Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2016

Electronic Supplementary Information

Harnessing and storing visible light using a heterojunction of WO_3 and CdS for

sunlight-free catalysis

Seonghun Kim,^{a,b} Yiseul Park,^c Wooyul Kim,^{d,*} and Hyunwoong Park^{a,b,*}

^aSchool of Energy Engineering, Kyungpook National University, Daegu 41566, Korea. ^bSchool of Architectural, Civil, Environmental, and Energy Engineering, Kyungpook National University, Daegu 41566, Korea.

^cDivision of Nano and Energy Convergence Research, DGIST, Daegu 42988, Korea ^dDepartment of Chemical and Biological Engineering, Sookmyung Women's University, Seoul 04310, Korea.

*To whom correspondence should be addressed:

E-mails: wkim@sookmyung.ac.kr (W. Kim); hwp@knu.ac.kr (H. Park)

Fig. S1. EDX elemental mapping of CdS/WO_3 bilayer (cross-sectional view) in Figure 1. a: Cd, b: S, c: O, and d: W.

Fig. S2. Light-chopped linear sweep voltammograms of CdS and WO_3 electrodes in 0.1 M sodium sulfate (0.1 M) solution.

Fig. S3 Nyqust plots of (a) CdS, (b) WO₃ and (c) CdS-WO₃. The EIS measurements were performed at 0 V vs. SCE in the dark (before illumination; black), under illumination ($\lambda > 420$ nm, red), and in the dark after 5h-illumination process (green), respectively. The electrodes were immersed in 0.1 M Na₂SO₄.