Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2016

Electronic Supplementary Information (ESI)

Chemical quenching of singlet oxygen by betanin

Monika Wendel,^a Stanislaw Nizinski,^a Mateusz Gierszewski,^b Dorota Prukala,^b Marek Sikorski,^b Karolina Starzak,^c Slawomir Wybraniec,^c and Gotard Burdzinski^{*a}

^a Quantum Electronics Laboratory, Faculty of Physics,

Adam Mickiewicz University in Poznan, Umultowska 85, 61-614 Poznan, Poland

E-mail: gotardb@amu.edu.pl

^b Faculty of Chemistry, Adam Mickiewicz University in Poznan, Umultowska 89b, 61-614

Poznan, Poland

^c Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology,

Institute C-1, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland

Table S1. TD-DFT of 2-decarboxy-2,3-dehydrobetanin at the B3LYP/6-311++G(d,p) level of theorywith polarizable continuum model (PCM) for water.

Energy = -1828.85174750 Hartree

Wavelength	£	С	-0.075432000	-1.456483000	-0.251660000	
(nm)	J	Ν	-1.396855000	-1.858840000	0.071788000	
()		С	-2.483034000	-1.059965000	0.012507000	
632 69	0.0658	Н	-2.272229000	-0.060200000	-0.340971000	
407.00	0.0050	С	-3.765150000	-1.423648000	0.356592000	
487.50	1.0355	Н	-3.955938000	-2.423260000	0.726609000	
366.11	0.0808	С	-4.875510000	-0.566383000	0.250415000	
336.21	0.0002	С	-6.148914000	-1.037702000	0.586343000	
222 55	0.0001	С	-4.779612000	0.825254000	-0.344512000	
322.55	0.0001	С	-7.271752000	-0.232764000	0.401294000	
309.81	0.0179	Н	-6.290962000	-2.058127000	0.909411000	
305.88	0.0331	С	-5.896757000	1.732382000	0.191455000	
201 22	0 0022	Н	-4.853342000	0.729086000	-1.434365000	
501.52	0.0025	Ν	-7.182335000	1.058084000	0.117413000	
298.82	0.0019	Н	-8.026717000	1.602624000	-0.031104000	
291.11	0.0048	С	-8.687191000	-0.750266000	0.492826000	
		0	-9.641730000	-0.039414000	0.289649000	
		0	-8.738763000	-2.041278000	0.810606000	
		Н	-9.667565000	-2.321956000	0.860191000	
		Н	-3.827568000	1.302650000	-0.125359000	
		С	0.762197000	-2.571694000	-0.059708000	

С	-1.349801000	-3.219194000	0.457160000	
С	-0.074885000	-3.666000000	0.385804000	
Н	-2.247802000	-3.737568000	0.743913000	
С	2.127345000	-2.447047000	-0.316816000	
С	0.398248000	-0.223749000	-0.673737000	
С	2.617634000	-1.221855000	-0.747174000	
C	1.768239000	-0.105077000	-0.920996000	
0	2.232653000	1.094866000	-1.353629000	
Н	3.192242000	1.151459000	-1.186630000	
Н	-0.231118000	0.645421000	-0.813409000	
Н	2.807668000	-3.282541000	-0.205430000	
Н	0.250453000	-4.667480000	0.621509000	
0	3.957600000	-1.121724000	-1.113948000	
С	6.271295000	-1.074337000	-0.522821000	
С	4.855442000	-0.602277000	-0.172846000	
С	7.307964000	-0.328791000	0.331079000	
С	7.093858000	1.180467000	0.268403000	
Н	7.209392000	-0.648761000	1.378528000	
С	5.646087000	1.528550000	0.632631000	
Н	7.287667000	1.522189000	-0.756253000	
Н	6.445461000	-0.848097000	-1.577424000	
Н	5.433019000	1.212174000	1.661770000	
0	4.784955000	0.824913000	-0.277942000	
0	7.954000000	1.868411000	1.179152000	
0	8.634718000	-0.579645000	-0.123342000	
0	6.423188000	-2.483250000	-0.403569000	
Н	6.252988000	-2.752780000	0.508609000	
Н	8.814641000	-1.524005000	-0.040853000	
Н	8.867968000	1.657685000	0.950354000	
C	5.329101000	3.019659000	0.500248000	
Н	5.632279000	3.373535000	-0.493252000	
Н	4.251872000	3.161068000	0.600170000	
0	5.945086000	3.785909000	1.530178000	
Н	6.882733000	3.542807000	1.547533000	
Н	4.563430000	-0.903262000	0.842574000	
Н	-5.688841000	1.956529000	1.248046000	
C	-6.003666000	3.074527000	-0.521864000	
0	-7.038357000	3.528443000	-0.945078000	
0	-4.818907000	3.685769000	-0.581442000	
H	-4.925173000	4.550454000	-1.011404000	

Figure S1. (A) Transient absorption spectra of perinaphthenone (~ 9×10^{-5} M) in D₂O (λ_{exc} = 355 nm, E = 0.4 mJ per pulse), deoxygenated solution by 10 min of bubbling with argon. (B) The inverted stationary UV-vis spectrum of the studied sample. (C) Transient absorption kinetic traces at probe λ = 490 nm obtained for perinaphthenone (~6 × 10⁻⁵ M) in D₂O (λ_{exc} = 355 nm, E = 0.1 mJ per pulse). A long period (25 min) of bubbling with argon was used to obtain the triplet lifetime of perinaphthenone.

(B)

Figure S2. Signal comparison recorded in nanosecond transient absorption experiments (λ_{exc} = 355 nm, E = 0.4 mJ) for deoxygenated solutions of benzophenone (**bp**) in acetonitrile (ACN) and perinaphthenone (**pn**) in D₂O with the same absorbance [A(355 nm, 1 cm) = 0.71], so that the same number of photons would be absorbed by the two solutions. Two samples were measured one after the other under identical experimental conditions. The following relation can be used in comparative actinometric measurements:¹

$$\frac{\varepsilon(T1(\mathbf{pn}), 535 \text{ nm})}{\Delta A(T1(\mathbf{pn}), 535 \text{ nm})} = \frac{\varepsilon(T1(\mathbf{bp}), 525 \text{ nm})}{\Delta A(T1(\mathbf{bp}), 525 \text{ nm})},$$

where the values $\Delta A(T_1(\mathbf{pn}), 535 \text{ nm})$ and $\Delta A(T_1(\mathbf{bp}), 525 \text{ nm})$ are taken from graph below, $\epsilon(T_1(\mathbf{bp}), 525 \text{ nm}) = 6500 \pm 400 \text{ M}^{-1} \text{cm}^{-1}$ is given in report.² The calculated $\epsilon(T_1(\mathbf{pn}), 535 \text{ nm})$ is a value $1750 \pm 150 \text{ M}^{-1} \text{cm}^{-1}$.

Figure S3. Transient absorption kinetic traces at early delays obtained for solution of perinaphthenone (6 \times 10⁻⁵ M) with betanin (2.3 \times 10⁻⁵ M) in D₂O and solution of only perinaphthenone (6 \times 10⁻⁵ M) in D₂O (all air-equilibrated solutions). Fitting was performed with 2-exponential function ($\Delta A = A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2) + offset$) for solution of betanin with perinaphthenone in D₂O, and a single-exponential function for perinaphthenone in D₂O.

Perinaphthenone in D₂O has the triplet lifetime of 1.6 \pm 0.2 µs (air equilibrated solutions). Similar time-constant should be obtained in solutions of perinaphthenone with added betanin, this is indeed true when we probe the mixture at 445 nm, however, at 535 nm the short component has the time-constant of 0.8 \pm 0.2 µs. We believe that a relatively small fraction of betanin forms complexes with perinaphthenone (see also Figure S4). The laser excitation of such complex then localizes the excitation on perinaphthenone, which likely sensitizes betanin in the triplet excited state, and thus removes the betanin population from the ground state. The latter process would result in a fast transient absorption decay at 535 nm probe, being likely responsible for the observed 0.8 \pm 0.2 µs component. A small fraction of the complexes (< 3 % vs. free perinaphthenone molecules) is needed to result in such shortening of τ_1 , because of a huge difference between the triplet perinaphthenone and the ground-state betanin extinction coefficients (1750 vs. 65000 M⁻¹cm⁻¹). At longer delays, an important rise of the betanin bleaching with time-constant of 50 \pm 3 µs reflects the reaction of betanin with ¹O₂.

Figure S4. Transient absorption spectra of betanin (~2.1 × 10⁻⁵ M) and perinaphthenone (~1.1 × 10⁻⁴ M) in D₂O (λ_{exc} = 355 nm, E = 0.25 mJ per pulse), air-equilibrated solution. Bottom graph shows the inverted stationary UV-vis spectrum of the studied sample (solid black line) and contribution from betanin in D₂O (pink line). Inspection of the red side of spectra (around 600 nm) shows a weak discrepancy, the possible explanation can be that a part of betanin population forms a complex with perinaphthenone.

Figure S5. Changes in the stationary UV-vis spectra of solution of perinaphthenone and betanin in D_2O ([**bn**] = 2.3×10^{-5} M, [**pn**] = 6×10^{-5} M), as a result of laser flash photolysis LFP experiments (λ_{exc} = 355 nm).

The negative band at $\lambda \sim 545$ nm corresponds to the loss of betanin, the positive band at $\lambda \sim 435$ nm corresponds to the oxidation product, while the second band at 342 nm can be tentatively assigned to hydroxyperinaphthenyl radical accordingly to reference.³

Figure S6. Plot of the reciprocal singlet oxygen lifetime $(1/\tau_{\Delta})$, against the concentration of added isobetanin (**ibn**) to perinaphthenone D₂O solution (λ_{exc} = 394 nm).

References:

- 1. I. Carmichael and G. L. Hug, Triplet-triplet absorption spectra of organic molecules in condensed phases, *J. Phys. Chem. Ref. Data*, 1986, **15**, 1-250.
- 2. R. V. Bensasson and J.-C. Gramain, Benzophenone triplet properties in acetonitrile and water. Reduction by lactams, *J. C. S. Faraday I*, 1980, **76**, 1801-1810.
- 3. N. A. Kuznetsova, A. V. Reznichenko, V. N. Kokin and O. L. Kaliya, Photolysis of 6-substituted phenalenones in deaerated alcohol media, *J. Org. Chem. USSR*, 1982, **18**, 540-544.