Hz, CH(cod)), 68.9 (d, ¹*J*_{C-Rh} = 14.1 Hz, CH(cod)), 75.7 (CC), 99.8 (d, ¹*J*_{C-Rh} = 6.6 Hz, CH(cod)), 100.0 (d, ¹*J*_{C-Rh} = 6.6 Hz, CH(cod)), 100.9 (CC), 108.3, 113.4, 117.5, 122.2, 123.9, 128.5, 128.8, 129.2, 131.2, 133.9 (Ar), 175.7 (d, ¹*J*_{C-Rh} = 52.1 Hz, N₂C); IR (KBr) 2932, 2870, 2824, 2196, 1517, 1490, 1430, 1336, 1304, 1252, 751, 690 cm⁻¹; MS (FAB): *m/z*: 478 [*M*]⁺; HRMS (FAB): *m/z* calcd for C₂₄H₂₄CIN₂Rh 484.0683 [*M*]⁺; found 478.0688.

Chloro(1,5-cyclooctadiene)(2-methyl-1-((4-(trifluoromethyl)phenyl)ethynyl)imidaz o[1,5-a]pyridin-3-ylidene)rhodium (I) (5h)

0.20 mmol scale, Yellows solid; 64% yield (over 2 steps); R_f = 0.20 (*n*-hexane/EtOAc = 2/1); m.p. 171-175 °C (decomposed); ¹H NMR (400 MHz, CDCl₃) δ 2.00-2.05 (m, 4H, CH₂(cod)), 2.37-2.53 (m, 4H, CH(cod)), 3.29-3.38 (m, 2H, CH(cod)), 4.41 (s, 3H, NMe), 5.16-5.20 (m, 2H, CH(cod)), 6.70 (dd, *J* = 7.3, 6.3 Hz, 1H, Ar), 6.97 (dd, *J* = 9.3, 6.3 Hz,

1H, Ar), 7.37 (d, J = 9.27 Hz, 1H, Ar), 7.61 (d, J = 8.8 Hz, 2H, Ar), 7.65 (d, J = 8.8 Hz, 2H, Ar), 9.04 (d, J = 7.3 Hz, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 28.8 (CH₂(cod)), 29.1 (CH₂(cod)), 32.8 (CH₂(cod)), 33.1 (CH₂(cod)), 37.2 (NMe), 68.6 (d, ¹ $J_{C-Rh} = 14.8$ Hz, CH(cod)), 69.0 (d, ¹ $J_{C-Rh} = 14.0$ Hz, CH(cod)), 78.2 (CC), 99.7 (CC), 100.0 (d, ¹ $J_{C-Rh} = 6.6$ Hz, CH(cod)), 100.3 (d, ¹ $J_{C-Rh} = 6.6$ Hz; CH(cod)), 107.7, 113.6, 117.3 (Ar), 123.8 (q, ¹ $J_{C-F} = 272.1$ Hz, CF₃), 124.7 (Ar), 125.5 (q, ³ $J_{C-F} = 3.3$ Hz; CHCCF₃), 126.0, 129.5 (Ar), 130.3 (q, ² $J_{C-F} = 33.1$ Hz; CCF₃), 131.2, 134.5, 176.8 (d, ¹ $J_{C-Rh} = 52.1$ Hz, N₂C); ¹⁹F NMR (376 MHz, CDCl₃) δ –62,7; IR (KBr) 2930, 2875, 2830, 2197, 1610, 1567, 1510, 1322, 1250, 1169, 1123, 1065, 835, 753 cm⁻¹; MS (FAB): *m/z*: 546 [*M*]⁺; HRMS (FAB): *m/z* calcd for C₂₅H₂₃ClF₃N₂Rh 546.0557 [*M*]⁺; found 546.0573.

Chloro(1,5-cyclooctadiene)(2-methyl-1-((pentafluorophenyl)ethynyl)imidazo[1,5-*a*]pyridin-3-ylidene)rhodium (I) (5i)

0.20 mmol scale; Yellow solid; 87% yield (over 2 steps); $R_f = 0.20$ (*n*-hexane/EtOAc = 2/1); m.p. 162-172 °C (decomposed); ¹H NMR (400 MHz, CDCl₃) δ 1.97-2.09 (m, 4H, CH₂(cod)), 2.42-2.53 (m, 4H, CH₂(cod)), 3.27-3.41 (m, 2H, CH(cod)), 4.40 (s, 3H, NMe), 5.15-5.23 (m, 2H, CH(cod)), 6.75 (dd, *J* = 7.3, 6.3 Hz, 1H, Ar), 7.04 (dd, *J* = 9.3, 6.3 Hz, 1H, Ar), 7.37 (d, *J* = 9.3 Hz, 1H, Ar), 9.09 (d, *J* = 7.3 Hz, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 28.7 (CH₂(cod)), 28.9 (CH₂(cod)), 32.8 (CH₂(cod)), 33.0 (CH₂(cod)), 37.1 (NMe), 68.6 (d, ¹*J*_{C-Rh} = 14.1 Hz, CH(cod)), 69.0 (d, ¹*J*_{C-Rh} = 14.1 Hz, CH(cod)), 85.3 (q, *J* = 4.1 Hz; CC), 88.1 (q, *J* = 3.3 Hz, CC), 99.6 (td, *J*_{C-F} = 18.2, 4.1 Hz, Ar), 100.2 (d, ¹*J*_{C-Rh} = 6.6 Hz, CH(cod)), 100.4 (d, ¹*J*_{C-Rh} = 6.6 Hz, CH(cod)), 106.7, 113.8, 117.0, 125.6, 129.6, 135.2, 137.5 (dm, ¹*J*_{C-F} = 252.2 Hz), 141.3 (dm, ¹*J*_{C-F} = 258.0 Hz), 146.0 (dm, ¹*J*_{C-F} = 253.1 Hz) (Ar), 178.1 (d, ¹*J*_{C-Rh} = 52.1 Hz, N₂C). ¹⁹F NMR (376 MHz, CDCl₃) δ – 157.1 (m, 2F), -147.1 (t, *J* = 20.6 Hz, 1F), -132.0 (m, 2F); IR (KBr) 2928, 2870, 2823, 2212, 1514, 1498, 1287, 1241, 988, 759 cm⁻¹; MS (FAB): *m/z*: 568 [*M*]⁺; HRMS (FAB): *m/z* calcd for C₂₄H₁₉ClF₅N₂Rh 568.0212 [*M*]⁺; Found 568.0217.

Chloro(1,5-cyclooctadiene)(1,2-diphenylimidazo[1,5-*a*]pyridin-3-ylidene)rhodium (I) (5j)

To a solution of 1,2-diphenylimidazo[1,5-*a*]pyridin-2-ium tetrafluoroborate (72 mg, 0.20 mmol, 1.0 equiv) and *t*-BuOK (25 mg, 0.22 mmol, 1.1 equiv) in anhydrous THF (4.0 mL) was added [Rh(cod)Cl]₂ (49 mg, 0.10 mmol, 0.50 equiv) at room temperature under an

argon atmosphere and the mixture was stirred at room temperature for 12 h. After stirring, the solvent was removed in vacuo. The residue was purified by flash column chromatography on silica gel to give Chloro(1,5-cyclooctadiene)(1,2-diphenylimidazo[1,5-a]pyridine-3-ylidene)rhodium (I) in 88% yield as a yellow solid. $R_{\rm f}$ = 0.43 (*n*-hexane/EtOAc = 2/1); m.p. 225-227 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.35-1.52 (m, 2H, CH₂(cod)), 1.73-2.05 (m, 4H, CH₂(cod)), 2.27-2.36 (m, 1H, CH₂(cod)), 2.41-2.50 (m, 1H, CH₂(cod)), 2.54-2.59 (m, 1H, CH(cod)), 3.33-3.38 (m, 1H, CH(cod)), 4.97-5.02 (m, 1H, CH(cod)), 5.06-5.11 (m, 1H, CH(cod)), 6.63 (dd, J = 7.8, 6.3 Hz, 1H, Ar), 6.80 (dd, J = 9.3, 6.3 Hz, 1H, Ar), 7.10 (d, J = 7.3 Hz, 2H, Ar), 7.26-7.31 (m, 5H, Ar), 7.44-7.48 (m, 3H, Ar), 7.81 (br s 1H, Ar), 9.08 (d, J = 7.3 Hz, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 28.2 (CH₂(cod)), 28.8 (CH₂(cod)), 31.3 $(CH_2(cod))$, 33.6 $(CH_2(cod))$, 68.2 $(d, {}^{1}J_{C-Rh} = 14.1 \text{ Hz}, CH(cod))$, 68.6 $(d, {}^{1}J_{C-Rh} = 14.9 \text{ Hz})$ Hz, CH(cod)), 98.3 (d, ${}^{1}J_{C-Rh}$ = 9.1 Hz; CH(cod)), 98.4 (d, ${}^{1}J_{C-Rh}$ = 9.1 Hz, CH(cod)), 113.4, 117.4, 123.2, 124.0, 127.9, 128.05, 128.11, 128.3, 128.5, 128.7, 129.1, 129.3, 139.1 (Ar), 175.4 (d, ${}^{1}J_{C-Rh}$ = 52.1Hz, N₂C); A peak was not observed; IR (KBr) 2931, 2869, 2826, 1496, 1350, 1308, 764, 700 cm⁻¹; MS (FAB): m/z: 516 $[M]^+$; HRMS (FAB): m/z calcd for C₂₇H₂₆ClN₂Rh 516.0840 [M]⁺; found 516.0844.

General procedure for the synthesis of Rh(CO)₂(L)Cl complexes

An argon-flushed 2-neck flask was charged with Rh(cod)(L)CI complexes (L = NHC) (1.0 equiv) and anhydrus THF (0.050 M). CO was bubbled for 10 min and then the solvent was evaporated *in vacuo*. The remaining oil was washed with *n*-hexane to give $Rh(CO)_2(L)CI$ complexes. Elemental analyses were carried out with lightly dried powder since the complexes were not so stable under low partial pressure of CO gas, thus some solvents were remaind in the samples.

Chlorodicarbonyl(1-(2-methoxyphenyl)-2-methylimidazo[1,5-a]pyridin-3-ylidene)r hodium (I) (6a)

0.16 mmols scale, Yellow solid; 80% yield; ¹H NMR (400 MHz, CDCl₃) δ 3,78 (s, 3H, OMe), 3.96 (s, 3H, NMe), 6.58 (dd, *J* = 7.2, 6.3 Hz, 1H, Ar), 6.75 (dd, *J* = 9.4, 6.3 Hz, 1H, Ar), 7.01-7.08 (m, 3H, Ar), 7.25 (d, *J* = 7.7 Hz, 1H, Ar), 7.47 (dd, *J* = 8.5, 7.7 Hz, 1H, Ar), 8.56 (d, *J* = 7.2 Hz, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 37.6 (NMe), 55.5 (OMe), 111.4, 113.6, 115.9, 117.5, 121.0, 122.3, 122.5, 127.8, 129.6, 131.6, 132.4, 158.0 (Ar),

163.5 (d, ${}^{1}J_{C-Rh}$ = 45.1 Hz, N₂C), 182.6 (d, ${}^{1}J_{C-Rh}$ = 74.3 Hz, CO), 185.3 (d, ${}^{1}J_{C-Rh}$ = 54.5 Hz, CO); IR (CH₂Cl₂) 2081.1, 2001.4 cm⁻¹; Anal. calcd for C₁₇H₁₄ClN₂O₃Rh·(C₆H₁₄)_{0.4}(CH₂Cl₂)_{0.05} (%): C 49.56; H 4.21; N 5.94, found C 49.62; H 4.26; N 6.06.

Chlorodicarbonyl(1-(4-methoxyphenyl)-2-methylimidazo[1,5-*a*]pyridin-3-ylidene)r hodium (I) (6b)

0.15 mmol scale, Yellow solid; 92% yield; ¹H NMR (400 MHz, CDCl₃) δ 3.83 (s, 3H, OMe), 4.03 (s, 3H, NMe), 6.57 (dd, J = 7.1, 6.3Hz, 1H, Ar), 6.74 (dd, J = 9.3, 6.3 Hz, 1H, Ar), 6.99 (d, J = 8.8, 2H, Ar), 7.12 (d, J = 9.3 Hz, 1H, Ar), 7.29 (d, J = 8.8 Hz, 2H, Ar), 8.52 ppm (d, J = 7.1 Hz, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 37.8 (NMe), 55.5 (OMe), 113.9, 114.8, 117.4, 119.3, 122.6, 125.3, 127.8, 129.1, 131.5, 160.5 (Ar), 163.8 (d, ¹J_C-_{Rh} = 44.2 Hz, N₂C), 182.6 (d, ${}^{1}J_{C-Rh}$ = 74.3 Hz, CO), 185.3 ppm (d, ${}^{1}J_{C-Rh}$ = 54.5 Hz, $cm^{-1};$ CO); IR 2081.7, 2001.8 Anal. (CH_2CI_2) calcd for C₁₇H₁₄ClN₂O₃Rh·(C₆H₁₄)_{0.35}(CH₂Cl₂)_{0.17} (%): C 48.50; H 4.06; N 5.87, found C 48.35; H 4.12; N 5.99.

Chlorodicarbonyl(2-methyl-1-phenylimidazo[1,5-*a*]pyridin-3-ylidene)rhodium (I) (6c)

0.13 mmol scale, Yellow solid; 98% yield; ¹H NMR (400 MHz, CDCl₃) δ 4.14 (s, 3H, NMe), 6.67 (dd, *J* = 7.3, 6.3 Hz, 1H, Ar), 6.85 (dd, *J* = 9.3, 6.3 Hz, 1H, Ar), 7.24 (d, *J* = 9.3 Hz, 1H, Ar), 7.43 (d, *J* = 6.3 Hz, 2H, Ar), 7.48-7.57 (m, 3H, Ar), 8.62 (d, *J* = 7.3 Hz, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 37.9 (NMe), 114.0, 117.3, 123.0, 125.3, 127.3, 127.9, 128.7, 129.3, 129.4, 130.0, 164.4 (d, *J*_{C-Rh} = 44.7 Hz, N₂C), 182.6 (d, ¹*J*_{C-Rh} = 74.4 Hz, CO), 185.3 ppm (d, ¹*J*_{C-Rh} = 54.6 Hz, CO); IR (CH₂Cl₂) 2082.2, 2002.2 cm⁻¹; Anal. calcd for C₁₆H₁₂ClN₂O₂Rh·(C₆H₁₄)_{0.2}(CH₂Cl₂)_{0.15} (%): C 48.17; H 3.52; N 6.48, found C 48.03; H 3.55; N 6.39.

Chlorodicarbonyl(2-methyl-1-(4-(trifluoromethyl)phenyl)imidazo[1,5-*a*]pyridin-3-yl idene)rhodium (I) (6d)

0.088 mmol scale, Yellow solid; 76% yield; ¹H NMR (400 MHz, CDCl₃) δ 4.17 (s, 3H, NMe), 6.72 (dd, *J* = 7.3, 6.3 Hz, 1H, Ar), 6.93 (dd, *J* = 9.3, 6.3 Hz, 1H, Ar), 7.25 (d, *J* = 9.3 Hz, 1H, Ar), 7.59 (d, *J* = 8.3 Hz, 2H, Ar), 7.82 (d, *J* = 8.3 Hz, 2H, Ar), 8.66 (d, *J* = 7.3

Hz, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 38.1 (NMe), 114.2, 116.7, 123.7 (q, ¹*J*_{C-F} = 272.1 Hz, CF₃), 124.1, 126.3 (q, ³*J*_{C-Rh} = 3.3 Hz; CHCCF₃), 128.1, 128.7, 129.9, 130.2, 130.9, 131.2 (q, ²*J*_{C-F} =33.1 Hz, CCF₃), 165.8 ppm (d, ¹*J*_{C-Rh} = 46.3 Hz, N₂C), 182.3 (d, ¹*J*_{C-Rh} = 73.6 Hz, CO), 185.0 ppm (d, ¹*J*_{C-Rh} = 53.8 Hz, CO); ¹⁹F NMR (376 MHz, CDCl₃) δ -64.0; IR (CH₂Cl₂) 2083.5, 2003.4 cm⁻¹; Anal. calcd for C₁₇H₁₁ClF₃N₂O₂Rh·(C₆H₁₄)_{0.5}(CH₂Cl₂)_{0.7} (%): C 43.38; H 3.41; N 4.89, found C 43.39; H 3.63; N 5.01.

Chlorodicarbonyl(2-methyl-1-(pentafluorophenyl)imidazo[1,5-a]pyridin-3-ylidene) rhodium (I) (6e)

0.070 mmol scale, Yellow solid; 89% yield; ¹H NMR (400 MHz, CDCl₃) δ 4.11 (s, 3H, NMe), 6.80 (dd, *J* = 7.3, 5.9 Hz, 1H, Ar), 7.03-7.07 (m, 2H, Ar), 8.75 (d, *J* = 7.3 Hz, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 38.0 (NMe), 102.6 (td, *J*_{C-F} =17.4, 4.1 Hz), 114.2, 116.2, 125.3, 128.72, 128.78, 131.5, 136.7 (dm, ¹*J*_{C-F} =253.9 Hz), 142.6 (dm, ¹*J*_{C-F} =259.7 Hz), 144.8 (dm, ¹*J*_{C-F} =251.5 Hz) (Ar), 168.2 (d, ¹*J*_{C-Rh} = 45.5 Hz, N₂C), 182.1 (d, ¹*J*_{C-Rh} = 73.6 Hz, CO), 184.9 ppm (d, ¹*J*_{C-Rh} = 54.6 Hz, CO). ¹⁹F NMR (376 MHz, CDCl₃) δ -160.3 (br s, 2F), -150.0 (t, *J* = 21.4 Hz, 1F), -137.8 (br s, 1F), -136.7 (br s, 1F); IR (CH₂Cl₂) 2085.1, 2005.4 cm⁻¹; Anal. calcd for C₁₆H₇CIF₅N₂O₂Rh·(C₆H₁₄)_{0.4}(CH₂Cl₂)_{1.7} (%): C 35.96; H 2.40; N 4.17, found C 35.98; H 2.59; N 4.17.

Chlorodicarbonyl(2-methyl-1-((4-methoxyphenyl)ethynyl)imidazo[1,5-a]pyridin-3ylidene)rhodium (I) (6f)

0.18 mmol scale, Yellow solid; 98% yield; ¹H NMR (400 MHz, CDCl₃) δ 3.86 (s, 3H, OMe), 4.24 (s, 3H, NMe), 6.72 (dd, *J* = 7.3, 6.3 Hz, 1H, Ar), 6.93 (d, *J* = 9.0 Hz, 2H, Ar), 7.00 (dd, *J* = 9.3, 6.3 Hz, 1H, Ar), 7.47 (d, *J* = 9.3 Hz, 1H, Ar), 7.50 (d, *J* = 9.0 Hz, 2H, Ar), 8.64 (d, *J* = 7.3 Hz, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 37.8 (NMe), 55.4 (OMe), 73.5 (CC), 101.3 (CC), 109.6, 113.6, 114.2, 114.4, 117.6, 124.2, 128.6, 133.1, 133.6, 160.4, 165.8 (d, ¹*J*_{C-Rh} = 45.5 Hz, N₂C), 182.2 (d, ¹*J*_{C-Rh} = 73.6 Hz, CO), 185.0 (d, ¹*J*_{C-Rh} = 54.6 Hz, CO); IR (CH₂Cl₂) 2083.7, 2004.2 cm⁻¹; Anal. calcd for C₁₉H₁₄ClN₂O₃Rh·(C₆H₁₄)_{0.66}(CH₂Cl₂)_{0.6} (%): C 50.13; H 4.36; N 4.96, found C 50.10; H 4.13; N 4.82.

ium(l) (6g)

0.15 mmol scale, Yellow solid; 71% yield; ¹H NMR (400 MHz, CDCl₃) δ 4.19 (s, 3H, NMe), 6.67 (dd, *J* = 7.3, 6.3 Hz, 1H, Ar), 6.96 (dd, *J* = 9.3, 6.3 Hz, 1H, Ar), 7.32-7.36 (m, 3H, Ar), 7.42 (d, *J* = 9.3 Hz, 1H, Ar), 7.48-7.50 (m, 2H, Ar), 8.59 (d, *J* = 7.3 Hz, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 37.9 (Me), 74.8 (CC), 101.4 (CC), 109.3, 114.5, 117.5, 121.7, 124.7, 128.6, 128.8, 129.3, 131.4, 133.9 (Ar), 166.3 (d, ¹*J*_{C-Rh} = 45.5 Hz, N₂C), 182.2 (d, ¹*J*_{C-Rh} = 73.6 Hz, CO), 185.0 (d, ¹*J*_{C-Rh} = 54.6 Hz, CO); IR (CH₂Cl₂) 2084.1, 2004.6 cm⁻¹; Anal. calcd for C₁₈H₁₂ClN₂O₂Rh·(C₆H₁₄)_{0.4}(CH₂Cl₂)_{0.1} (%): C 52.43; H 3.82; N 5.97, found C 52.40; H 3.63; N 6.21.

Chlorodicarbonyl(2-methyl-1-((4-(trifluoromethyl)phenyl)ethynyl)imidazo[1,5-a]py ridin-3-ylidene)rhodium (I) (6h)

0.10 mmol scale, Yellow solid; 92% yield; ¹H NMR (400 MHz,) δ 4.28 (s, 3H, NMe), 6.79 (dd, *J* = 7.3, 6.3 Hz, 1H, Ar), 7.09 (dd, *J* = 9.3, 6.3 Hz, 1H, Ar), 7.51 (d, *J* = 9.3 1H, Ar), 7.67 (m, 4H, Ar), 8.71 (d, *J* = 7.3 Hz, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 37.9 (NMe), 67.9 (CC), 100.1 (CC), 108.5, 114.7, 117.3 (Ar), 123.7 (q, ¹*J*_{C-F} = 272.1 Hz, CF₃), 125.3 (Ar), 125.6 (q, ³*J*_{C-F} = 4.1 Hz, CHCCF₃), 129.0 (Ar), 130.7 (q, ²*J*_{C-F} = 33.1 Hz, CCF₃), 131.2, 131.4, 134.5 (Ar), 167.3 (d, ¹*J*_{C-Rh} = 45.5 Hz, N₂C), 182.1 (d, ¹*J*_{C-Rh} = 73.6 Hz, CO), 184.9 (d, ¹*J*_{C-Rh} = 54.6 Hz, CO); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.8 (C*F*₃); IR (CH₂Cl₂) 2084.5, 2005.2 cm⁻¹; Anal. calcd for C₁₉H₁₁ClF₃N₂O₂Rh·(C₆H₁₄)_{0.33} (%): C 48.17; H 3.01; N 5.36, found C 48.11; H 3.07; N 5.48.

Chlorodicarbonyl(2-methyl-1-((pentafluorophenyl)ethynyl)imidazo[1,5-*a*]pyridin-3 -ylidene)rhodium (I) (6i)

0.17 mmol scale, Yellow solid; 78% yield; ¹H NMR (400 MHz, CDCl₃) δ 4.28 (s, 3H, NMe), 6.83 (dd, *J* = 7.3, 6.3 Hz, 1H, Ar), 7.16 (dd, *J* = 9.3, 6.3 Hz, 1H, Ar), 7.52 (d, *J* = 9.3 Hz, 1H, Ar), 8.75 (d, *J* = 7.3 Hz, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 38.0 (NMe), 85.7 (q, *J* = 4.1 Hz; CC), 87.1 (q, *J* = 3.3 Hz; CC), 99.3 (td, *J*_{C-F} = 18.2, 4.1 Hz), 107.6, 114.9, 117.1, 126.3, 129.3, 135.2, 137.8 (dm, ¹*J*_{C-Rh} = 250.6 Hz), 142.0 (dm, ¹*J*_{C-Rh} = 258.9 Hz), 146.4 (dm ¹*J*_{C-Rh} = 253.9 Hz) (Ar), 168.6 (d, *J*_{C-Rh} = 45.5 Hz, N₂C), 182.0 (d, *J*_{C-Rh} = 73.6 Hz, CO), 184.8 (d, *J*_{C-Rh} = 54.6 Hz, CO); ¹⁹F NMR (376 MHz, CDCl₃) δ – 157.0 (m, 2F), -147.0 (t, *J* = 20.6 Hz, 1F), -132.0 (m, 2F); IR (CH₂Cl₂) 2085.9, 2006.2 cm⁻¹; Anal. calcd for C₁₈H₇ClF₅N₂O₂Rh·(C₆H₁₄)_{0.33} (%): C 44.03; H 2.15; N 5.14, found C

43.83; H 2.10; N 5.21.

Chlorodicarbonyl(1,2-diphenylimidazo[1,5-a]pyridin-3-ylidene)rhodium (I) (6j)

0.18 mmol scale, Yellow solid; 91% yield; ¹H NMR (400 MHz, CDCl₃) δ 6.73 (dd, *J* = 7.2, 6.3 Hz, 1H, Ar), 6.95 (dd, *J* = 9.4, 6.3 Hz, 1H, Ar), 7.14-7.17 (m, 2H, Ar), 7.31-7.35 (m, 3H, Ar), 7.42 (d, *J* = 9.0 Hz, 1H, Ar), 7.44-7.51 (m, 5H, Ar), 8.81 ppm (d, *J* = 7.6 Hz, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 114.1, 117.4, 123.8, 125.0, 127.4, 128.1, 128.5, 128.7, 128.8, 129.0, 129.27, 129.31, 129.4, 138.4 (Ar), 166.0 (d, ¹*J*_{C-Rh} = 46.0 Hz; N₂C), 181.9 (d, ¹*J*_{C-Rh} = 75.2 Hz, CO), 185.3 (d, ¹*J*_{C-Rh} = 54.5 Hz, CO); IR (CH₂Cl₂) 2080.6, 2002.8 cm⁻¹; Anal. calcd for C₂₁H₁₄ClN₂O₂Rh·(C₆H₁₄)_{0.33}(CH₂Cl₂)_{0.1} (%): C 55.26; H 3.78; N 5.58, found C 55.32; H 3.63; N 5.42.

Chlorodicarbonyl(1,2-dimethylimidazol-2-ylidene)rhodium (I) (10a)

Prepared according to literature procedure.^{S2 1}H NMR (400 MHz, CDCl₃) δ 3.91 (s, 6H, Me), 6.94 (s, 2H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 38.3 (Me), 122.7 (Ar), 174.5 (d, ¹*J*_{C-Rh} = 43.2 Hz; N₂C), 182.6 (d, ¹*J*_{C-Rh} = 74.2 Hz, CO), 185.5 (d, ¹*J*_{C-Rh} = 53.6 Hz, CO); IR (CH₂Cl₂) 2081.7, 2000.4 cm⁻¹.

General procedure for the synthesis of selenoureas

To a suspension of azolium salts (0.50 mmol, 1.0 equiv) and elemental selenium (1.0 mmol, 2.0 equiv) in anhydrous THF (4.0 mL) was added NaH (0.55 mmol, 1.1 equiv) at room temperature under an argon atmosphere and the mixture was stirred at room temperature for 3-5 h. After stirring, the solvent was removed *in vacuo*. The residue was purified by flash column chromatography on silica gel to give selenourea.

(4-methoxyphenyl)-2-methylimidazo[1,5-a]pyridine-3-selenone (13b)

Yellow solid; 77% yield; m.p. 150-152 °C; $R_f = 0.20$ (*n*-Hexane/EtOAc, 4:1). ¹H NMR (400 MHz, CDCl₃) δ 3.07 (s, 3H, OMe), 3.92 (s, 3H, NMe), 6.64 (dd, J = 7.3, 6.3 Hz, 1H, Ar), 6.77 (dd, J = 9.3, 6.3 Hz, 1H, Ar), 7.05 (d, J = 8.8 Hz, 2H, Ar), 7.15 (d, J = 9.3 Hz, 1H, Ar), 7.33 (d, J = 8.8 Hz, 1H, Ar), 8.52 (d, J = 7.3 Hz, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 35.7 (NMe), 55.7 (OMe), 113.7, 114.9, 117.2, 119.6, 122.66, 122.72, 126.2, 126.7, 131.4 (Ar), 145.4 (C=Se, ¹ $J_{C-Se} = 234.9$ Hz), 160.4 (Ar); ⁷⁷Se NMR (76 MHz, CDCl₃) δ –9.8; IR (KBr) 1640.2, 1609.3, 1562.1, 1438.6, 1375.0, 1346.1, 1322.9,

1291.1, 1250.6, 1176.4, 1047.2, 1025.9, 831.2, 737.6 cm⁻¹; MS (EI): m/z: 318 $[M]^+$; HRMS (EI): m/z calcd for C₁₅H₁₄N₂OSe 318.0271 $[M]^+$; found 318.0280.

2-methy-1-phenylimidazo[1,5-*a*]pyridine-3-selenone (13c)

Yellow solid; 72% yield; m.p. 101-102 °C; $R_f = 0.30$ (*n*-Hexane/EtOAc, 4:1). ¹H NMR (400 MHz, CDCl₃) δ 3.96 (s, 3H, Me), 6.66 (t, J = 6.8 Hz, 1H, Ar), 6.81 (dd J = 9.3, 6.3 Hz, 1H, Ar), 7.21 (d, J = 9.8 Hz, 1H, Ar), 7.42 (d J = 8.3 Hz, 2H, Ar), 7.49-7.57 (m, 3H, Ar), 8.55 (d, J = 7.3 Hz, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 35.4 (Me), 113.4, 116.7, 122.3, 122.8, 126.0, 126.5, 127.2, 128.9, 129.0, 129.5 (Ar), 145.8 (C=Se, ¹ $J_{C-Se} = 234.9$ Hz); ⁷⁷Se NMR (76 MHz, CDCl₃) δ –2.9; IR (KBr) 2922.6, 2853.2, 1642.1, 1597.7, 1515.6, 1498.4, 1468.5, 1450.2, 1432.9, 1380.8, 1349.0, 1325.8, 1313.3, 1251.6, 1080.9, 947.8, 761.7, 734.7, 702.0 cm⁻¹; MS (EI): *m/z*: 288 [*M*]⁺; HRMS (EI): *m/z* calcd for C₁₄H₁₂N₂Se 288.0166 [*M*]⁺; found 288.0162.

(4-trifluoromethylphenyl)-2-methylimidazo[1,5-a]pyridin-3-selenone (13d)

0.5 mmol scale; Yellow solid; 90% yield; m.p. 173-175 °C; $R_f = 0.33$ (*n*-Hexane/EtOAc, 4:1); ¹H NMR (400 MHz, CDCl₃) δ 3.98 (s, 3H, NMe), 6.70 (dd, J = 7.3, 6.4 Hz, 1H, Ar), 6.88 (dd, J = 9.2, 6.4 Hz, 1H, Ar), 7.22 (d, J = 9.2 Hz, 1H, Ar), 7.56 (d, J = 8.2 Hz, 2H, Ar), 7.80 (d, J = 8.2 Hz, 1H, Ar), 8.58 (d, J = 7.3 Hz, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 35.7 (NMe), 113.7, 116.3, 120.6 (Ar), 123.6 (q, ¹ $J_{C-F} = 272.2$ Hz, CF₃), 124.1 (Ar), 126.2 (q, ³ $J_{C-F} = 3.8$ Hz, CH=C–CF₃), 126.5, 127.2, 129.7 (Ar), 130.7 (q, ² $J_{C-F} = 32.6$ Hz, C–CF₃), 131.2 (Ar), 147.7 (C=Se, ¹ $J_{C-Se} = 236.8$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –62.7 (CF₃); ⁷⁷Se NMR (76 MHz, CDCl₃) δ 4.7 (C=Se); IR (KBr) 1614.1, 1518.7, 1377.9, 1313.3, 1247.7, 1169.6, 1133.0, 1112.7, 1069.3, 949.8, 838.9, 751.1, 737.6 cm⁻¹; MS (EI): *m/z*: 356 [*M*]⁺; HRMS (EI): *m/z* calcd for C₁₅H₁₁F₃N₂Se 356.0040 [*M*]⁺; found 356.0032.

1-((4-Methoxyphenyl)ethynyl)-2-methylimidazo[1,5-a]pyridin-3-selenone (13f)

0.5 mmol scale, KHMDS (1.1 equiv, 0.5 M toluene solution) was used instead of NaH; Yellow solid; 93% yield; m.p. 171-173 °C; $R_f = 0.40$ (*n*-Hexane/EtOAc, 4:1); ¹H NMR (400 MHz, CDCl₃) δ 3.85 (s, 3H, OMe), 4.03 (s, 3H, NMe), 6.71 (dd, J = 7.2, 6.7 Hz, 1H, Ar), 6.91 (d, J = 9.0 Hz, 2H, Ar), 6.96 (dd, J = 9.4, 6.7 Hz, 1H, Ar), 7.42 (d, J = 9.4 Hz, 1H, Ar), 7.49 (d, J = 9.0 Hz, 2H, Ar), 8.55 (d, J = 7.2 Hz, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 35.2 (NMe), 55.3 (OMe), 74.1, 100.4 (CC), 106.1, 113.6, 113.9, 114.1, 117.2, 124.2, 126.8, 131.4, 132.8 (Ar), 147.0 (*C*=Se, ¹*J*_{C-Se} = 237.1 Hz); ⁷⁷Se NMR (76 MHz, CDCl₃) δ 8.5 (C=Se); IR (KBr) 2934.2, 2837.7, 2200.4, 1603.5, 1507.1, 1377.9, 1316.2, 1287.3, 1247.7, 1122.4, 1027.9, 829.2, 811.9 cm⁻¹; MS (EI): *m/z*: 342 [*M*]⁺; HRMS (EI): *m/z* calcd for C₁₇H₁₄N₂OSe 342.0271 [*M*]⁺; found 342.0278.

2-methyl-1-(phenylethynyl)imidazo[1,5-a]pyridine-3-selenone (13g)

Orange solid; 92% yield; m.p. 122-124 °C; $R_f = 0.35$ (*n*-Hexane/EtOAc, 4:1). ¹H NMR (400 MHz, CDCl₃) δ 4.05 (s, 3H, Me), 6.73 (dd, J = 7.3, 6.3 Hz, 1H, Ar), 6.99 (dd, 9.3, 6.3 Hz, 1H, Ar), 7.39-7.42 (m, 3H, Ar), 7.45 (d, J = 9.3 Hz, 1H, Ar), 7.53-7.57 (m, 2H, Ar), 8.58 (d, J = 7.3 Hz, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 35.1 (Me), 75.4 (CC), 100.3 (CC), 105.5, 113.8, 117.0, 121.5, 124.4, 126.7, 128.3, 128.7, 130.9, 131.5 (Ar), 147.4 (C=Se, ¹ $J_{C-Se} = 238.7$ Hz); ⁷⁷Se NMR (76 MHz, CDCl₃) δ 13.5; IR (KBr) 1642.1, 1517.7, 1490.7, 1379.8, 1343.2, 1316.2, 1255.4, 971.9, 743.4, 687.5 cm⁻¹; MS (EI): *m/z*: 312 [*M*]⁺; HRMS (EI): *m/z* calcd for C₁₆H₁₂N₂Se 312.0166 [*M*]⁺; found 312.0156.

2-Methyl-1-((4-(trifluoromethyl)phenyl)ethynyl)imidazo[1,5-*a*]pyridine-2-selenone (13h)

Yellow solid; 58% yield; m.p. 192-194 °C; $R_f = 0.35$ (*n*-Hexane/EtOAc, 4:1). ¹H NMR (400 MHz, CDCl₃) δ 4.06 (s, 3H, Me), 6.77 (dd, J = 7.3, 6.3 Hz, 1H, Ar), 7.05 (dd, J = 9.3, 6.3 Hz, 1H, Ar), 7.47 (d, J = 9.3 Hz, 1H, Ar), 7.65 (s, 4H, Ar), 8.62 (d, J = 7.3 Hz, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 35.3 (Me), 78.1 (CC), 99.3 (CC), 105.1, 114.2, 117.1 (Ar), 123.7 (q, ¹ $J_{C-F} = 272.1$ Hz, CF₃), 125.5 (q, ³ $J_{C-F} = 4.1$ Hz, CHCCF₃), 125.7 (q, ⁴ $J_{C-F} =$ 1.7 Hz, CHCHCCF₃), 127.3 (Ar), 130.4 (q, ² $J_{C-F} = 33.1$ Hz, CCF₃), 131.2, 132.6 (Ar), 148.6 (C=Se, ¹ $J_{C-Se} = 239.9$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ –63.2 (CF₃); ⁷⁷Se NMR (76 MHz, CDCl₃) δ 18.5; IR (KBr) 2194.6, 1610.3, 1566.0, 1518.7, 1509.0, 1314.3, 1251.6, 1171.5, 1125.3, 1103.1, 1061.6, 834.1, 741.5 cm⁻¹; MS (EI): *m/z*: 380 [*M*]⁺; HRMS (EI): *m/z* calcd for C₁₇H₁₁F₃N₂Se 380.0040 [*M*]⁺; found 380.0051.

1,3-Dimesitylimidazole-2-selenone (14)

Prepared according to literature procedure.^{S4} m.p. >300 °C; $R_f = 0.58$ (*n*-Hexane/EtOAc, 4:1); ¹H NMR (400 MHz, CDCl₃) δ 2.13 (s, 12H, Me), 2.34 (s, 6H, *p*-Me), 6.96 (s, 2H, Ar), 7.02 (s, 4H, Ar). ¹³C NMR (100 MHz, CDCl₃) d 17.9, 21.0 (Me), 120.1, 129.1, 134.1,

135.2, 139.2 (Ar), 157.3 (C=Se, ${}^{1}J_{C-Se}$ = 230.0 Hz); ⁷⁷Se NMR (76 MHz, CDCl₃) δ 27.0.

1,3-Bis(2,6-diisopropylphenyl)imidazole-2-selenone (15)

Prepared according to literature procedure.^{S5} m.p. >300 °C; $R_f = 0.41$ (*n*-Hexane/EtOAc, 19:1); ¹H NMR (400 MHz, CDCl₃) δ 1.20 (d, J = 6.8 Hz, 12H, CH(CH₃)₂), 1.34 (d, J = 6.8 Hz, 12H, CH(CH₃)₂), 2.69 (sept, J = 6.8 Hz, 4H, CH(CH₃)₂), 7.01 (s, 2H, Ar), 7.30 (d, J = 7.8 Hz, 4H, Ar), 7.48 (t, J = 7.8 Hz, 2H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 23.3, 24.2, 28.9 (ⁱPr), 121.1, 124.4, 130.2, 134.4, 146.2 (Ar), 162.5 (C=Se, ¹ $J_{C-Se} = 234.1$ Hz); ⁷⁷Se NMR (76 MHz, CDCl₃) δ 90.0.

1,3-Dimethylbenzimidazole-2-selenone (16)

Prepared according to literature procedure.^{S6} Beige solid; 80% yield; m.p. 174-175 °C; $R_{\rm f} = 0.43$ (*n*-Hexane/EtOAc, 4:1); ¹H NMR (400 MHz, CDCl₃) δ 3.82 (s, 6H, Me), 7.17-7.23 (m, 4H, Ar). ¹³C NMR (100 MHz, CDCl₃) δ 33.0 (Me), 109.2, 123.1, 133.1 (Ar), 166.4 (C=Se, ¹ $J_{C-Se} = 232.0$ Hz); ⁷⁷Se NMR (76 MHz, CDCl₃) δ 65.2; MS (EI): *m/z*: 226 [*M*]⁺; HRMS (EI): *m/z* calcd for C₉H₁₀N₂Se 226.0009 [*M*]⁺; found 226.0004.

1,3-Dimethyl-1,2,4-triazole-3-selenone (17)

Beige solid; 89% yield; m.p. 80-82 °C; $R_{\rm f}$ = 0.35 (*n*-Hexane/EtOAc, 1:1); ¹H NMR (400 MHz, CDCl₃) δ 3.69 (s, 3H, Me), 3.90 (s, 3H, Me), 7.87 (s, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 34.5, 38.3 (Me), 140.7 (Ar), 160.7 (C=Se, ¹J_{C-Se} = 241.5 Hz); ⁷⁷Se NMR (76 MHz, CDCl₃) δ 20.3; IR (KBr) 3107.7, 3042.2, 1719.2, 1546.6, 1475.3, 1351.9, 1224.6, 1136.8, 1058.7, 976.8, 863.0, 770.4, 632.5 cm⁻¹; MS (EI): *m/z*: 177 [*M*]⁺; HRMS (EI): *m/z* calcd for C₄H₇N₃Se 176.9805 [*M*]⁺; found 176.9802.

General procedure for Rh-catalyzed polymerization of phenylacetylene

To a solution of Rh catalyst **6c** or **6c'** (10 μ mol, 1.0 mol%) in CH₂Cl₂ (1.0 mL) was added phenylacetylene (102 mg, 1.0 mmol) at room temperature under an argon atmosphere. The resulting mixture was stirred at room temperature. After the time indicated in Table 5, two portions of trifluoroacetic acid were added to the reaction mixture to deactivate the catalyst. Then, methanol (5 mL) was added to the reaction mixture. Precipitate was filtered, washed with methanol (5 mL x 3), and dried *in vacuo* to afford polyphenylacetylene. The molecular weight and polydispersity of polymers were determind by SEC (polystylene standards, THF as eluent). The *cis*-content in polyphenylacetylene (%-*cis*) was determined by ¹H NMR spectroscopy using following equation: %-*cis* = 100 x ($A_{5.84}$ x 6)/(A_{total}) where $A_{5.84}$ is the area of the vinylic proton at 5.84 ppm, and A_{total} is the total area of all the signals of the polyene.^{S7}

Cationic Rh complex **6c'** was prepared by adding an $AgPF_6$ (2.5 mg, 10 µmol) to a solution of **6c** (4.5 mg, 10 µmol) in CH_2Cl_2 (2 mL) under an argon atmosphere and stirred in darkness at room temperature for 1 h. After stirring, the reaction mixture was filtered through Celite pad and the solvent was distilled under reduced pressure.

X-ray diffraction analysis

The X-ray diffraction analyses of **6b**, **6c**, **6e**, **6g**, **6h** and **13b** was carried out on a Rigaku/MSC Mercury CCD diffractometer with graphite-monochlomates Mo-Ka radiation (I = 0.71069 Å). Reflection data were collected at 123-193 K using a Rigaku XR-TCS-2-050 temperature controller. The structure was solved by direct methods and refined by full-matrix least-squares procedures (SHELXL-97 and SHELXS-97)^{S8} using Yadokari-XG 2009^{S9}. The crystal was cut from the grown crystals and was attached to the tip of a MiTeGen MicroMountTM. Crystal data and measurement descriptions are summarized in Table S1-S36.

Table S1. Crystal data a	nd structure	e refinement for	6b .
--------------------------	--------------	------------------	-------------

$C_{17}H_{14}CIN_2O_3Rh$		
432.66		
193(2) K		
0.71075 Å		
Monoclinic		
P 2 ₁ /n		
a = 11.611(3) Å	α = 90° .	
b = 7.436(2) Å	β = 95.124(4)°.	
c = 20.143(6) Å	γ = 90°.	
1732.3(8) Å ³		
4		
1.659 Mg/m ³		
1.157 mm ⁻¹		
864		
0.42 x 0.28 x 0.14 mm ³		
1.95 to 27.50°.		
-13<= <i>h</i> <=15, -6<= <i>k</i> <=9, -26<= <i>l</i> <=26		
12913		
3927 [R(int) = 0.0376]		
98.8 %		
Semi-empirical from equivalents		
0.851 and 0.512		
Full-matrix least-squares on <i>F</i> ²		
3927 / 0 / 219		
1.113		
R1 = 0.0368, wR2 = 0.1014		
<i>R</i> 1 = 0.0459, <i>wR</i> 2 = 0.1267		
1.056 and -1.100 e.Å ⁻³		
	C ₁₇ H ₁₄ ClN ₂ O ₃ Rh 432.66 193(2) K 0.71075 Å Monoclinic $P 2_1/n$ a = 11.611(3) Å b = 7.436(2) Å c = 20.143(6) Å 1732.3(8) Å ³ 4 1.659 Mg/m ³ 1.157 mm ⁻¹ 864 0.42 x 0.28 x 0.14 mm ³ 1.95 to 27.50°. -13<=h<=15, -6<=k<=9, -2 12913 3927 [R(int) = 0.0376] 98.8 % Semi-empirical from equiv 0.851 and 0.512 Full-matrix least-squares 3927 / 0 / 219 1.113 R1 = 0.0368, wR2 = 0.100 R1 = 0.0459, wR2 = 0.120	

Figure S1. ORTEP drawing of **6b** with thermal ellipsoids at 50% probability.

Table S2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for **6b**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	х	у	z	U(eq)	
Cl(1)	1953(1)	-2335(1)	4783(1)	61(1)	
Rh(1)	2816(1)	491(1)	4669(1)	42(1)	
O(1)	4020(3)	3971(5)	4531(2)	86(1)	
O(2)	3786(3)	-177(6)	6094(2)	90(1)	
O(3)	-3641(2)	1755(4)	1362(1)	50(1)	
N(1)	2585(2)	873(3)	3138(1)	35(1)	
N(2)	907(2)	885(4)	3493(1)	36(1)	
C(1)	3541(3)	2658(6)	4585(2)	58(1)	
C(2)	3454(4)	126(6)	5565(2)	60(1)	
C(3)	2046(3)	773(4)	3709(2)	37(1)	
C(4)	714(2)	1067(4)	2807(2)	34(1)	
C(5)	1797(2)	1059(4)	2575(2)	33(1)	
C(6)	2231(3)	1252(4)	1942(2)	41(1)	
C(7)	3395(3)	1215(5)	1906(2)	49(1)	
C(8)	4170(3)	980(5)	2486(2)	48(1)	
C(9)	3771(3)	802(4)	3081(2)	43(1)	
C(10)	2(3)	765(5)	3963(2)	47(1)	
C(11)	-419(2)	1224(4)	2426(2)	33(1)	
C(12)	-1293(2)	2337(4)	2634(2)	38(1)	
C(13)	-2343(3)	2475(5)	2265(2)	41(1)	
C(14)	-2556(2)	1533(4)	1675(2)	36(1)	
C(15)	-1698(3)	455(4)	1449(2)	36(1)	
C(16)	-651(3)	307(4)	1828(2)	34(1)	
C(17)	-3890(3)	973(6)	725(2)	52(1)	

Table S3. Bond lengths [Å] and angles [°] for ${\bf 6b}.$

Cl(1)-Rh(1)	2.3484(11)
Rh(1)-C(1)	1.833(4)
Rh(1)-C(2)	1.907(5)
Rh(1)-C(3)	2.067(4)
O(1)-C(1)	1.134(5)
O(2)-C(2)	1.124(6)
O(3)-C(14)	1.368(4)
O(3)-C(17)	1.416(4)
N(1)-C(3)	1.361(4)
N(1)-C(9)	1.393(4)
N(1)-C(5)	1.398(4)
N(2)-C(3)	1.357(4)
N(2)-C(4)	1.387(4)
N(2)-C(10)	1.478(4)
C(4)-C(5)	1.379(4)
C(4)-C(11)	1.468(4)
C(5)-C(6)	1.421(4)
C(6)-C(7)	1.359(5)
C(6)-H(6)	0.9500
C(7)-C(8)	1.420(6)
C(7)-H(7)	0.9500
C(8)-C(9)	1.329(5)
C(8)-H(8)	0.9500
C(9)-H(9)	0.9500
C(10)-H(10)	0.9800
C(10)-H(10A)	0.9800
C(10)-H(10B)	0.9800
C(11)-C(16)	1.389(4)
C(11)-C(12)	1.402(4)
C(12)-C(13)	1.375(4)
C(12)-H(12)	0.9500

C(13)-C(14)	1.382(4)
C(13)-H(13)	0.9500
C(14)-C(15)	1.387(4)
C(15)-C(16)	1.381(5)
C(15)-H(15)	0.9500
C(16)-H(16)	0.9500
C(17)-H(17)	0.9800
C(17)-H(17A)	0.9800
C(17)-H(17B)	0.9800
C(1)-Rh(1)-C(2)	94.0(2)
C(1)-Rh(1)-C(3)	89.36(16)
C(2)-Rh(1)-C(3)	176.43(16)
C(1)-Rh(1)-Cl(1)	177.91(13)
C(2)-Rh(1)-Cl(1)	85.03(15)
C(3)-Rh(1)-Cl(1)	91.66(9)
C(14)-O(3)-C(17)	118.3(2)
C(3)-N(1)-C(9)	126.9(3)
C(3)-N(1)-C(5)	111.9(3)
C(9)-N(1)-C(5)	121.2(3)
C(3)-N(2)-C(4)	113.0(2)
C(3)-N(2)-C(10)	121.3(3)
C(4)-N(2)-C(10)	125.6(3)
O(1)-C(1)-Rh(1)	177.9(4)
O(2)-C(2)-Rh(1)	175.8(5)
N(2)-C(3)-N(1)	103.5(3)
N(2)-C(3)-Rh(1)	129.3(2)
N(1)-C(3)-Rh(1)	127.1(2)
C(5)-C(4)-N(2)	105.4(3)
C(5)-C(4)-C(11)	128.6(3)
N(2)-C(4)-C(11)	125.9(2)
C(4)-C(5)-N(1)	106.1(3)
C(4)-C(5)-C(6)	135.3(3)

N(1)-C(5)-C(6)	118.6(3)
C(7)-C(6)-C(5)	118.7(3)
C(7)-C(6)-H(6)	120.7
C(5)-C(6)-H(6)	120.7
C(6)-C(7)-C(8)	121.2(3)
C(6)-C(7)-H(7)	119.4
C(8)-C(7)-H(7)	119.4
C(9)-C(8)-C(7)	120.5(3)
C(9)-C(8)-H(8)	119.7
C(7)-C(8)-H(8)	119.7
C(8)-C(9)-N(1)	119.8(3)
C(8)-C(9)-H(9)	120.1
N(1)-C(9)-H(9)	120.1
N(2)-C(10)-H(10)	109.5
N(2)-C(10)-H(10A)	109.5
H(10)-C(10)-H(10A)	109.5
N(2)-C(10)-H(10B)	109.5
H(10)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
C(16)-C(11)-C(12)	117.4(3)
C(16)-C(11)-C(4)	120.6(2)
C(12)-C(11)-C(4)	121.9(3)
C(13)-C(12)-C(11)	120.8(3)
C(13)-C(12)-H(12)	119.6
C(11)-C(12)-H(12)	119.6
C(12)-C(13)-C(14)	120.6(3)
C(12)-C(13)-H(13)	119.7
C(14)-C(13)-H(13)	119.7
O(3)-C(14)-C(13)	114.9(3)
O(3)-C(14)-C(15)	125.3(3)
C(13)-C(14)-C(15)	119.8(3)
C(16)-C(15)-C(14)	119.2(3)
C(16)-C(15)-H(15)	120.4

120.4
122.2(3)
118.9
118.9
109.5
109.5
109.5
109.5
109.5
109.5

Symmetry transformations used to generate equivalent atoms:

alopidot					•		<u> </u>
	U11	U ²²	U33	U23	U13	U12	
CI(1)	73(1)	59(1)	51(1)	13(1)	0(1)	-11(1)	
Rh(1)	39(1)	53(1)	34(1)	-1(1)	-1(1)	2(1)	
O(1)	98(2)	76(2)	84(3)	-4(2)	2(2)	-32(2)	
O(2)	84(2)	133(3)	47(2)	-2(2)	-21(2)	29(2)	
O(3)	38(1)	67(2)	44(2)	-11(1)	-6(1)	12(1)	
N(1)	33(1)	34(1)	38(2)	2(1)	5(1)	0(1)	
N(2)	34(1)	41(1)	33(2)	2(1)	6(1)	0(1)	
C(1)	53(2)	70(3)	49(2)	-7(2)	-2(2)	-5(2)	
C(2)	49(2)	78(3)	52(3)	-5(2)	-6(2)	12(2)	
C(3)	37(2)	39(2)	35(2)	1(1)	4(1)	-1(1)	
C(4)	34(1)	33(1)	35(2)	1(1)	5(1)	0(1)	
C(5)	36(1)	30(1)	35(2)	1(1)	6(1)	1(1)	
C(6)	48(2)	40(2)	36(2)	3(1)	8(1)	2(1)	
C(7)	51(2)	49(2)	51(2)	1(2)	23(2)	2(2)	
C(8)	38(2)	45(2)	64(3)	-2(2)	17(2)	0(1)	
C(9)	31(2)	45(2)	53(2)	0(2)	1(1)	1(1)	
C(10)	39(2)	65(2)	38(2)	7(2)	13(2)	3(2)	
C(11)	33(1)	31(1)	36(2)	1(1)	5(1)	2(1)	
C(12)	41(2)	36(2)	36(2)	-8(1)	4(1)	4(1)	
C(13)	39(2)	43(2)	41(2)	-7(1)	3(1)	10(1)	
C(14)	34(1)	36(2)	37(2)	2(1)	1(1)	5(1)	
C(15)	42(2)	35(2)	31(2)	-2(1)	5(1)	4(1)	
C(16)	36(2)	33(2)	35(2)	1(1)	7(1)	5(1)	
C(17)	45(2)	64(2)	44(2)	-6(2)	-5(2)	0(2)	

Table S4. Anisotropic displacement parameters ($Å^2 \times 10^3$) for **6b**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

	Х	у	Z	U(eq)
H(6)	1719	1404	1551	49
H(7)	3695	1348	1485	59
H(8)	4980	951	2448	58
H(9)	4294	627	3466	52
H(10)	283	28	4347	70
H(10A)	-693	213	3738	70
H(10B)	-184	1974	4114	70
H(12)	-1157	3004	3036	45
H(13)	-2928	3225	2416	50
H(15)	-1830	-175	1039	43
H(16)	-69	-446	1675	41
H(17)	-3365	1467	416	77
H(17A)	-4691	1243	560	77
H(17B)	-3786	-333	757	77

Table S5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for **6b**.
Table S6. Torsion angles [°] for $\mathbf{6b}$.

C(2)-Rh(1)-C(1)-O(1)	78(12)
C(3)-Rh(1)-C(1)-O(1)	-103(12)
Cl(1)-Rh(1)-C(1)-O(1)	16(15)
C(1)-Rh(1)-C(2)-O(2)	172(5)
C(3)-Rh(1)-C(2)-O(2)	12(7)
Cl(1)-Rh(1)-C(2)-O(2)	-10(5)
C(4)-N(2)-C(3)-N(1)	-0.5(3)
C(10)-N(2)-C(3)-N(1)	177.9(3)
C(4)-N(2)-C(3)-Rh(1)	-180.0(2)
C(10)-N(2)-C(3)-Rh(1)	-1.6(4)
C(9)-N(1)-C(3)-N(2)	-179.3(3)
C(5)-N(1)-C(3)-N(2)	0.5(3)
C(9)-N(1)-C(3)-Rh(1)	0.2(4)
C(5)-N(1)-C(3)-Rh(1)	179.9(2)
C(1)-Rh(1)-C(3)-N(2)	-118.3(3)
C(2)-Rh(1)-C(3)-N(2)	42(2)
Cl(1)-Rh(1)-C(3)-N(2)	63.6(3)
C(1)-Rh(1)-C(3)-N(1)	62.4(3)
C(2)-Rh(1)-C(3)-N(1)	-138(2)
Cl(1)-Rh(1)-C(3)-N(1)	-115.8(3)
C(3)-N(2)-C(4)-C(5)	0.3(4)
C(10)-N(2)-C(4)-C(5)	-178.0(3)
C(3)-N(2)-C(4)-C(11)	-179.9(3)
C(10)-N(2)-C(4)-C(11)	1.8(5)
N(2)-C(4)-C(5)-N(1)	0.0(3)
C(11)-C(4)-C(5)-N(1)	-179.8(3)
N(2)-C(4)-C(5)-C(6)	-177.4(4)
C(11)-C(4)-C(5)-C(6)	2.8(6)
C(3)-N(1)-C(5)-C(4)	-0.3(3)
C(9)-N(1)-C(5)-C(4)	179.5(3)
C(3)-N(1)-C(5)-C(6)	177.6(3)

C(9)-N(1)-C(5)-C(6)	-2.6(4)
C(4)-C(5)-C(6)-C(7)	178.3(3)
N(1)-C(5)-C(6)-C(7)	1.2(5)
C(5)-C(6)-C(7)-C(8)	0.3(5)
C(6)-C(7)-C(8)-C(9)	-0.4(6)
C(7)-C(8)-C(9)-N(1)	-1.0(5)
C(3)-N(1)-C(9)-C(8)	-177.7(3)
C(5)-N(1)-C(9)-C(8)	2.5(5)
C(5)-C(4)-C(11)-C(16)	41.7(5)
N(2)-C(4)-C(11)-C(16)	-138.1(3)
C(5)-C(4)-C(11)-C(12)	-136.3(3)
N(2)-C(4)-C(11)-C(12)	44.0(5)
C(16)-C(11)-C(12)-C(13)	1.4(5)
C(4)-C(11)-C(12)-C(13)	179.3(3)
C(11)-C(12)-C(13)-C(14)	-0.7(5)
C(17)-O(3)-C(14)-C(13)	174.1(3)
C(17)-O(3)-C(14)-C(15)	-6.5(5)
C(12)-C(13)-C(14)-O(3)	178.7(3)
C(12)-C(13)-C(14)-C(15)	-0.8(5)
O(3)-C(14)-C(15)-C(16)	-177.8(3)
C(13)-C(14)-C(15)-C(16)	1.5(5)
C(14)-C(15)-C(16)-C(11)	-0.9(5)
C(12)-C(11)-C(16)-C(15)	-0.6(4)
C(4)-C(11)-C(16)-C(15)	-178.6(3)

Table S7. Crystal data and structure refinement for 60	;.
--	----

Empirical formula	$C_{16}H_{12}CIN_2O_2Rh$			
Formula weight	402.64			
Temperature	193(2) K			
Wavelength	0.71075 Å			
Crystal system	Monoclinic			
Space group	P 2 ₁ /a			
Unit cell dimensions	a = 7.875(2) Å	$\alpha = 90^{\circ}$.		
	b = 16.458(4) Å	$\beta = 100.553(3)^{\circ}.$		
	c = 12.568(3) Å	γ = 90°.		
Volume	1601.3(7) Å ³			
Z	4			
Density (calculated)	1.670 Mg/m ³			
Absorption coefficient	1.240 mm ⁻¹			
F(000)	800	800		
Crystal size	0.37 x 0.14 x 0.02 m	0.37 x 0.14 x 0.02 mm ³		
Theta range for data collection	1.65 to 27.50°.			
Index ranges	-10<= <i>h</i> <=9, -21<= <i>k</i> <	-10<= <i>h</i> <=9, -21<= <i>k</i> <=15, -15<= <i>l</i> <=16		
Reflections collected	13157	13157		
Independent reflections	3679 [R(int) = 0.0456	3679 [R(int) = 0.0456]		
Completeness to theta = 27.50°	99.9 %	99.9 %		
Absorption correction	Integration	Integration		
Max. and min. transmission	0.968 and 0.741			
Refinement method	Full-matrix least-squa	ares on <i>F</i> ²		
Data / restraints / parameters	3679 / 0 / 200			
Goodness-of-fit on <i>F</i> ²	1.089			
Final R indices [I>2sigma(I)]	<i>R</i> 1 = 0.0420, <i>wR</i> 2 =	0.0827		
R indices (all data)	<i>R</i> 1 = 0.0579, <i>wR</i> 2 =	0.0896		
Largest diff. peak and hole	0.769 and -0.416 e.Å	<u>\</u> -3		

Figure S2. ORTEP drawing of **6c** with thermal ellipsoids at 50% probability.

Table S8. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for **6c**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	х	у	Z	U(eq)
Rh(1)	9916(1)	4592(1)	2854(1)	34(1)
CI(1)	7256(1)	5042(1)	3215(1)	49(1)
O(1)	8822(4)	2840(1)	3031(3)	60(1)
O(2)	13335(5)	4083(2)	2429(4)	100(2)
N(1)	11446(4)	6316(2)	3314(2)	31(1)
N(2)	9893(4)	6245(2)	1730(2)	31(1)
C(1)	9232(5)	3494(2)	2996(3)	42(1)
C(2)	12021(6)	4278(2)	2575(4)	60(1)
C(3)	10512(5)	5790(2)	2610(3)	32(1)
C(4)	10406(4)	7056(2)	1869(3)	29(1)
C(5)	11388(4)	7107(2)	2877(3)	30(1)
C(6)	12318(5)	7733(2)	3509(3)	37(1)
C(7)	13221(5)	7556(2)	4495(3)	45(1)
C(8)	13251(6)	6751(2)	4917(3)	51(1)
C(9)	12381(5)	6146(2)	4341(3)	41(1)
C(10)	8754(5)	5911(2)	784(3)	38(1)
C(11)	9932(4)	7690(2)	1047(3)	28(1)
C(12)	10054(4)	7563(2)	-33(3)	34(1)
C(13)	9597(5)	8170(2)	-790(3)	40(1)
C(14)	9032(5)	8923(2)	-484(3)	42(1)
C(15)	8944(5)	9055(2)	583(3)	38(1)
C(16)	9385(5)	8450(2)	1355(3)	34(1)

Table S9. Bond lengths [Å] and angles [°] for 6c.

Rh(1)-C(2)	1.830(5)
Rh(1)-C(1)	1.903(4)
Rh(1)-C(3)	2.064(3)
Rh(1)-Cl(1)	2.3435(12)
O(1)-C(1)	1.128(4)
O(2)-C(2)	1.130(5)
N(1)-C(3)	1.354(4)
N(1)-C(9)	1.391(4)
N(1)-C(5)	1.411(4)
N(2)-C(3)	1.350(4)
N(2)-C(4)	1.396(4)
N(2)-C(10)	1.459(4)
C(4)-C(5)	1.361(5)
C(4)-C(11)	1.468(4)
C(5)-C(6)	1.420(5)
C(6)-C(7)	1.343(5)
C(7)-C(8)	1.426(5)
C(8)-C(9)	1.343(5)
C(11)-C(12)	1.394(5)
C(11)-C(16)	1.400(4)
C(12)-C(13)	1.381(5)
C(13)-C(14)	1.393(5)
C(14)-C(15)	1.372(6)
C(15)-C(16)	1.390(5)
C(2)-Rh(1)-C(1)	91.84(18)
C(2)-Rh(1)-C(3)	90.15(16)
C(1)-Rh(1)-C(3)	175.95(15)
C(2)-Rh(1)-Cl(1)	177.94(13)
C(1)-Rh(1)-Cl(1)	90.19(13)
C(3)-Rh(1)-Cl(1)	87.84(10)

C(3)-N(1)-C(9)	127.6(3)
C(3)-N(1)-C(5)	111.1(3)
C(9)-N(1)-C(5)	121.3(3)
C(3)-N(2)-C(4)	112.0(3)
C(3)-N(2)-C(10)	122.3(3)
C(4)-N(2)-C(10)	125.6(3)
O(1)-C(1)-Rh(1)	176.8(4)
O(2)-C(2)-Rh(1)	178.4(5)
N(2)-C(3)-N(1)	104.6(3)
N(2)-C(3)-Rh(1)	126.4(3)
N(1)-C(3)-Rh(1)	128.6(3)
C(5)-C(4)-N(2)	106.1(3)
C(5)-C(4)-C(11)	129.7(3)
N(2)-C(4)-C(11)	124.2(3)
C(4)-C(5)-N(1)	106.1(3)
C(4)-C(5)-C(6)	135.5(3)
N(1)-C(5)-C(6)	118.3(3)
C(7)-C(6)-C(5)	119.4(3)
C(6)-C(7)-C(8)	121.0(4)
C(9)-C(8)-C(7)	121.0(4)
C(8)-C(9)-N(1)	118.9(3)
C(12)-C(11)-C(16)	118.9(3)
C(12)-C(11)-C(4)	121.6(3)
C(16)-C(11)-C(4)	119.4(3)
C(13)-C(12)-C(11)	120.4(3)
C(12)-C(13)-C(14)	120.6(4)
C(15)-C(14)-C(13)	119.1(3)
C(14)-C(15)-C(16)	121.2(3)
C(15)-C(16)-C(11)	119.8(4)

alopiaot				=p [∝	•	
	U11	U ²²	U ³³	U ²³	U13	U ¹²
Rh(1)	40(1)	24(1)	38(1)	5(1)	5(1)	2(1)
CI(1)	47(1)	38(1)	66(1)	12(1)	17(1)	5(1)
O(1)	84(2)	26(1)	67(2)	4(1)	9(2)	-9(1)
O(2)	77(3)	63(2)	176(5)	-4(2)	66(3)	9(2)
N(1)	33(2)	32(1)	27(2)	3(1)	4(1)	-2(1)
N(2)	35(2)	25(1)	32(2)	0(1)	2(1)	0(1)
C(1)	47(2)	37(2)	38(2)	1(2)	3(2)	6(2)
C(2)	56(3)	33(2)	94(4)	7(2)	24(3)	3(2)
C(3)	33(2)	30(2)	32(2)	3(1)	5(2)	-1(1)
C(4)	30(2)	23(1)	35(2)	1(1)	9(2)	-3(1)
C(5)	34(2)	28(2)	29(2)	1(1)	11(2)	-2(1)
C(6)	38(2)	34(2)	39(2)	-2(2)	11(2)	-8(2)
C(7)	49(2)	48(2)	38(2)	-8(2)	3(2)	-15(2)
C(8)	53(3)	61(3)	34(2)	5(2)	-5(2)	-3(2)
C(9)	43(2)	43(2)	34(2)	8(2)	3(2)	1(2)
C(10)	41(2)	28(2)	42(2)	1(2)	-5(2)	-3(1)
C(11)	26(2)	26(2)	33(2)	5(1)	7(2)	-3(1)
C(12)	35(2)	30(2)	37(2)	1(1)	4(2)	0(1)
C(13)	42(2)	42(2)	32(2)	2(2)	1(2)	-6(2)
C(14)	40(2)	33(2)	50(3)	12(2)	4(2)	1(2)
C(15)	34(2)	26(2)	56(3)	3(2)	11(2)	2(1)
C(16)	34(2)	30(2)	41(2)	-1(2)	10(2)	-4(1)

Table S10. Anisotropic displacement parameters ($Å^2 \times 10^3$) for **6c**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2h + a^*b^*U^{12}]$

	х	у	Z	U(eq)	
H(6)	12300	8272	3238	44	
H(7)	13851	7973	4917	54	
H(8)	13897	6641	5618	61	
H(9)	12403	5612	4629	49	
H(10)	9447	5722	260	58	
H(10A)	7951	6333	451	58	
H(10B)	8100	5455	1006	58	
H(12)	10455	7056	-250	41	
H(13)	9668	8074	-1525	47	
H(14)	8712	9338	-1006	50	
H(15)	8575	9569	797	46	
H(16)	9315	8551	2090	41	

Table S11. Hydrogen coordinates (x $10^4)$ and isotropic displacement parameters (Å $^2 x 10^3)$ for 6c.

Table S12. Torsion angles [°] for $\boldsymbol{6c}.$

C(2)-Rh(1)-C(1)-O(1)	-70(7)
C(3)-Rh(1)-C(1)-O(1)	49(8)
Cl(1)-Rh(1)-C(1)-O(1)	110(7)
C(1)-Rh(1)-C(2)-O(2)	-84(13)
C(3)-Rh(1)-C(2)-O(2)	99(13)
Cl(1)-Rh(1)-C(2)-O(2)	86(14)
C(4)-N(2)-C(3)-N(1)	-0.6(4)
C(10)-N(2)-C(3)-N(1)	-177.8(3)
C(4)-N(2)-C(3)-Rh(1)	173.5(2)
C(10)-N(2)-C(3)-Rh(1)	-3.7(5)
C(9)-N(1)-C(3)-N(2)	-178.7(3)
C(5)-N(1)-C(3)-N(2)	0.9(4)
C(9)-N(1)-C(3)-Rh(1)	7.3(6)
C(5)-N(1)-C(3)-Rh(1)	-173.1(3)
C(2)-Rh(1)-C(3)-N(2)	104.6(4)
C(1)-Rh(1)-C(3)-N(2)	-15(2)
Cl(1)-Rh(1)-C(3)-N(2)	-75.9(3)
C(2)-Rh(1)-C(3)-N(1)	-82.7(4)
C(1)-Rh(1)-C(3)-N(1)	158(2)
Cl(1)-Rh(1)-C(3)-N(1)	96.8(3)
C(3)-N(2)-C(4)-C(5)	0.1(4)
C(10)-N(2)-C(4)-C(5)	177.2(3)
C(3)-N(2)-C(4)-C(11)	179.8(3)
C(10)-N(2)-C(4)-C(11)	-3.1(5)
N(2)-C(4)-C(5)-N(1)	0.4(4)
C(11)-C(4)-C(5)-N(1)	-179.2(3)
N(2)-C(4)-C(5)-C(6)	178.6(4)
C(11)-C(4)-C(5)-C(6)	-1.0(7)
C(3)-N(1)-C(5)-C(4)	-0.8(4)
C(9)-N(1)-C(5)-C(4)	178.8(3)
C(3)-N(1)-C(5)-C(6)	-179.4(3)

C(9)-N(1)-C(5)-C(6)	0.2(5)
C(4)-C(5)-C(6)-C(7)	-177.8(4)
N(1)-C(5)-C(6)-C(7)	0.2(5)
C(5)-C(6)-C(7)-C(8)	-0.5(6)
C(6)-C(7)-C(8)-C(9)	0.2(7)
C(7)-C(8)-C(9)-N(1)	0.3(6)
C(3)-N(1)-C(9)-C(8)	179.1(4)
C(5)-N(1)-C(9)-C(8)	-0.5(5)
C(5)-C(4)-C(11)-C(12)	133.6(4)
N(2)-C(4)-C(11)-C(12)	-46.0(5)
C(5)-C(4)-C(11)-C(16)	-44.8(5)
N(2)-C(4)-C(11)-C(16)	135.7(3)
C(16)-C(11)-C(12)-C(13)	-1.8(5)
C(4)-C(11)-C(12)-C(13)	179.9(3)
C(11)-C(12)-C(13)-C(14)	1.0(6)
C(12)-C(13)-C(14)-C(15)	0.4(6)
C(13)-C(14)-C(15)-C(16)	-0.9(6)
C(14)-C(15)-C(16)-C(11)	0.1(5)
C(12)-C(11)-C(16)-C(15)	1.2(5)
C(4)-C(11)-C(16)-C(15)	179.6(3)

Table S13. Crystal data and structure refinement for 6	Ð.
--	----

·····			
Empirical formula	$C_{16}H_7CIF_5N_2O_2Rh$		
Formula weight	492.60		
Temperature	123(2) K		
Wavelength	0.71075 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions	a = 10.436(3) Å	$\alpha = 82.159(8)^{\circ}.$	
	b = 12.000(3) Å	$\beta = 89.752(9)^{\circ}.$	
	c = 14.960(4) Å	γ = 66.314(6)°.	
Volume	1697.0(7) Å ³		
Z	4		
Density (calculated)	1.928 Mg/m ³		
Absorption coefficient	1.230 mm ⁻¹		
F(000)	960		
Crystal size	0.29 x 0.17 x 0.14 mm ³		
Theta range for data collection	1.87 to 27.50°.		
Index ranges	-13<= <i>h</i> <=12, -15<= <i>k</i> <=11, -19<= <i>l</i> <=19		
Reflections collected	13809		
Independent reflections	7738 [R(int) = 0.0392]		
Completeness to theta = 27.50°	99.1 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	1.000 and 0.676		
Refinement method	Full-matrix least-squares on <i>F</i> ²		
Data / restraints / parameters	7738 / 0 / 489		
Goodness-of-fit on <i>F</i> ²	0.875		
Final R indices [I>2sigma(I)]	<i>R1</i> = 0.0296, <i>wR2</i> = 0.05	71	
R indices (all data)	<i>R1</i> = 0.0393, <i>wR2</i> = 0.059	96	
Largest diff. peak and hole	0.743 and -0.881 e.Å ⁻³		

Figure S3. ORTEP drawing of **6e** with thermal ellipsoids at 50% probability.

Table S14. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2 \times 10^3$) for **6e**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	х	у	Z	U(eq)
Rh(1)	4725(1)	2588(1)	3103(1)	18(1)
Rh(2)	2704(1)	6255(1)	1977(1)	17(1)
CI(1)	3628(1)	1449(1)	2520(1)	23(1)
CI(2)	333(1)	6939(1)	2309(1)	30(1)
F(1)	1695(2)	554(2)	6390(1)	32(1)
F(2)	1799(2)	-219(2)	8164(1)	38(1)
F(3)	3407(2)	275(2)	9332(1)	39(1)
F(4)	4800(2)	1682(2)	8721(1)	35(1)
F(5)	4555(2)	2613(2)	6950(1)	31(1)
F(6)	2020(2)	6609(2)	-2455(1)	23(1)
F(7)	937(2)	8288(2)	-3934(1)	34(1)
F(8)	-1347(2)	10402(2)	-3823(1)	40(1)
F(9)	-2528(2)	10817(2)	-2221(1)	33(1)
F(10)	-1438(2)	9163(2)	-726(1)	25(1)
O(1)	6032(2)	4005(2)	3957(2)	37(1)
O(2)	6084(2)	2701(2)	1309(1)	32(1)
O(3)	5623(2)	5531(2)	1412(2)	45(1)
O(4)	3300(2)	6470(2)	3918(2)	41(1)
N(1)	2194(2)	3088(2)	4271(2)	18(1)
N(2)	4067(2)	1975(2)	5080(2)	18(1)
N(3)	1992(2)	5299(2)	306(2)	14(1)
N(4)	1476(2)	7230(2)	48(2)	15(1)
C(1)	5544(3)	3459(3)	3621(2)	24(1)
C(2)	5622(3)	2648(3)	1993(2)	23(1)
C(3)	3615(3)	2560(3)	4239(2)	18(1)
C(4)	1216(3)	3845(3)	3585(2)	24(1)
C(5)	-154(3)	4279(3)	3743(2)	25(1)
C(6)	-614(3)	3963(3)	4606(2)	24(1)

C(7)	314(3)	3267(3)	5284(2)	21(1)
C(8)	1769(3)	2812(3)	5140(2)	18(1)
C(9)	2976(3)	2106(3)	5646(2)	19(1)
C(10)	5566(3)	1211(3)	5348(2)	25(1)
C(11)	3151(3)	1585(3)	6608(2)	18(1)
C(12)	2464(3)	858(3)	6945(2)	20(1)
C(13)	2527(3)	441(3)	7857(2)	24(1)
C(14)	3324(3)	699(3)	8447(2)	24(1)
C(15)	4034(3)	1413(3)	8136(2)	24(1)
C(16)	3919(3)	1860(3)	7236(2)	21(1)
C(17)	4507(3)	5800(3)	1643(2)	25(1)
C(18)	3123(3)	6368(3)	3200(2)	26(1)
C(19)	2069(3)	6246(3)	684(2)	14(1)
C(20)	2469(3)	4069(3)	707(2)	17(1)
C(21)	2289(3)	3257(3)	237(2)	20(1)
C(22)	1588(3)	3645(3)	-634(2)	21(1)
C(23)	1119(3)	4832(3)	-1028(2)	16(1)
C(24)	1336(3)	5702(3)	-558(2)	14(1)
C(25)	1011(3)	6940(3)	-723(2)	15(1)
C(26)	1387(3)	8442(3)	189(2)	23(1)
C(27)	353(3)	7838(3)	-1535(2)	16(1)
C(28)	889(3)	7647(3)	-2376(2)	18(1)
C(29)	338(3)	8502(3)	-3142(2)	23(1)
C(30)	-801(3)	9569(3)	-3089(2)	26(1)
C(31)	-1391(3)	9789(3)	-2268(2)	23(1)
C(32)	-809(3)	8922(3)	-1517(2)	19(1)

Table S15. Bond lengths [Å] and angles [°] for 6e.

Rh(1)-C(1)	1.835(3)
Rh(1)-C(2)	1.909(3)
Rh(1)-C(3)	2.057(3)
Rh(1)-Cl(1)	2.3520(8)
Rh(2)-C(17)	1.825(3)
Rh(2)-C(18)	1.918(3)
Rh(2)-C(19)	2.050(3)
Rh(2)-Cl(2)	2.3484(9)
F(1)-C(12)	1.338(3)
F(2)-C(13)	1.341(3)
F(3)-C(14)	1.341(3)
F(4)-C(15)	1.342(3)
F(5)-C(16)	1.347(3)
F(6)-C(28)	1.348(3)
F(7)-C(29)	1.344(3)
F(8)-C(30)	1.334(3)
F(9)-C(31)	1.335(3)
F(10)-C(32)	1.359(3)
O(1)-C(1)	1.141(3)
O(2)-C(2)	1.134(3)
O(3)-C(17)	1.142(3)
O(4)-C(18)	1.123(3)
N(1)-C(3)	1.363(3)
N(1)-C(4)	1.389(4)
N(1)-C(8)	1.412(3)
N(2)-C(3)	1.339(3)
N(2)-C(9)	1.387(3)
N(2)-C(10)	1.484(3)
N(3)-C(19)	1.366(3)
N(3)-C(24)	1.395(3)
N(3)-C(20)	1.399(3)

N(4)-C(19)	1.339(3)
N(4)-C(25)	1.393(3)
N(4)-C(26)	1.464(3)
C(4)-C(5)	1.343(4)
C(4)-H(4)	0.9500
C(5)-C(6)	1.430(4)
C(5)-H(5)	0.9500
C(6)-C(7)	1.339(4)
C(6)-H(6)	0.9500
C(7)-C(8)	1.418(4)
C(7)-H(7)	0.9500
C(8)-C(9)	1.361(4)
C(9)-C(11)	1.469(4)
C(10)-H(10)	0.9800
C(10)-H(10A)	0.9800
C(10)-H(10B)	0.9800
C(11)-C(12)	1.382(3)
C(11)-C(16)	1.393(4)
C(12)-C(13)	1.379(4)
C(13)-C(14)	1.362(4)
C(14)-C(15)	1.378(4)
C(15)-C(16)	1.366(4)
C(20)-C(21)	1.347(4)
C(20)-H(20)	0.9500
C(21)-C(22)	1.421(4)
C(21)-H(21)	0.9500
C(22)-C(23)	1.353(4)
C(22)-H(22)	0.9500
C(23)-C(24)	1.423(4)
C(23)-H(23)	0.9500
C(24)-C(25)	1.371(4)
C(25)-C(27)	1.470(4)
C(26)-H(26)	0.9800

C(26)-H(26A)	0.9800
C(26)-H(26B)	0.9800
C(27)-C(32)	1.381(4)
C(27)-C(28)	1.385(4)
C(28)-C(29)	1.381(4)
C(29)-C(30)	1.365(4)
C(30)-C(31)	1.382(4)
C(31)-C(32)	1.375(4)

93.66(12)
89.48(12)
175.50(12)
176.74(9)
89.56(9)
87.33(8)
94.75(13)
90.12(12)
174.67(12)
175.91(10)
88.19(9)
86.84(7)
127.9(2)
111.2(2)
120.8(2)
112.5(2)
123.0(2)
124.3(2)
111.5(2)
126.6(2)
121.9(2)
112.3(2)
121.1(2)
126.6(2)

O(1)-C(1)-Rh(1)	178.5(3)
O(2)-C(2)-Rh(1)	176.1(3)
N(2)-C(3)-N(1)	104.3(2)
N(2)-C(3)-Rh(1)	129.8(2)
N(1)-C(3)-Rh(1)	125.8(2)
C(5)-C(4)-N(1)	119.4(3)
C(5)-C(4)-H(4)	120.3
N(1)-C(4)-H(4)	120.3
C(4)-C(5)-C(6)	120.7(3)
C(4)-C(5)-H(5)	119.6
C(6)-C(5)-H(5)	119.6
C(7)-C(6)-C(5)	120.7(3)
C(7)-C(6)-H(6)	119.6
C(5)-C(6)-H(6)	119.6
C(6)-C(7)-C(8)	119.7(3)
C(6)-C(7)-H(7)	120.1
C(8)-C(7)-H(7)	120.1
C(9)-C(8)-N(1)	105.4(2)
C(9)-C(8)-C(7)	136.1(3)
N(1)-C(8)-C(7)	118.4(3)
C(8)-C(9)-N(2)	106.6(2)
C(8)-C(9)-C(11)	128.6(3)
N(2)-C(9)-C(11)	124.8(3)
N(2)-C(10)-H(10)	109.5
N(2)-C(10)-H(10A)	109.5
H(10)-C(10)-H(10A)	109.5
N(2)-C(10)-H(10B)	109.5
H(10)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
C(12)-C(11)-C(16)	116.3(3)
C(12)-C(11)-C(9)	120.8(3)
C(16)-C(11)-C(9)	122.7(2)
F(1)-C(12)-C(13)	118.0(2)

F(1)-C(12)-C(11)	120.4(3)
C(13)-C(12)-C(11)	121.6(3)
F(2)-C(13)-C(14)	119.8(3)
F(2)-C(13)-C(12)	119.9(3)
C(14)-C(13)-C(12)	120.3(2)
F(3)-C(14)-C(13)	120.4(2)
F(3)-C(14)-C(15)	119.8(3)
C(13)-C(14)-C(15)	119.8(3)
F(4)-C(15)-C(16)	121.0(2)
F(4)-C(15)-C(14)	119.7(3)
C(16)-C(15)-C(14)	119.3(3)
F(5)-C(16)-C(15)	118.6(3)
F(5)-C(16)-C(11)	118.8(2)
C(15)-C(16)-C(11)	122.6(2)
O(3)-C(17)-Rh(2)	178.2(3)
O(4)-C(18)-Rh(2)	176.5(3)
N(4)-C(19)-N(3)	104.3(2)
N(4)-C(19)-Rh(2)	126.3(2)
N(3)-C(19)-Rh(2)	129.03(19)
C(21)-C(20)-N(3)	118.6(3)
C(21)-C(20)-H(20)	120.7
N(3)-C(20)-H(20)	120.7
C(20)-C(21)-C(22)	120.9(3)
C(20)-C(21)-H(21)	119.6
C(22)-C(21)-H(21)	119.6
C(23)-C(22)-C(21)	121.1(3)
C(23)-C(22)-H(22)	119.4
C(21)-C(22)-H(22)	119.4
C(22)-C(23)-C(24)	119.1(3)
C(22)-C(23)-H(23)	120.4
C(24)-C(23)-H(23)	120.4
C(25)-C(24)-N(3)	105.8(2)
C(25)-C(24)-C(23)	135.8(3)

N(3)-C(24)-C(23)	118.4(2)
C(24)-C(25)-N(4)	106.1(2)
C(24)-C(25)-C(27)	130.1(3)
N(4)-C(25)-C(27)	123.8(3)
N(4)-C(26)-H(26)	109.5
N(4)-C(26)-H(26A)	109.5
H(26)-C(26)-H(26A)	109.5
N(4)-C(26)-H(26B)	109.5
H(26)-C(26)-H(26B)	109.5
H(26A)-C(26)-H(26B)	109.5
C(32)-C(27)-C(28)	115.5(3)
C(32)-C(27)-C(25)	123.3(3)
C(28)-C(27)-C(25)	121.2(3)
F(6)-C(28)-C(29)	118.0(3)
F(6)-C(28)-C(27)	119.4(3)
C(29)-C(28)-C(27)	122.6(3)
F(7)-C(29)-C(30)	120.3(3)
F(7)-C(29)-C(28)	119.9(3)
C(30)-C(29)-C(28)	119.8(3)
F(8)-C(30)-C(29)	120.5(3)
F(8)-C(30)-C(31)	119.8(3)
C(29)-C(30)-C(31)	119.8(3)
F(9)-C(31)-C(32)	121.3(3)
F(9)-C(31)-C(30)	119.7(3)
C(32)-C(31)-C(30)	118.9(3)
F(10)-C(32)-C(31)	117.1(3)
F(10)-C(32)-C(27)	119.5(3)
C(31)-C(32)-C(27)	123.4(3)

alopidoc				<u>-</u> p [11 u	•	
	U ¹¹	U ²²	U33	U ²³	U ¹³	U12
Rh(1)	18(1)	22(1)	14(1)	-1(1)	2(1)	-8(1)
Rh(2)	18(1)	18(1)	15(1)	-1(1)	-2(1)	-6(1)
CI(1)	26(1)	24(1)	23(1)	-5(1)	2(1)	-13(1)
CI(2)	19(1)	50(1)	17(1)	-7(1)	3(1)	-9(1)
F(1)	40(1)	37(1)	26(1)	0(1)	-1(1)	-25(1)
F(2)	48(1)	39(1)	32(1)	6(1)	9(1)	-27(1)
F(3)	49(1)	46(1)	14(1)	6(1)	3(1)	-15(1)
F(4)	40(1)	51(1)	17(1)	-7(1)	-3(1)	-22(1)
F(5)	40(1)	40(1)	26(1)	-1(1)	2(1)	-29(1)
F(6)	22(1)	24(1)	18(1)	-3(1)	3(1)	-5(1)
F(7)	48(1)	39(1)	14(1)	1(1)	2(1)	-16(1)
F(8)	45(1)	37(1)	27(1)	16(1)	-18(1)	-12(1)
F(9)	24(1)	18(1)	48(1)	1(1)	-6(1)	0(1)
F(10)	25(1)	21(1)	28(1)	-8(1)	9(1)	-7(1)
O(1)	36(1)	50(2)	33(2)	-17(1)	4(1)	-24(1)
O(2)	32(1)	47(2)	19(1)	-5(1)	9(1)	-18(1)
O(3)	23(1)	43(2)	63(2)	-8(1)	8(1)	-9(1)
O(4)	48(2)	58(2)	21(1)	-11(1)	-4(1)	-24(2)
N(1)	22(1)	22(2)	12(1)	-3(1)	1(1)	-9(1)
N(2)	17(1)	20(1)	14(1)	1(1)	0(1)	-6(1)
N(3)	12(1)	11(1)	17(1)	-2(1)	1(1)	-3(1)
N(4)	19(1)	11(1)	13(1)	-2(1)	1(1)	-5(1)
C(1)	23(2)	30(2)	17(2)	-2(2)	5(1)	-9(2)
C(2)	18(2)	21(2)	29(2)	-1(2)	-4(1)	-8(2)
C(3)	20(2)	18(2)	17(2)	-2(1)	1(1)	-8(1)
C(4)	29(2)	24(2)	14(2)	-1(1)	-1(1)	-7(2)
C(5)	25(2)	28(2)	17(2)	-3(1)	-5(1)	-7(2)
C(6)	23(2)	30(2)	23(2)	-8(2)	1(1)	-12(2)
C(7)	25(2)	27(2)	15(2)	-6(1)	6(1)	-13(2)

Table S16. Anisotropic displacement parameters ($Å^2 \times 10^3$) for **6e**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2h + a^*b^*U^{12}]$

C(8)	24(2)	20(2)	12(2)	-3(1)	1(1)	-12(1)
C(9)	21(2)	23(2)	15(2)	-2(1)	1(1)	-11(1)
C(10)	18(2)	29(2)	22(2)	4(2)	-1(1)	-6(2)
C(11)	19(2)	17(2)	15(2)	0(1)	0(1)	-4(1)
C(12)	23(2)	22(2)	17(2)	-4(1)	1(1)	-9(2)
C(13)	24(2)	19(2)	25(2)	3(1)	7(1)	-8(2)
C(14)	29(2)	19(2)	13(2)	3(1)	6(1)	-2(2)
C(15)	26(2)	25(2)	18(2)	-6(1)	-2(1)	-5(2)
C(16)	21(2)	21(2)	21(2)	-3(1)	4(1)	-10(2)
C(17)	23(2)	26(2)	26(2)	0(2)	-7(1)	-10(2)
C(18)	20(2)	30(2)	24(2)	-2(2)	-2(1)	-8(2)
C(19)	13(1)	16(2)	13(2)	-1(1)	2(1)	-5(1)
C(20)	16(1)	15(2)	17(2)	3(1)	0(1)	-4(1)
C(21)	18(2)	13(2)	27(2)	-1(1)	1(1)	-4(1)
C(22)	22(2)	22(2)	25(2)	-9(1)	5(1)	-11(2)
C(23)	15(1)	21(2)	12(2)	-6(1)	2(1)	-5(1)
C(24)	11(1)	18(2)	13(2)	-4(1)	4(1)	-5(1)
C(25)	16(1)	18(2)	12(2)	-3(1)	1(1)	-6(1)
C(26)	32(2)	15(2)	22(2)	-4(1)	1(1)	-10(2)
C(27)	18(2)	18(2)	15(2)	0(1)	0(1)	-12(1)
C(28)	17(2)	18(2)	20(2)	-2(1)	0(1)	-8(1)
C(29)	28(2)	31(2)	12(2)	-1(1)	-2(1)	-15(2)
C(30)	30(2)	25(2)	22(2)	11(2)	-12(1)	-14(2)
C(31)	16(2)	15(2)	33(2)	-1(2)	-5(1)	-4(1)
C(32)	20(2)	18(2)	21(2)	-3(1)	2(1)	-11(1)

	х	у	z	U(eq)	
H(4)	1513	4054	3009	28	
H(5)	-826	4801	3277	30	
H(6)	-1588	4251	4698	29	
H(7)	0	3080	5859	26	
H(10)	6061	891	4819	37	
H(10A)	5643	523	5811	37	
H(10B)	5985	1715	5590	37	
H(20)	2911	3812	1297	21	
H(21)	2634	2413	492	24	
H(22)	1447	3060	-945	26	
H(23)	652	5082	-1611	20	
H(26)	556	8846	522	34	
H(26A)	1319	8945	-397	34	
H(26B)	2228	8345	538	34	

Table S17. Hydrogen coordinates ($x~10^4)$ and isotropic displacement parameters (Å $^2x10^3)$ for 6e.

Table S18. Torsion angles [°] for **6e**.

C(2)-Rh(1)-C(1)-O(1)	166(12)
C(3)-Rh(1)-C(1)-O(1)	-11(12)
CI(1)-Rh(1)-C(1)-O(1)	-23(13)
C(1)-Rh(1)-C(2)-O(2)	-135(4)
C(3)-Rh(1)-C(2)-O(2)	-1(5)
Cl(1)-Rh(1)-C(2)-O(2)	46(4)
C(9)-N(2)-C(3)-N(1)	0.5(3)
C(10)-N(2)-C(3)-N(1)	176.8(2)
C(9)-N(2)-C(3)-Rh(1)	-175.2(2)
C(10)-N(2)-C(3)-Rh(1)	1.2(4)
C(4)-N(1)-C(3)-N(2)	177.1(3)
C(8)-N(1)-C(3)-N(2)	-0.6(3)
C(4)-N(1)-C(3)-Rh(1)	-7.0(4)
C(8)-N(1)-C(3)-Rh(1)	175.23(19)
C(1)-Rh(1)-C(3)-N(2)	-68.3(3)
C(2)-Rh(1)-C(3)-N(2)	157.3(14)
Cl(1)-Rh(1)-C(3)-N(2)	111.0(3)
C(1)-Rh(1)-C(3)-N(1)	116.9(3)
C(2)-Rh(1)-C(3)-N(1)	-17.5(17)
Cl(1)-Rh(1)-C(3)-N(1)	-63.8(2)
C(3)-N(1)-C(4)-C(5)	179.8(3)
C(8)-N(1)-C(4)-C(5)	-2.6(4)
N(1)-C(4)-C(5)-C(6)	-0.4(5)
C(4)-C(5)-C(6)-C(7)	2.6(5)
C(5)-C(6)-C(7)-C(8)	-1.6(5)
C(3)-N(1)-C(8)-C(9)	0.6(3)
C(4)-N(1)-C(8)-C(9)	-177.4(3)
C(3)-N(1)-C(8)-C(7)	-178.5(3)
C(4)-N(1)-C(8)-C(7)	3.6(4)
C(6)-C(7)-C(8)-C(9)	179.9(3)
C(6)-C(7)-C(8)-N(1)	-1.4(4)

N(1)-C(8)-C(9)-N(2)	-0.3(3)
C(7)-C(8)-C(9)-N(2)	178.5(3)
N(1)-C(8)-C(9)-C(11)	178.5(3)
C(7)-C(8)-C(9)-C(11)	-2.7(6)
C(3)-N(2)-C(9)-C(8)	-0.1(3)
C(10)-N(2)-C(9)-C(8)	-176.4(3)
C(3)-N(2)-C(9)-C(11)	-179.0(3)
C(10)-N(2)-C(9)-C(11)	4.7(5)
C(8)-C(9)-C(11)-C(12)	54.8(4)
N(2)-C(9)-C(11)-C(12)	-126.6(3)
C(8)-C(9)-C(11)-C(16)	-120.4(4)
N(2)-C(9)-C(11)-C(16)	58.2(4)
C(16)-C(11)-C(12)-F(1)	179.6(3)
C(9)-C(11)-C(12)-F(1)	4.2(4)
C(16)-C(11)-C(12)-C(13)	0.7(4)
C(9)-C(11)-C(12)-C(13)	-174.8(3)
F(1)-C(12)-C(13)-F(2)	-1.8(4)
C(11)-C(12)-C(13)-F(2)	177.2(3)
F(1)-C(12)-C(13)-C(14)	178.3(3)
C(11)-C(12)-C(13)-C(14)	-2.7(5)
F(2)-C(13)-C(14)-F(3)	1.3(4)
C(12)-C(13)-C(14)-F(3)	-178.8(3)
F(2)-C(13)-C(14)-C(15)	-177.8(3)
C(12)-C(13)-C(14)-C(15)	2.1(5)
F(3)-C(14)-C(15)-F(4)	-0.2(4)
C(13)-C(14)-C(15)-F(4)	178.9(3)
F(3)-C(14)-C(15)-C(16)	-178.7(3)
C(13)-C(14)-C(15)-C(16)	0.4(5)
F(4)-C(15)-C(16)-F(5)	-2.2(4)
C(14)-C(15)-C(16)-F(5)	176.3(3)
F(4)-C(15)-C(16)-C(11)	179.0(3)
C(14)-C(15)-C(16)-C(11)	-2.5(5)
C(12)-C(11)-C(16)-F(5)	-176.9(3)

C(9)-C(11)-C(16)-F(5)	-1.5(4)
C(12)-C(11)-C(16)-C(15)	1.9(4)
C(9)-C(11)-C(16)-C(15)	177.3(3)
C(18)-Rh(2)-C(17)-O(3)	-147(10)
C(19)-Rh(2)-C(17)-O(3)	30(10)
Cl(2)-Rh(2)-C(17)-O(3)	-12(11)
C(17)-Rh(2)-C(18)-O(4)	159(5)
C(19)-Rh(2)-C(18)-O(4)	3(5)
Cl(2)-Rh(2)-C(18)-O(4)	-18(5)
C(25)-N(4)-C(19)-N(3)	0.6(3)
C(26)-N(4)-C(19)-N(3)	-178.5(2)
C(25)-N(4)-C(19)-Rh(2)	-172.71(17)
C(26)-N(4)-C(19)-Rh(2)	8.3(3)
C(24)-N(3)-C(19)-N(4)	-0.7(3)
C(20)-N(3)-C(19)-N(4)	-179.8(2)
C(24)-N(3)-C(19)-Rh(2)	172.27(17)
C(20)-N(3)-C(19)-Rh(2)	-6.8(4)
C(17)-Rh(2)-C(19)-N(4)	-99.3(2)
C(18)-Rh(2)-C(19)-N(4)	56.8(12)
Cl(2)-Rh(2)-C(19)-N(4)	78.0(2)
C(17)-Rh(2)-C(19)-N(3)	89.1(2)
C(18)-Rh(2)-C(19)-N(3)	-114.7(11)
Cl(2)-Rh(2)-C(19)-N(3)	-93.6(2)
C(19)-N(3)-C(20)-C(21)	179.1(2)
C(24)-N(3)-C(20)-C(21)	0.2(4)
N(3)-C(20)-C(21)-C(22)	-2.0(4)
C(20)-C(21)-C(22)-C(23)	2.0(4)
C(21)-C(22)-C(23)-C(24)	0.1(4)
C(19)-N(3)-C(24)-C(25)	0.6(3)
C(20)-N(3)-C(24)-C(25)	179.7(2)
C(19)-N(3)-C(24)-C(23)	-177.3(2)
C(20)-N(3)-C(24)-C(23)	1.8(3)
C(22)-C(23)-C(24)-C(25)	-179.0(3)

C(22)-C(23)-C(24)-N(3)	-1.9(4)
N(3)-C(24)-C(25)-N(4)	-0.3(3)
C(23)-C(24)-C(25)-N(4)	177.1(3)
N(3)-C(24)-C(25)-C(27)	177.8(2)
C(23)-C(24)-C(25)-C(27)	-4.8(5)
C(19)-N(4)-C(25)-C(24)	-0.2(3)
C(26)-N(4)-C(25)-C(24)	178.8(2)
C(19)-N(4)-C(25)-C(27)	-178.4(2)
C(26)-N(4)-C(25)-C(27)	0.6(4)
C(24)-C(25)-C(27)-C(32)	127.2(3)
N(4)-C(25)-C(27)-C(32)	-55.1(4)
C(24)-C(25)-C(27)-C(28)	-53.8(4)
N(4)-C(25)-C(27)-C(28)	124.0(3)
C(32)-C(27)-C(28)-F(6)	-179.7(2)
C(25)-C(27)-C(28)-F(6)	1.2(4)
C(32)-C(27)-C(28)-C(29)	2.4(4)
C(25)-C(27)-C(28)-C(29)	-176.7(2)
F(6)-C(28)-C(29)-F(7)	-0.6(4)
C(27)-C(28)-C(29)-F(7)	177.3(2)
F(6)-C(28)-C(29)-C(30)	-179.5(2)
C(27)-C(28)-C(29)-C(30)	-1.6(4)
F(7)-C(29)-C(30)-F(8)	1.2(4)
C(28)-C(29)-C(30)-F(8)	-179.9(2)
F(7)-C(29)-C(30)-C(31)	-178.7(2)
C(28)-C(29)-C(30)-C(31)	0.2(4)
F(8)-C(30)-C(31)-F(9)	2.0(4)
C(29)-C(30)-C(31)-F(9)	-178.1(2)
F(8)-C(30)-C(31)-C(32)	-179.7(2)
C(29)-C(30)-C(31)-C(32)	0.2(4)
F(9)-C(31)-C(32)-F(10)	-0.4(4)
C(30)-C(31)-C(32)-F(10)	-178.7(2)
F(9)-C(31)-C(32)-C(27)	179.0(2)
C(30)-C(31)-C(32)-C(27)	0.7(4)

C(28)-C(27)-C(32)-F(10)	177.4(2)
C(25)-C(27)-C(32)-F(10)	-3.5(4)
C(28)-C(27)-C(32)-C(31)	-2.0(4)
C(25)-C(27)-C(32)-C(31)	177.1(3)

Table S19.	Crystal	data and	structure	refinement	for 6a .
	or youar	aata ana	011001010	1011101110111	

Empirical formula	$C_{18}H_{12}CIN_2O_2Rh$	
Formula weight	426.66	
Temperature	193(2) K	
Wavelength	0.71075 Å	
Crystal system	Triclinic	
Space group	<i>P</i> -1	
Unit cell dimensions	a = 7.0475(15) Å	$\alpha = 95.006(2)^{\circ}.$
	b = 9.2569(18) Å	β =
104.3135(19)°.		
	c = 14.015(3) Å	$\gamma = 101.011(3)^{\circ}.$
Volume	860.9(3) Å ³	
Z	2	
Density (calculated)	1.646 Mg/m ³	
Absorption coefficient	1.158 mm ⁻¹	
F(000)	424	
Crystal size	1.50 x 1.00 x 0.50 mm ³	
Theta range for data collection	2.26 to 27.50°.	
Index ranges	-5<= <i>h</i> <=9, -11<= <i>k</i> <=12, -7	18<=/<=17
Reflections collected	6785	
Independent reflections	3874 [R(int) = 0.0225]	
Completeness to theta = 27.50°	98.2 %	
Absorption correction	Semi-empirical from equiv	valents
Max. and min. transmission	0.561 and 0.371	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	3874 / 0 / 218	
Goodness-of-fit on <i>F</i> ²	1.009	
Final R indices [I>2sigma(I)]	R1 = 0.0283, wR2 = 0.072	16
R indices (all data)	R1 = 0.0308, wR2 = 0.072	27
Largest diff. peak and hole	0.503 and -0.933 e.Å ⁻³	

Figure S4. ORTEP drawing of **6g** with thermal ellipsoids at 50% probability.

Table S20. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2$ x 10³) for **6g**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	х	У	z	U(eq)
Rh(1)	8418(1)	6092(1)	7254(1)	30(1)
CI(1)	11511(1)	6138(1)	8405(1)	43(1)
O(1)	9584(3)	4015(2)	5807(2)	58(1)
O(2)	4426(4)	5948(3)	5895(2)	75(1)
N(1)	7451(3)	7427(2)	9128(1)	28(1)
N(2)	7940(2)	9086(2)	8189(1)	24(1)
C(1)	9128(4)	4772(3)	6340(2)	39(1)
C(2)	5956(4)	6015(3)	6402(2)	45(1)
C(3)	7835(3)	7597(2)	8248(2)	26(1)
C(4)	7353(3)	8761(2)	9643(2)	28(1)
C(5)	7683(3)	9823(2)	9040(2)	26(1)
C(6)	7857(3)	11386(2)	9129(2)	34(1)
C(7)	8192(4)	12090(2)	8365(2)	39(1)
C(8)	8356(3)	11294(2)	7487(2)	36(1)
C(9)	8257(3)	9825(2)	7407(2)	29(1)
C(10)	7168(4)	6006(2)	9511(2)	43(1)
C(11)	7080(3)	8894(2)	10608(2)	32(1)
C(12)	6930(3)	8990(3)	11437(2)	35(1)
C(13)	6878(3)	9149(3)	12455(2)	32(1)
C(14)	6742(4)	7919(3)	12959(2)	43(1)
C(15)	6775(5)	8080(3)	13944(2)	56(1)
C(16)	6947(5)	9476(4)	14452(2)	58(1)
C(17)	7069(4)	10698(3)	13957(2)	50(1)
C(18)	7033(4)	10549(3)	12968(2)	38(1)

Rh(1)-C(2) 1.832(3) Rh(1)-C(1) 1.914(3) Rh(1)-C(3) 2.052(2) Rh(1)-Cl(1) 2.3600(8) O(1)-C(1) 1.125(3) O(2)-C(2) 1.122(4) N(1)-C(3) 1.343(3) N(1)-C(4) 1.398(3) N(1)-C(10) 1.460(3) N(2)-C(3) 1.376(2) N(2)-C(9) 1.383(3) N(2)-C(5) 1.391(3) C(4)-C(5)1.375(3) C(4)-C(11) 1.410(3) C(5)-C(6) 1.420(3) C(6)-C(7)1.347(3) C(7)-C(8) 1.420(3) 1.342(3) C(8)-C(9)C(11)-C(12) 1.190(3) C(12)-C(13) 1.432(3) C(13)-C(14) 1.392(3) C(13)-C(18) 1.397(3) C(14)-C(15) 1.369(4) C(15)-C(16) 1.388(4) C(16)-C(17) 1.377(4) C(17)-C(18) 1.376(4) C(2)-Rh(1)-C(1) 93.03(11) C(2)-Rh(1)-C(3) 89.47(10) C(1)-Rh(1)-C(3) 176.27(9) C(2)-Rh(1)-Cl(1) 177.30(9) C(1)-Rh(1)-Cl(1) 88.15(8)

Table S21. Bond lengths [Å] and angles [°] for 6g.

C(3)-Rh(1)-Cl(1)	89.47(6)
C(3)-N(1)-C(4)	112.65(17)
C(3)-N(1)-C(10)	123.93(19)
C(4)-N(1)-C(10)	123.42(19)
C(3)-N(2)-C(9)	126.92(18)
C(3)-N(2)-C(5)	111.52(17)
C(9)-N(2)-C(5)	121.56(17)
O(1)-C(1)-Rh(1)	178.6(2)
O(2)-C(2)-Rh(1)	178.2(3)
N(1)-C(3)-N(2)	103.89(18)
N(1)-C(3)-Rh(1)	129.59(15)
N(2)-C(3)-Rh(1)	126.27(15)
C(5)-C(4)-N(1)	105.68(18)
C(5)-C(4)-C(11)	130.6(2)
N(1)-C(4)-C(11)	123.65(19)
C(4)-C(5)-N(2)	106.22(17)
C(4)-C(5)-C(6)	134.7(2)
N(2)-C(5)-C(6)	119.05(19)
C(7)-C(6)-C(5)	118.5(2)
C(6)-C(7)-C(8)	121.0(2)
C(9)-C(8)-C(7)	121.0(2)
C(8)-C(9)-N(2)	118.8(2)
C(12)-C(11)-C(4)	177.1(2)
C(11)-C(12)-C(13)	176.5(2)
C(14)-C(13)-C(18)	118.9(2)
C(14)-C(13)-C(12)	120.5(2)
C(18)-C(13)-C(12)	120.5(2)
C(15)-C(14)-C(13)	120.5(2)
C(14)-C(15)-C(16)	120.3(3)
C(17)-C(16)-C(15)	119.6(3)
C(18)-C(17)-C(16)	120.6(2)
C(17)-C(18)-C(13)	120.0(2)

				···· = P [·· •	•		
	U11	U ²²	U ³³	U ²³	U ¹³	U12	
Rh(1)	40(1)	25(1)	25(1)	3(1)	10(1)	10(1)	
CI(1)	45(1)	45(1)	39(1)	7(1)	6(1)	18(1)	
O(1)	86(2)	55(1)	42(1)	-1(1)	24(1)	37(1)	
O(2)	66(2)	77(1)	64(2)	-17(1)	-16(1)	30(1)	
N(1)	31(1)	31(1)	25(1)	5(1)	10(1)	7(1)	
N(2)	23(1)	25(1)	23(1)	4(1)	7(1)	7(1)	
C(1)	54(2)	35(1)	31(1)	9(1)	10(1)	15(1)	
C(2)	58(2)	38(1)	35(2)	-8(1)	5(1)	16(1)	
C(3)	28(1)	27(1)	23(1)	5(1)	8(1)	6(1)	
C(4)	23(1)	35(1)	25(1)	1(1)	8(1)	8(1)	
C(5)	20(1)	33(1)	24(1)	1(1)	3(1)	8(1)	
C(6)	28(1)	32(1)	39(1)	-6(1)	7(1)	10(1)	
C(7)	35(1)	28(1)	56(2)	6(1)	10(1)	10(1)	
C(8)	34(1)	34(1)	44(1)	16(1)	13(1)	9(1)	
C(9)	28(1)	34(1)	26(1)	8(1)	8(1)	7(1)	
C(10)	59(2)	36(1)	42(2)	17(1)	26(1)	10(1)	
C(11)	27(1)	43(1)	29(1)	4(1)	10(1)	11(1)	
C(12)	29(1)	46(1)	32(1)	3(1)	10(1)	12(1)	
C(13)	26(1)	48(1)	25(1)	5(1)	11(1)	10(1)	
C(14)	52(2)	44(1)	37(2)	6(1)	16(1)	18(1)	
C(15)	73(2)	69(2)	42(2)	24(1)	27(2)	33(2)	
C(16)	70(2)	94(2)	23(1)	10(1)	18(1)	38(2)	
C(17)	56(2)	58(2)	36(2)	-10(1)	9(1)	24(1)	
C(18)	38(1)	43(1)	36(1)	4(1)	12(1)	13(1)	

Table S22. Anisotropic displacement parameters ($Å^2 \times 10^3$) for **6g**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2h + a^*b^*U^{12}]$
	х	У	Z	U(eq)
H(6)	7739	11922	9713	40
H(7)	8321	13137	8415	47
H(8)	8538	11809	6948	43
H(9)	8403	9303	6825	35
H(10)	5747	5501	9283	64
H(10A)	7592	6180	10239	64
H(10B)	7974	5383	9266	64
H(14)	6624	6960	12617	52
H(15)	6681	7234	14281	67
H(16)	6980	9587	15136	70
H(17)	7179	11652	14303	60
H(18)	7114	11398	12633	46

Table S23. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for **6g**.

Table S24. Torsion angles [°] for **6g**.

C(2)-Rh(1)-C(1)-O(1)	137(9)
C(3)-Rh(1)-C(1)-O(1)	5(10)
Cl(1)-Rh(1)-C(1)-O(1)	-46(9)
C(1)-Rh(1)-C(2)-O(2)	110(8)
C(3)-Rh(1)-C(2)-O(2)	-73(8)
Cl(1)-Rh(1)-C(2)-O(2)	-5(9)
C(4)-N(1)-C(3)-N(2)	-1.4(2)
C(10)-N(1)-C(3)-N(2)	178.68(19)
C(4)-N(1)-C(3)-Rh(1)	173.20(15)
C(10)-N(1)-C(3)-Rh(1)	-6.8(3)
C(9)-N(2)-C(3)-N(1)	-178.21(19)
C(5)-N(2)-C(3)-N(1)	1.8(2)
C(9)-N(2)-C(3)-Rh(1)	7.0(3)
C(5)-N(2)-C(3)-Rh(1)	-172.99(14)
C(2)-Rh(1)-C(3)-N(1)	109.2(2)
C(1)-Rh(1)-C(3)-N(1)	-118.7(13)
Cl(1)-Rh(1)-C(3)-N(1)	-68.30(19)
C(2)-Rh(1)-C(3)-N(2)	-77.3(2)
C(1)-Rh(1)-C(3)-N(2)	54.8(14)
Cl(1)-Rh(1)-C(3)-N(2)	105.15(18)
C(3)-N(1)-C(4)-C(5)	0.4(2)
C(10)-N(1)-C(4)-C(5)	-179.6(2)
C(3)-N(1)-C(4)-C(11)	-176.3(2)
C(10)-N(1)-C(4)-C(11)	3.6(3)
N(1)-C(4)-C(5)-N(2)	0.7(2)
C(11)-C(4)-C(5)-N(2)	177.1(2)
N(1)-C(4)-C(5)-C(6)	-177.1(2)
C(11)-C(4)-C(5)-C(6)	-0.6(4)
C(3)-N(2)-C(5)-C(4)	-1.6(2)
C(9)-N(2)-C(5)-C(4)	178.42(18)
C(3)-N(2)-C(5)-C(6)	176.60(19)

C(9)-N(2)-C(5)-C(6)	-3.4(3)
C(4)-C(5)-C(6)-C(7)	180.0(2)
N(2)-C(5)-C(6)-C(7)	2.4(3)
C(5)-C(6)-C(7)-C(8)	0.4(3)
C(6)-C(7)-C(8)-C(9)	-2.5(4)
C(7)-C(8)-C(9)-N(2)	1.6(3)
C(3)-N(2)-C(9)-C(8)	-178.7(2)
C(5)-N(2)-C(9)-C(8)	1.3(3)
C(5)-C(4)-C(11)-C(12)	-112(5)
N(1)-C(4)-C(11)-C(12)	64(5)
C(4)-C(11)-C(12)-C(13)	41(8)
C(11)-C(12)-C(13)-C(14)	-108(4)
C(11)-C(12)-C(13)-C(18)	70(4)
C(18)-C(13)-C(14)-C(15)	-0.5(4)
C(12)-C(13)-C(14)-C(15)	177.3(2)
C(13)-C(14)-C(15)-C(16)	0.0(4)
C(14)-C(15)-C(16)-C(17)	0.5(5)
C(15)-C(16)-C(17)-C(18)	-0.4(5)
C(16)-C(17)-C(18)-C(13)	-0.2(4)
C(14)-C(13)-C(18)-C(17)	0.6(4)
C(12)-C(13)-C(18)-C(17)	-177.2(2)

Table S25. Crystal data and structure refinement for 6h	1 .
---	------------

Empirical formula	$C_{19}H_{11}CIF_3N_2O_2Rh$			
Formula weight	494.66			
Temperature	123(2) K			
Wavelength	0.71075 Å			
Crystal system	Triclinic			
Space group	<i>P</i> -1			
Unit cell dimensions	a = 7.168(4) Å	$\alpha = 76.479(14)^{\circ}.$		
	b = 9.002(5) Å	β = 80.476(18)°.		
	c = 15.020(8) Å	γ = 81.147(16)°.		
Volume	922.6(8) Å ³			
Z	2			
Density (calculated)	1.781 Mg/m ³			
Absorption coefficient	1.117 mm ⁻¹			
F(000)	488	488		
Crystal size	0.29 x 0.23 x 0.20 m	0.29 x 0.23 x 0.20 mm ³		
Theta range for data collection	1.41 to 27.50°.	1.41 to 27.50°.		
Index ranges	-9<= <i>h</i> <=9, -7<= <i>k</i> <=1	-9<= <i>h</i> <=9, -7<= <i>k</i> <=11, -18<= <i>l</i> <=19		
Reflections collected	7286	7286		
Independent reflections	4171 [R(int) = 0.0396	4171 [R(int) = 0.0396]		
Completeness to theta = 27.50°	98.3 %	98.3 %		
Absorption correction	Semi-empirical from	Semi-empirical from equivalents		
Max. and min. transmission	1.000 and 0.727			
Refinement method	Full-matrix least-squ	ares on <i>F</i> ²		
Data / restraints / parameters	4171 / 0 / 254	4171 / 0 / 254		
Goodness-of-fit on <i>F</i> ²	1.010			
Final R indices [I>2sigma(I)]	<i>R</i> 1 = 0.0446, <i>wR</i> 2 =	0.1025		
R indices (all data)	<i>R</i> 1 = 0.0556, <i>wR</i> 2 =	<i>R</i> 1 = 0.0556, <i>wR</i> 2 = 0.1097		
Largest diff. peak and hole	1.171 and -0.931 e.Å	1.171 and -0.931 e.Å ⁻³		

Figure S5. ORTEP drawing of **6h** with thermal ellipsoids at 50% probability.

Table S26. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2 \times 10^3$) for **6h**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	х	У	z	U(eq)
Rh(1)	5810(1)	8898(1)	7266(1)	27(1)
CI(1)	7871(2)	8879(1)	8348(1)	34(1)
F(1)	-4516(4)	6751(4)	14890(2)	69(1)
F(2)	-1828(4)	7164(4)	15162(2)	63(1)
F(3)	-2520(5)	4866(4)	15440(2)	62(1)
O(1)	3022(5)	8983(4)	6003(2)	51(1)
O(2)	8252(5)	11018(4)	5839(2)	54(1)
N(1)	4598(4)	5762(3)	8265(2)	22(1)
N(2)	3220(4)	7454(3)	9017(2)	23(1)
C(1)	4129(6)	8951(5)	6466(3)	35(1)
C(2)	7315(7)	10263(5)	6361(3)	37(1)
C(3)	4375(5)	7320(4)	8236(3)	23(1)
C(4)	2744(5)	6055(4)	9550(3)	25(1)
C(5)	3640(5)	4952(4)	9074(3)	22(1)
C(6)	3798(5)	3330(4)	9238(3)	27(1)
C(7)	4810(6)	2612(5)	8593(3)	32(1)
C(8)	5669(5)	3462(5)	7749(3)	30(1)
C(9)	5604(5)	5014(5)	7589(3)	27(1)
C(10)	2500(6)	8935(4)	9273(3)	32(1)
C(11)	1626(5)	5912(5)	10430(3)	26(1)
C(12)	754(5)	5886(5)	11169(3)	28(1)
C(13)	-186(5)	5917(5)	12087(3)	25(1)
C(14)	-474(5)	7340(5)	12359(3)	31(1)
C(15)	-1276(6)	7401(5)	13244(3)	33(1)
C(16)	-1811(5)	6089(5)	13869(3)	31(1)
C(17)	-1530(5)	4691(5)	13604(3)	32(1)
C(18)	-724(5)	4608(5)	12710(3)	28(1)
C(19)	-2658(6)	6198(6)	14834(3)	43(1)

Table S27. Bond lengths [Å] and angles [°] for ${\bf 6h}.$

Rh(1)-C(1)	1.826(4)
Rh(1)-C(2)	1.913(5)
Rh(1)-C(3)	2.046(4)
Rh(1)-Cl(1)	2.3660(13)
F(1)-C(19)	1.345(5)
F(2)-C(19)	1.344(5)
F(3)-C(19)	1.326(6)
O(1)-C(1)	1.131(5)
O(2)-C(2)	1.116(6)
N(1)-C(3)	1.378(5)
N(1)-C(9)	1.389(5)
N(1)-C(5)	1.394(5)
N(2)-C(3)	1.338(5)
N(2)-C(4)	1.383(5)
N(2)-C(10)	1.467(5)
C(4)-C(5)	1.376(5)
C(4)-C(11)	1.417(5)
C(5)-C(6)	1.413(5)
C(6)-C(7)	1.342(6)
C(7)-C(8)	1.416(6)
C(8)-C(9)	1.356(5)
C(11)-C(12)	1.177(6)
C(12)-C(13)	1.436(5)
C(13)-C(18)	1.384(6)
C(13)-C(14)	1.409(5)
C(14)-C(15)	1.369(6)
C(15)-C(16)	1.388(6)
C(16)-C(17)	1.383(6)
C(16)-C(19)	1.495(6)
C(17)-C(18)	1.386(5)

C(1)-Rh(1)-C(2)	92.17(19)
C(1)-Rh(1)-C(3)	89.90(17)
C(2)-Rh(1)-C(3)	175.76(16)
C(1)-Rh(1)-Cl(1)	177.32(14)
C(2)-Rh(1)-Cl(1)	89.11(12)
C(3)-Rh(1)-Cl(1)	88.98(10)
C(3)-N(1)-C(9)	126.9(4)
C(3)-N(1)-C(5)	111.9(3)
C(9)-N(1)-C(5)	121.3(3)
C(3)-N(2)-C(4)	113.0(3)
C(3)-N(2)-C(10)	123.5(3)
C(4)-N(2)-C(10)	123.4(3)
O(1)-C(1)-Rh(1)	176.9(4)
O(2)-C(2)-Rh(1)	177.3(4)
N(2)-C(3)-N(1)	103.5(3)
N(2)-C(3)-Rh(1)	131.2(3)
N(1)-C(3)-Rh(1)	125.0(3)
C(5)-C(4)-N(2)	106.4(3)
C(5)-C(4)-C(11)	130.7(4)
N(2)-C(4)-C(11)	122.8(3)
C(4)-C(5)-N(1)	105.2(3)
C(4)-C(5)-C(6)	135.4(4)
N(1)-C(5)-C(6)	119.4(4)
C(7)-C(6)-C(5)	119.0(4)
C(6)-C(7)-C(8)	120.8(4)
C(9)-C(8)-C(7)	121.4(4)
C(8)-C(9)-N(1)	118.0(4)
C(12)-C(11)-C(4)	175.0(4)
C(11)-C(12)-C(13)	175.2(4)
C(18)-C(13)-C(14)	120.1(4)
C(18)-C(13)-C(12)	122.6(4)
C(14)-C(13)-C(12)	117.3(4)
C(15)-C(14)-C(13)	119.0(4)

C(14)-C(15)-C(16)	120.9(4)
C(17)-C(16)-C(15)	120.1(4)
C(17)-C(16)-C(19)	120.5(4)
C(15)-C(16)-C(19)	119.3(4)
C(16)-C(17)-C(18)	119.7(4)
C(13)-C(18)-C(17)	120.1(4)
F(3)-C(19)-F(2)	105.9(4)
F(3)-C(19)-F(1)	106.8(4)
F(2)-C(19)-F(1)	105.3(4)
F(3)-C(19)-C(16)	113.8(4)
F(2)-C(19)-C(16)	112.4(4)
F(1)-C(19)-C(16)	112.1(4)

	U ¹¹	U ²²	U33	U ²³	U ¹³	U ¹²
Rh(1)	32(1)	23(1)	25(1)	-5(1)	-2(1)	-2(1)
CI(1)	36(1)	33(1)	35(1)	-4(1)	-8(1)	-8(1)
F(1)	37(2)	113(3)	55(2)	-40(2)	10(1)	11(2)
F(2)	68(2)	90(3)	44(2)	-44(2)	3(2)	-16(2)
F(3)	79(2)	76(2)	26(2)	-12(2)	6(2)	-10(2)
O(1)	64(2)	42(2)	54(2)	-16(2)	-29(2)	6(2)
O(2)	64(2)	64(2)	36(2)	2(2)	0(2)	-36(2)
N(1)	22(2)	21(2)	24(2)	-8(1)	-2(1)	1(1)
N(2)	25(2)	20(2)	21(2)	-4(1)	0(1)	-1(1)
C(1)	46(3)	19(2)	35(2)	-4(2)	-3(2)	3(2)
C(2)	45(3)	34(3)	33(2)	-12(2)	-9(2)	-3(2)
C(3)	21(2)	24(2)	25(2)	-9(2)	-3(2)	-1(2)
C(4)	25(2)	24(2)	26(2)	-7(2)	-5(2)	-1(2)
C(5)	18(2)	26(2)	23(2)	-5(2)	-5(2)	-2(2)
C(6)	23(2)	26(2)	34(2)	0(2)	-12(2)	-6(2)
C(7)	28(2)	22(2)	50(3)	-9(2)	-11(2)	-3(2)
C(8)	25(2)	31(2)	38(2)	-18(2)	-5(2)	4(2)
C(9)	23(2)	32(2)	27(2)	-14(2)	-1(2)	-1(2)
C(10)	33(2)	25(2)	38(2)	-13(2)	0(2)	1(2)
C(11)	21(2)	30(2)	28(2)	-10(2)	-5(2)	-1(2)
C(12)	25(2)	27(2)	31(2)	-7(2)	-6(2)	-2(2)
C(13)	15(2)	34(2)	26(2)	-10(2)	-4(2)	2(2)
C(14)	27(2)	28(2)	37(2)	-8(2)	-7(2)	-1(2)
C(15)	28(2)	33(2)	40(3)	-17(2)	-5(2)	2(2)
C(16)	22(2)	42(3)	30(2)	-13(2)	-3(2)	-1(2)
C(17)	30(2)	35(2)	29(2)	-6(2)	-2(2)	-5(2)
C(18)	27(2)	25(2)	33(2)	-11(2)	-5(2)	1(2)
C(19)	36(2)	58(3)	38(3)	-21(3)	0(2)	-6(2)

Table S28. Anisotropic displacement parameters ($Å^2 \times 10^3$) for **6h**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2h + a^*b^*U^{12}]$

	Х	У	Z	U(eq)	
H(6)	3197	2757	9797	33	
H(7)	4952	1520	8704	39	
H(8)	6303	2935	7285	36	
H(9)	6229	5574	7032	32	
H(10)	2916	9775	8769	48	
H(10A)	3000	8979	9834	48	
H(10B)	1105	9041	9387	48	
H(14)	-116	8244	11934	37	
H(15)	-1469	8356	13434	39	
H(17)	-1887	3791	14033	38	
H(18)	-540	3651	12524	33	

Table S29. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for **6h**.

Table S30. Torsion angles [°] for 6h.

C(2)-Rh(1)-C(1)-O(1)	-142(7)
C(3)-Rh(1)-C(1)-O(1)	42(7)
Cl(1)-Rh(1)-C(1)-O(1)	-24(9)
C(1)-Rh(1)-C(2)-O(2)	-128(8)
C(3)-Rh(1)-C(2)-O(2)	-9(9)
Cl(1)-Rh(1)-C(2)-O(2)	55(8)
C(4)-N(2)-C(3)-N(1)	1.7(4)
C(10)-N(2)-C(3)-N(1)	-177.2(3)
C(4)-N(2)-C(3)-Rh(1)	-171.4(2)
C(10)-N(2)-C(3)-Rh(1)	9.8(5)
C(9)-N(1)-C(3)-N(2)	176.8(3)
C(5)-N(1)-C(3)-N(2)	-2.2(4)
C(9)-N(1)-C(3)-Rh(1)	-9.6(5)
C(5)-N(1)-C(3)-Rh(1)	171.5(2)
C(1)-Rh(1)-C(3)-N(2)	-106.6(3)
C(2)-Rh(1)-C(3)-N(2)	134.2(18)
Cl(1)-Rh(1)-C(3)-N(2)	70.9(3)
C(1)-Rh(1)-C(3)-N(1)	81.6(3)
C(2)-Rh(1)-C(3)-N(1)	-38(2)
Cl(1)-Rh(1)-C(3)-N(1)	-100.8(3)
C(3)-N(2)-C(4)-C(5)	-0.6(4)
C(10)-N(2)-C(4)-C(5)	178.2(3)
C(3)-N(2)-C(4)-C(11)	176.3(3)
C(10)-N(2)-C(4)-C(11)	-4.9(5)
N(2)-C(4)-C(5)-N(1)	-0.7(3)
C(11)-C(4)-C(5)-N(1)	-177.3(3)
N(2)-C(4)-C(5)-C(6)	177.5(3)
C(11)-C(4)-C(5)-C(6)	1.0(6)
C(3)-N(1)-C(5)-C(4)	1.8(4)
C(9)-N(1)-C(5)-C(4)	-177.2(3)
C(3)-N(1)-C(5)-C(6)	-176.8(3)

C(9)-N(1)-C(5)-C(6)	4.2(4)
C(4)-C(5)-C(6)-C(7)	179.3(4)
N(1)-C(5)-C(6)-C(7)	-2.6(5)
C(5)-C(6)-C(7)-C(8)	-1.6(5)
C(6)-C(7)-C(8)-C(9)	4.4(5)
C(7)-C(8)-C(9)-N(1)	-2.7(5)
C(3)-N(1)-C(9)-C(8)	179.6(3)
C(5)-N(1)-C(9)-C(8)	-1.6(5)
C(5)-C(4)-C(11)-C(12)	145(4)
N(2)-C(4)-C(11)-C(12)	-31(5)
C(4)-C(11)-C(12)-C(13)	-26(9)
C(11)-C(12)-C(13)-C(18)	-126(5)
C(11)-C(12)-C(13)-C(14)	51(5)
C(18)-C(13)-C(14)-C(15)	0.4(5)
C(12)-C(13)-C(14)-C(15)	-176.7(3)
C(13)-C(14)-C(15)-C(16)	-0.3(5)
C(14)-C(15)-C(16)-C(17)	0.3(6)
C(14)-C(15)-C(16)-C(19)	179.2(4)
C(15)-C(16)-C(17)-C(18)	-0.4(6)
C(19)-C(16)-C(17)-C(18)	-179.3(4)
C(14)-C(13)-C(18)-C(17)	-0.6(5)
C(12)-C(13)-C(18)-C(17)	176.3(3)
C(16)-C(17)-C(18)-C(13)	0.6(5)
C(17)-C(16)-C(19)-F(3)	20.4(5)
C(15)-C(16)-C(19)-F(3)	-158.4(4)
C(17)-C(16)-C(19)-F(2)	140.8(4)
C(15)-C(16)-C(19)-F(2)	-38.1(5)
C(17)-C(16)-C(19)-F(1)	-100.9(5)
C(15)-C(16)-C(19)-F(1)	80.2(5)

Table S31. Crystal data and	structure refinement for 13b.
-----------------------------	-------------------------------

Empirical formula	$C_{15}H_{14}N_2OSe$	
Formula weight	317.24	
Temperature	193(2) K	
Wavelength	0.71075 Å	
Crystal system	Triclinic	
Space group	<i>P</i> -1	
Unit cell dimensions	a = 8.144(2) Å	α = 97.961(2)°.
	b = 9.039(3) Å	$\beta = 106.050(4)^{\circ}.$
	c = 9.707(3) Å	γ = 95.085(3)°.
Volume	674.0(3) Å ³	
Z	2	
Density (calculated)	1.563 Mg/m ³	
Absorption coefficient	2.778 mm ⁻¹	
F(000)	320	
Crystal size	0.51 x 0.31 x 0.31 m	1m ³
Theta range for data collection	2.22 to 27.50°.	
Index ranges	-6<= <i>h</i> <=10, -11<= <i>k</i> <	<=10, -12<=/<=12
Reflections collected	5428	
Independent reflections	3060 [R(int) = 0.026	8]
Completeness to theta = 27.50°	98.6 %	
Absorption correction	Semi-empirical from	equivalents
Max. and min. transmission	0.4797 and 0.3315	
Refinement method	Full-matrix least-squ	ares on F ²
Data / restraints / parameters	3060 / 0 / 174	
Goodness-of-fit on <i>F</i> ²	1.000	
Final R indices [I>2sigma(I)]	<i>R</i> 1 = 0.0330, <i>wR</i> 2 =	0.0817
R indices (all data)	<i>R</i> 1 = 0.0367, <i>wR</i> 2 =	0.0828
Largest diff. peak and hole	0.843 and -0.745 e./	<u> </u> 4-3

Figure S6. ORTEP drawing of **13b** with thermal ellipsoids at 50% probability.

Table S32. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for **13b**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	У	z	U(eq)
C(1)	3828(3)	11553(2)	8145(2)	24(1)
N(1)	4323(2)	10358(2)	7365(2)	25(1)
C(2)	5938(3)	10078(2)	8065(2)	25(1)
N(2)	6455(2)	11111(2)	9323(2)	23(1)
C(3)	8026(3)	11334(3)	10400(3)	28(1)
C(4)	8350(3)	12462(3)	11510(3)	32(1)
C(5)	7070(3)	13452(3)	11612(3)	33(1)
C(6)	5526(3)	13234(3)	10585(3)	29(1)
C(7)	5169(3)	12046(2)	9385(2)	24(1)
Se(1)	7177(1)	8647(1)	7476(1)	35(1)
C(8)	3232(3)	9414(3)	6023(3)	33(1)
C(9)	2224(3)	12211(2)	7623(2)	24(1)
C(10)	1225(3)	12560(3)	8536(3)	28(1)
C(11)	-257(3)	13244(3)	8081(3)	30(1)
C(12)	-743(3)	13578(2)	6683(3)	26(1)
C(13)	266(3)	13252(2)	5761(3)	26(1)
C(14)	1734(3)	12574(2)	6222(2)	26(1)
O(1)	-2174(2)	14235(2)	6109(2)	36(1)
C(15)	-3385(3)	14371(4)	6914(4)	51(1)

Table S33. Bond lengths [Å] and angles [°] for ${\bf 13b}.$

C(1)-C(7)	1.371(3)
C(1)-N(1)	1.386(3)
C(1)-C(9)	1.474(3)
N(1)-C(2)	1.366(3)
N(1)-C(8)	1.460(3)
C(2)-N(2)	1.368(3)
C(2)-Se(1)	1.834(2)
N(2)-C(3)	1.388(3)
N(2)-C(7)	1.412(3)
C(3)-C(4)	1.327(3)
C(4)-C(5)	1.447(3)
C(5)-C(6)	1.350(3)
C(6)-C(7)	1.416(3)
C(9)-C(10)	1.383(3)
C(9)-C(14)	1.401(3)
C(10)-C(11)	1.396(3)
C(11)-C(12)	1.388(3)
C(12)-O(1)	1.370(3)
C(12)-C(13)	1.393(3)
C(13)-C(14)	1.384(3)
O(1)-C(15)	1.421(3)
C(7)-C(1)-N(1)	106.58(18)
C(7)-C(1)-C(9)	128.5(2)
N(1)-C(1)-C(9)	124.71(19)
C(2)-N(1)-C(1)	111.66(18)
C(2)-N(1)-C(8)	122.90(19)
C(1)-N(1)-C(8)	125.26(18)
N(1)-C(2)-N(2)	104.87(19)
N(1)-C(2)-Se(1)	128.48(17)
N(2)-C(2)-Se(1)	126.65(17)

C(2)-N(2)-C(3)	127.97(19)
C(2)-N(2)-C(7)	110.38(18)
C(3)-N(2)-C(7)	121.58(19)
C(4)-C(3)-N(2)	119.8(2)
C(3)-C(4)-C(5)	120.4(2)
C(6)-C(5)-C(4)	120.5(2)
C(5)-C(6)-C(7)	119.8(2)
C(1)-C(7)-N(2)	106.50(19)
C(1)-C(7)-C(6)	135.5(2)
N(2)-C(7)-C(6)	118.0(2)
C(10)-C(9)-C(14)	118.7(2)
C(10)-C(9)-C(1)	120.6(2)
C(14)-C(9)-C(1)	120.61(19)
C(9)-C(10)-C(11)	121.3(2)
C(12)-C(11)-C(10)	119.4(2)
O(1)-C(12)-C(11)	124.8(2)
O(1)-C(12)-C(13)	115.4(2)
C(11)-C(12)-C(13)	119.8(2)
C(14)-C(13)-C(12)	120.4(2)
C(13)-C(14)-C(9)	120.4(2)
C(12)-O(1)-C(15)	117.42(19)

alopiao					• …		U
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
C(1)	25(1)	26(1)	19(1)	4(1)	5(1)	3(1)	
N(1)	26(1)	26(1)	20(1)	3(1)	3(1)	3(1)	
C(2)	30(1)	26(1)	19(1)	6(1)	6(1)	5(1)	
N(2)	24(1)	27(1)	18(1)	5(1)	5(1)	4(1)	
C(3)	24(1)	37(1)	23(1)	10(1)	4(1)	5(1)	
C(4)	26(1)	42(1)	21(1)	6(1)	0(1)	-3(1)	
C(5)	36(1)	32(1)	26(1)	-3(1)	5(1)	-1(1)	
C(6)	30(1)	30(1)	27(1)	3(1)	9(1)	4(1)	
C(7)	24(1)	26(1)	22(1)	7(1)	7(1)	4(1)	
Se(1)	43(1)	40(1)	26(1)	6(1)	11(1)	18(1)	
C(8)	36(1)	31(1)	24(1)	-1(1)	1(1)	3(1)	
C(9)	24(1)	24(1)	22(1)	4(1)	3(1)	1(1)	
C(10)	31(1)	33(1)	21(1)	9(1)	7(1)	4(1)	
C(11)	29(1)	35(1)	29(1)	9(1)	13(1)	5(1)	
C(12)	26(1)	26(1)	26(1)	6(1)	4(1)	2(1)	
C(13)	29(1)	29(1)	18(1)	4(1)	2(1)	2(1)	
C(14)	28(1)	30(1)	20(1)	2(1)	6(1)	3(1)	
O(1)	30(1)	44(1)	38(1)	15(1)	10(1)	14(1)	
C(15)	40(1)	64(2)	63(2)	28(2)	24(2)	25(1)	

Table S34. Anisotropic displacement parameters ($Å^2x \ 10^3$)for **13b**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

Table S35. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for **13b**.

	Х	у	Z	U(eq)	
H(3)	8866	10681	10344	33	
H(4)	9430	12621	12243	38	
H(5)	7318	14261	12407	40	
H(6)	4682	13874	10668	35	
H(8)	3390	9840	5186	49	
H(8A)	2022	9378	6011	49	
H(8B)	3552	8393	5971	49	
H(10)	1555	12330	9493	34	
H(11)	-928	13479	8722	36	
H(13)	-55	13497	4810	32	
H(14)	2414	12354	5586	31	
H(15)	-3802	13370	7057	77	
H(15A)	-4358	14829	6378	77	
H(15B)	-2829	15008	7862	77	

Table S36. Torsion angles [°] for $\ensuremath{\textbf{13b}}$.

C(7)-C(1)-N(1)-C(2)	-0.3(2)
C(9)-C(1)-N(1)-C(2)	174.59(19)
C(7)-C(1)-N(1)-C(8)	174.94(19)
C(9)-C(1)-N(1)-C(8)	-10.2(3)
C(1)-N(1)-C(2)-N(2)	0.8(2)
C(8)-N(1)-C(2)-N(2)	-174.54(18)
C(1)-N(1)-C(2)-Se(1)	-179.01(15)
C(8)-N(1)-C(2)-Se(1)	5.7(3)
N(1)-C(2)-N(2)-C(3)	-177.93(18)
Se(1)-C(2)-N(2)-C(3)	1.9(3)
N(1)-C(2)-N(2)-C(7)	-1.0(2)
Se(1)-C(2)-N(2)-C(7)	178.78(14)
C(2)-N(2)-C(3)-C(4)	175.6(2)
C(7)-N(2)-C(3)-C(4)	-1.0(3)
N(2)-C(3)-C(4)-C(5)	0.7(3)
C(3)-C(4)-C(5)-C(6)	0.5(3)
C(4)-C(5)-C(6)-C(7)	-1.3(3)
N(1)-C(1)-C(7)-N(2)	-0.4(2)
C(9)-C(1)-C(7)-N(2)	-174.98(19)
N(1)-C(1)-C(7)-C(6)	176.9(2)
C(9)-C(1)-C(7)-C(6)	2.3(4)
C(2)-N(2)-C(7)-C(1)	0.9(2)
C(3)-N(2)-C(7)-C(1)	178.03(18)
C(2)-N(2)-C(7)-C(6)	-176.94(17)
C(3)-N(2)-C(7)-C(6)	0.2(3)
C(5)-C(6)-C(7)-C(1)	-176.1(2)
C(5)-C(6)-C(7)-N(2)	0.9(3)
C(7)-C(1)-C(9)-C(10)	-50.3(3)
N(1)-C(1)-C(9)-C(10)	136.0(2)
C(7)-C(1)-C(9)-C(14)	126.0(2)
N(1)-C(1)-C(9)-C(14)	-47.7(3)

C(14)-C(9)-C(10)-C(11)	0.8(3)
C(1)-C(9)-C(10)-C(11)	177.2(2)
C(9)-C(10)-C(11)-C(12)	0.1(3)
C(10)-C(11)-C(12)-O(1)	179.5(2)
C(10)-C(11)-C(12)-C(13)	-1.1(3)
O(1)-C(12)-C(13)-C(14)	-179.41(19)
C(11)-C(12)-C(13)-C(14)	1.1(3)
C(12)-C(13)-C(14)-C(9)	-0.1(3)
C(10)-C(9)-C(14)-C(13)	-0.8(3)
C(1)-C(9)-C(14)-C(13)	-177.18(19)
C(11)-C(12)-O(1)-C(15)	-10.2(3)
C(13)-C(12)-O(1)-C(15)	170.3(2)

Discussion of Polymerization of phenylacetylene with complexes 5b-d

The monomer consumption in the polymerization of phenylacetylene with **5b-d** was monitored. As a result, electron-deficient catalyst **5d** exhibited the highest activity among **5b-5d**, even though conversion at 12h was the almost same (Figure S7). The results of polymerization of phenylacetylene with **5b-d** are summarized in Table S37-40.

Figure S7 Time dependences of substrate conversion on polymerization of phenylacetylene with 5b-d

Time (h)	1	2	3	4	5	6	7	8	12	18	24
conv. (%)	9	27	45	60	71	82	84	87	94	97	98

Table S37. Time dependences of 5b

Table S38. Time dependences of 5c

Time (h)	1	2	3	4	5	6	7	8	9	10	14	24
conv. (%)	7	24	40	52	66	73	81	86	90	93	97	98

Table S39. Time dependences of 5d

Time (h)	1	2	3	4	5	6	7	8.5	10	12	24
conv. (%)	20	47	66	77	83	86	90	92	94	95	98

General procedure for polymerization of phenylacetylene in Figure S7

To a solution of Rh catalyst **5b-d** (10 μ mol, 1.0 mol%) in CH₂Cl₂ (1.0 mL) was added phenylacetylene (102 mg, 1.0 mmol) and mesitylene (120 mg, 1.0 mmol) at room temperature under an argon atmosphere. The resulting mixture was stirred at room temperature. The conversion of the substrate at each reaction time was determined by GC analysis using mesitylene as internal standard.

Rh complex	yield ^b	%-cis ^c	<i>M</i> ^d _n [g/mol]	PDI (<i>M</i> _w / <i>M</i> _n)
5b	87%	89%	27000	1.94
5c	93%	92%	20600	1.80
5d	81%	93%	22300	1.85

Table S40. Result of polymerization of phenylacetylene by 5b-d after 12 h^a

^a Reaction conditions: Phenylacetylene (1.0 mmol), Rh complex (10 μ mol), and CH₂Cl₂ (1.0 mL), rt, 12 h. ^b Yields based on MeOH-insoluble product. ^c The percentage of *cis*-content in polyphenylacetylene was determined by ¹H NMR. ^d The molecular weight was determined by SEC (PS standards, eluent THF)

References

- S1) M. Bielawski, D. Aili and B. Olofsson, J. Org. Chem., 2008, 73, 4602–4607.
- S2) T. X. Neenan and G. M. Whitesides, J. Org. Chem., 1988, 53, 2489–2496.
- S3) F. Shibahara, Y. Dohke and T. Murai, J. Org. Chem., 2012, 77, 5381–5388.
- S4) D. M. Khramov, V. M. Lynch and C. W. Bielawski, *Organometallics*, 2007, **26**, 6042–6049.
- S5) D. J. Nelson, A. Collado, S. Manzini, S. Meiri1es, A. M. Z. Slawin, D. B. Cordes and S. P. Nolan, *Organometallics*, 2014, **33**, 2048–2058.
- S6) A. Liske, K. Varlinden, H. Buhl, K. Schaper and C. Ganter, *Organometallics*, 2013, 32, 5269-5272.
- S7) (a) A. Furlani, C. Napoletano, M. V. Russo, A. Camus and N. Marsich, *J. Polym. Sci., Part A: Polym. Chem.*, 1989, **27**, 75–86. (b) A. Furlani, C. Napoletano, M. V. Russo and W. Feast, *J. Polym. Bull.*, 1986, **16**, 311–317.
- S8) G. M. Sheldrick, Acta Crystallogr., 2008, A64, 112–122.
- S9) Yadokari-XG, Software for Crystal Structure Analyses, K. Wakita (2001); Release of Software (Yadokari-XG 2009) for Crystal Structure Analyses, C. Kabuto, S. Akine, T. Nemoto, and E. Kwon, *J. Cryst. Soc. Jpn.*, 2009, **51**, 218-224.

134.52

152 144 136 128 120

148.03 147.96 145.56 145.56 145.45 145.45 145.45 142.33 142.33 142.33 142.33 142.33 142.33 142.33 142.33 142.33 142.33 142.33 143.66

200 192 184 176 168 160

-112.80

95.39

100.87 100.69 100.55

112 104 96 88 Chemical Shift (ppm) 76.28 76.24

72

64

80

-8

8 0

16

24

32

