Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2016

Supplementary information

Optical properties and solvatofluorochromism of fluorene derivatives

bearing *S*,*S*-dioxidized thiophene

Tatsumoto Nakahama,^a Daichi Kitagawa,^a Hikaru Sotome,^b Syoji Ito,^b Hiroshi Miyasaka^{b*} and Seiya Kobatake^{a*}

^aDepartment of Applied Chemistry, Graduate School of Engineering, Osaka City University,

3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan

^bDivision of Frontier Materials Science and Center for Promotion of Advanced Interdisciplinary

Research, Graduate School of Engineering Science, Osaka University,

Toyonaka, Osaka 560-8531, Japan

Contents

1. Synthesis of materials

- 2,7-Bis(5-phenylthiophen-2-yl)-9,9-dioctylfluorene (**FPT**) 2-(5-Phenyl-S,S-dioxidized thiophen-2-yl)-7-(5-phenylthiophen-2-yl)-9,9-dioctylfluorene (**FPTO**₂) 2,7-Bis(5-phenyl-S,S-dioxidized thiophen-2-yl)-9,9-dioctylfluorene (**FPTO**₄) 2,7-Bis(1-benzothiophen-2-yl)-9,9-dioctylfluorene (**FBT**) 2-(S,S-Dioxidized 1-benzothiophen-2-yl)-7-(benzothiophen-2-yl)-9,9-dioctylfluorene (**FBTO**₂) and 2,7-(S,S-dioxidized 1-benzothiophen-2-yl)-9,9-dioctylfluorene (**FBTO**₄)
- 2. Top and side views of FPT molecule at geometry-optimized ground and excited states
- 3. Fluorescence decay curve in *n*-hexane
- 4. Solvent effect
- 5. Fluorescence decay curve in THF and acetonitrile
- 6. Atomic coordinates
- 8. Calculated ground state energy

1. Synthesis of materials

2,7-Bis(5-phenylthiophen-2-yl)-9,9-dioctylfluorene (FPT)

2,7-Diiodo-9,9-dioctylfluorene^{S1} (780 mg, 1.4 mmol) was dissolved in anhydrous THF (8.0 mL) under argon atmosphere. 1.6 M n-BuLi hexane solution (2.0 mL, 3.2 mmol) was slowly added dropwise to the solution at -78 °C, and the mixture was stirred for 1.5 h. Tri-*n*-butyl borate (0.91 mL, 3.4 mmol) was slowly added to the solution at the temperature, and the mixture was stirred for 1.5 h. Adequate amount of distilled water was added to the mixture to quench the reaction. 2-Iodo-5-phenylthiophene^{S2} (810 mg, 2.8 mmol), tetrakis(triphenylphosphine)palladium(0) (23 mg, 0.020 mmol) and 20 wt% Na₂CO₃ aqueous solution (2.2 mL) were added to the solution, and the mixture was refluxed for 8 h. The reaction mixture was neutralized by HCl aqueous solution, extracted with dichloromethane, washed with brine, dried over MgSO₄, filtered and concentrated in vacuo. The crude product was purified by column chromatography and HPLC on silica gel using *n*-hexane/ethyl acetate (80:20) as the eluent to give 460 mg of **FPT** in 46% yield. **FPT**: ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3, \text{TMS}) \delta = 0.71 \text{ (br, 4H, CH}_2), 0.79 \text{ (t, } J = 7 \text{ Hz}, 6\text{H}, \text{CH}_3), 1.0-1.2 \text{ (m, 20H, CH}_2), 0.79 \text{ (t, } J = 7 \text{ Hz}, 6\text{H}, \text{CH}_3), 1.0-1.2 \text{ (m, 20H, CH}_2), 0.79 \text{ (t, } J = 7 \text{ Hz}, 6\text{H}, \text{CH}_3), 1.0-1.2 \text{ (m, 20H, CH}_2), 0.79 \text{ (t, } J = 7 \text{ Hz}, 6\text{H}, \text{CH}_3), 1.0-1.2 \text{ (m, 20H, CH}_2), 0.79 \text{ (t, } J = 7 \text{ Hz}, 6\text{H}, \text{CH}_3), 1.0-1.2 \text{ (m, 20H, CH}_2), 0.79 \text{ (t, } J = 7 \text{ Hz}, 6\text{H}, \text{CH}_3), 1.0-1.2 \text{ (m, 20H, CH}_2), 0.79 \text{ (t, } J = 7 \text{ Hz}, 6\text{H}, \text{CH}_3), 1.0-1.2 \text{ (m, 20H, CH}_2), 0.79 \text{ (t, } J = 7 \text{ Hz}, 6\text{H}, \text{CH}_3), 1.0-1.2 \text{ (m, 20H, CH}_2), 0.79 \text{ (t, } J = 7 \text{ Hz}, 6\text{H}, \text{CH}_3), 1.0-1.2 \text{ (m, 20H, CH}_2), 0.79 \text{ (t, } J = 7 \text{ Hz}, 6\text{H}, \text{CH}_3), 1.0-1.2 \text{ (m, 20H, CH}_2), 0.79 \text{ (t, } J = 7 \text{ Hz}, 6\text{H}, \text{CH}_3), 1.0-1.2 \text{ (m, 20H, CH}_2), 0.79 \text{ (t, } J = 7 \text{ Hz}, 6\text{H}, \text{CH}_3), 1.0-1.2 \text{ (m, 20H, CH}_2), 0.79 \text{ (t, } J = 7 \text{ Hz}, 6\text{H}, \text{CH}_3), 1.0-1.2 \text{ (m, 20H, CH}_2), 0.79 \text{ (t, } J = 7 \text{ Hz}, 6\text{H}, \text{CH}_3), 1.0-1.2 \text{ (m, 20H, CH}_2), 0.79 \text{ (t, } J = 7 \text{ Hz}, 6\text{H}, \text{CH}_3), 1.0-1.2 \text{ (m, 20H, CH}_2), 0.79 \text{ (t, } J = 7 \text{ Hz}, 6\text{H}, \text{CH}_3), 1.0-1.2 \text{ (m, 20H, CH}_2), 0.79 \text{ (t, } J = 7 \text{ Hz}, 6\text{H}, \text{CH}_3), 1.0-1.2 \text{ (m, 20H, CH}_3), 0.79 \text{ (t, } J = 7 \text{ Hz}, 6\text{H}, \text{CH}_3), 1.0-1.2 \text{ (m, 20H, CH}_3), 0.79 \text{ (t, } J = 7 \text{ Hz}, 6\text{H}, \text{CH}_3), 0.79 \text{ (t, } J = 7 \text{ Hz}, 6\text{H}, \text{CH}_3), 0.79 \text{ (t, } J = 7 \text{ Hz}, 6\text{H}, \text{CH}_3), 0.79 \text{ (t, } J = 7 \text{ Hz}, 6\text{H}, 1.0 \text{ (t, } J = 7 \text{ Hz}, 1.0 \text{ (t, } J = 7 \text{ Hz}, 1.0 \text{ (t, } J = 7 \text{ Hz}, 1.0 \text{ (t, } J = 7 \text{ Hz}, 1.0 \text{ (t, } J = 7 \text{ Hz}, 1.0 \text{ (t, } J = 7 \text{ Hz}, 1.0 \text{ (t, } J = 7 \text{ Hz}, 1.0 \text{ (t, } J = 7 \text{ Hz}, 1.0 \text{ (t, } J = 7 \text{ Hz}, 1.0 \text{ (t, } J = 7 \text{ Hz}, 1.0 \text{ (t, } J = 7 \text{ Hz}, 1.0 \text{ (t, } J = 7 \text{ Hz}, 1.0 \text{ (t, } J = 7 \text{ Hz}, 1.0 \text{ (t, } J = 7 \text{ Hz}, 1.0 \text{ (t, } J = 7 \text{ Hz}, 1.0 \text{ (t, } J = 7 \text{ Hz}, 1.0 \text{ (t, } J = 7 \text{ Hz}, 1.0 \text{ (t, } J = 7 \text{ (t, } J = 7 \text{ Hz$ 2.0-2.1 (m, 4H, CH₂), 7.2-7.5 (m, 10H, Aromatic H), 7.5-7.8 (m, 10H, Aromatic H). ¹³C NMR (75 MHz, CDCl₃) $\delta = 14.2, 22.7, 23.9, 29.3, 29.4, 30.1, 31.9, 40.5, 55.4, 119.9, 120.3, 124.0, 124.2$ 124.8, 125.7, 127.6, 129.0, 133.3, 134.5, 140.4, 143.4, 144.4, 151.9. HR-MS (FAB): m/z = 706.3668 $(M^+, 100\%)$. Calcd. for $C_{49}H_{54}S_2 = 706.3667$.

Figure S1. ¹H and ¹³C NMR spectra of FPT in CDCl₃.

2-(5-Phenyl-S,S-dioxidized thiophen-2-yl)-7-(5-phenylthiophen-2-yl)-9,9-dioctylfluorene (**FPTO**₂) **FPT** (50 mg, 0.071 mmol) and *m*-CPBA (25 mg, 0.14 mmol) were dissolved in dichloromethane (10 mL), and the mixture was stirred at room temperature for 24 h. The reaction mixture was neutralized by NaHCO₃ aqueous solution, extracted with dichloromethane, washed with brine, dried over MgSO₄, filtered and concentrated in vacuo. The crude product was purified by column chromatography on silica gel using *n*-hexane/ethyl acetate (85:15) as the eluent and by HPLC using *n*-hexane/ethyl acetate (60:40) as the eluent to give 11 mg of **FPTO**₂ in 23% yield. **FPTO**₂: ¹H NMR (300 MHz, CDCl₃, TMS) δ = 0.69 (br, 4H CH₂), 0.79 (t, *J* = 7 Hz, 6H, CH₃), 1.0-1.2 (m, 20H, CH₂), 2.0-2.1 (m, 4H, CH₂), 7.05 (d, *J* = 5 Hz, 1H, Aromatic H), 7.06 (d, *J* = 5 Hz, 1H, Aromatic H), 7.2-7.5 (m, 8H, Aromatic H), 7.6-7.9 (m, 10H, Aromatic H). ¹³C NMR (75 MHz, CDCl₃) δ = 14.2, 22.7, 23.9, 29.3, 29.4, 30.1, 31.9, 40.4, 55.6, 119.5, 120.0, 120.5, 120.6, 121.0, 124.2, 124.3, 124.3, 124.9, 125.8, 125.8, 125.9, 126.5, 127.5, 127.7, 129.1, 129.4, 130.3, 134.3, 134.4, 139.7, 141.4, 142.4, 143.1, 143.8, 144.2, 152.0, 152.4. HR-MS (FAB): *m/z* = 738.3550 (M⁺, 100%). Calcd. for C₄₉H₅₄O₂S₂ = 738.3565.

Figure S2. ¹H and ¹³C NMR spectra of FPTO₂ in CDCl₃.

2,7-Bis(5-phenyl-S,S-dioxidized thiophen-2-yl)-9,9-dioctylfluorene (FPTO₄)

FPT (100 mg, 0.14 mmol) and *m*-CPBA (250 mg, 1.4 mmol) were dissolved in dichloromethane (50 mL), and the mixture was stirred at room temperature for 24 h. The reaction mixture was neutralized by NaHCO₃ aqueous solution, extracted with dichloromethane, washed with brine, dried over MgSO₄, filtered, and concentrated in vacuo. The crude product was purified by column chromatography and HPLC on silica gel using *n*-hexane/ethyl acetate (70:30) as the eluent and recycling preparative HPLC using chloroform as the eluent to give 14 mg of **FPTO₄** in 12% yield. **FPTO₄**: ¹H-NMR (300 MHz, CDCl₃, TMS): $\delta = 0.67$ (br, 4H, CH₂), 0.80 (t, *J* = 7 Hz, 6H, CH₃), 1.0-1.3 (m, 20H, CH₂), 2.0-2.1 (m, 4H, CH₂), 7.07 (d, *J* = 5 Hz, 2H, Aromatic H), 7.11 (d, *J* = 5 Hz, 2H, Aromatic H), 7.4-7.6 (m, 6H, Aromatic H), 7.73 (s, 2H, Aromatic H), 7.8-7.9 (m, 8H, Aromatic H). ¹³C NMR (75 MHz, CDCl₃) $\delta = 14.2$, 22.7, 24.0, 29.3, 29.4, 30.1, 31.9, 40.3, 55.9, 120.1, 120.6, 120.8, 121.3, 125.9, 126.5, 126.8, 127.4, 129.4, 130.4, 141.7, 142.2, 142.3, 152.5. HR-MS (FAB): m/z = 770.3463 (M⁺, 100%). Calcd. for C₄₉H₅₄O₄S₂ = 770.3464.

Figure S3. ¹H and ¹³C NMR spectra of FPTO₄ in CDCl₃.

2,7-Bis(1-benzothiophen-2-yl)-9,9-dioctylfluorene (FBT)

2-Bromo-1-benzothiophene^{S3} (1.2 g, 5.6 mmol) was dissolved in anhydrous THF (20 mL) under argon atmosphere at -78 °C. 1.6 M n-BuLi hexane solution (5.5 mL, 8.4 mmol) was slowly added dropwise to the solution, and the mixture was stirred for 1.5 h. Tri-*n*-butyl borate (2.5 mL, 8.4 mmol) was slowly added to the solution at -78 °C, and the mixture was stirred for 1.5 h. Adequate amount distilled of water added the mixture quench the reaction. was to to 2,7-Dibromo-9,9-dioctylfluorene^{S4} (1.7 g, 2.8 mmol), tetrakis(triphenylphosphine)palladium(0) (320 mg, 0.28 mmol) and 20 wt% Na₂CO₃ aqueous solution (6.0 mL) were added to the solution, and the mixture were refluxed at 80 °C for 12 h. The reaction mixture was neutralized by HCl aqueous solution, extracted with dichloromethane, washed with brine, dried over MgSO4, filtered and concentrated in vacuo. The crude product was purified by column chromatography on silica gel using hexane 100% as the eluent to give 1.1 g of FBT in 60% yield. FBT: ¹H NMR (300 MHz, CDCl₃, TMS): $\delta = 0.73$ (br, 4H CH₂), 0.77 (t, J = 7 Hz, 6H, CH₃), 1.0-1.2 (m, 20H, CH₂), 2.0-2.1 (m, 4H, CH₂), 7.2-7.4 (m, 4H, Aromatic H), 7.63 (s, 2H, Aromatic H), 7.6-7.9 (m, 10H, Aromatic H). HR-MS (FAB). ¹³C NMR (75 MHz, CDCl₃) δ = 14.2, 22.7, 23.9, 29.3, 29.3, 30.1, 31.9, 40.5, 55.5, 119.4, 120.5, 120.8, 122.4, 123.6, 124.4, 124.7, 125.8, 133.5, 139.6, 141.0, 141.0, 145.0, 152.0. HR-MS (FAB): m/z = 654.3357 (M⁺, 100%). Calcd. for C₄₅H₅₀S₂ = 654.3354.

Figure S4. ¹H and ¹³C NMR spectra of FBT in CDCl₃.

2-(S,S-Dioxidized 1-benzothiophen-2-yl)-7-(benzothiophen-2-yl)-9,9-dioctylfluorene (**FBTO**₂) and 2,7-(S,S-dioxidized 1-benzothiophen-2-yl)-9,9-dioctylfluorene (**FBTO**₄)

FBT (50 mg, 0.076 mmol) and m-CPBA (27 mg, 0.15 mmol) were dissolved in dichloromethane (5.0 mL), and the mixture was stirred at room temperature for 48 h. The reaction mixture was neutralized by NaHCO₃ aqueous solution, extracted with dichloromethane, washed with brine, dried over MgSO₄, filtered and concentrated in vacuo. The crude product was purified by column chromatography on silica gel using ethyl acetate 100% as the eluent and HPLC using hexane/ethyl acetate (75:25) as the eluent to give 10 mg of FBTO₂ in 18% yield and 28 mg of FBTO₄ in 51%. **FBTO2**: ¹H NMR (300 MHz, CDCl₃, TMS): $\delta = 0.70$ (br, 4H CH₂), 0.77 (t, J = 7 Hz, 6H, CH₃), 1.0-1.2 (m, 20H, CH₂), 2.0-2.1 (m, 4H, CH₂), 7.3-7.9 (m, 16H, Aromatic H). ¹³C NMR (75 Hz, $CDCl_3$) $\delta = 14.2, 22.7, 24.0, 29.3, 29.3, 30.1, 31.9, 40.4, 55.7, 119.7, 120.7, 120.8, 120.9, 121.0, 120.8, 120.9, 121.0, 120.8, 120.9, 121.0, 120.8, 120.9, 121.0, 120.8, 120.9, 121.0, 120.8, 120.9, 12$ 121.6, 122.4, 122.9, 123.7, 124.5, 124.7, 125.0, 125.9, 125.9, 126.1, 129.8, 131.6, 133.9, 134.2, 137.3, 139.6, 140.5, 140.9, 143.0, 143.3, 144.7, 152.1, 152.3. HR-MS (FAB): m/z = 686.3234 (M⁺, 100%). Calcd. for C₄₅H₅₀O₂S₂ = 686.3252. **FBTO**₄: ¹H NMR (300 MHz, CDCl₃, TMS): δ = 0.68 (br, 4H CH₂), 0.76 (t, J = 7 Hz, 6H, CH₃), 1.0-2.0 (m, 20H, CH₂), 2.0-2.1 (m, 4H, CH₂), 7.38 (s, 2H, Aromatic H), 7.4-7.6 (m, 6H, Aromatic H), 7.7-7.9 (m, 6H, Aromatic H), 7.9-8.0 (m, 6H, Aromatic H). ¹³C NMR (75 MHz, CDCl₃) δ = 14.2, 22.7, 24.0, 29.3, 29.3, 30.1, 31.8, 40.2, 55.9, 120.8, 121.2, 121.6, 123.3, 125.1, 126.0, 126.8, 129.9, 131.4, 133.9, 137.2, 142.3, 143.0, 152.4. HR-MS (FAB): m/z = 718.3144 (M⁺, 100%). Calcd. for C₄₅H₅₀O₄S₂ = 718.3151.

Figure S5. ¹H and ¹³C NMR spectra of FBTO₂ in CDCl₃.

Figure S6. ¹H and ¹³C NMR spectra of FBTO₄ in CDCl₃.

2. Top and side views of FPT molecule at geometry-optimized ground and excited state

Figure S7. Top and side views of FPT molecule at the geometry-optimized ground and excited states.

3. Fluorescence decay curves in *n*-hexane

Figure S8. Fluorescence decay curves of fluorene derivatives in *n*-hexane.

4. Solvent effect

C - love at	λ_{abs}/nm				$\lambda_{ m flu}/nm$								
FPT	FPT	FPTO ₂	FPTO ₄	FBT	FBTO ₂	FBTO ₄	FP	т	FPTO ₂	FPTO ₄	FBT	FBTO ₂	FBTO ₄
<i>n</i> -Hexane	383	432	441	366	390	392	42	3	502	—	393	429	426
Toluene	388	440	448	370	392	397	43	0	533	_	399	464	436
THF	389	436	446	369	390	396	42	8	570	_	397	478	464
Ethyl acetate	389	432	443	367	387	394	42	5	564	—	395	477	461
Chloroform	388	442	450	368	396	400	42	.9	593	—	398	500	470
DMF	391	437	448	368	392	396	43	0	611	—	399	517	466
DMSO	394	441	450	371	393	399	43	4	618	—	402	526	471
Acetonitrile	385	429	440	363	385	390	42	5	617	—	394	521	464
Ethanol	385	428	444	367	388	394	42	24	603	—	397	525	468
Methanol	384	441	442	364	387	395	42	3	610	_	393	530	482

Table S1. Solvent dependence of optical properties of fluorene derivatives.

Figure S9. Absorption peak energy (v_{abs}/cm^{-1}) of **FPT** (a: black), **FPTO₂** (a: blue), **FPTO₄** (a: red), **FBT** (b: black), **FBTO2** (b: blue) and **FBTO4** (b: red) versus the solvent polarity parameter, $E_T(30)$. The slopes of the linear relationship are -3.19 for **FPT**, 1.24 for **FPTO2**, 3.85 for **FPTO4**, 9.35 for **FBT**, 10.91 for **FBTO2** and -1.53 for **FBTO4**.

Figure S10. Fluorescence peak energy (ν_{flu}/cm^{-1}) of **FPT** (a: black), **FPTO**₂ (a: blue), **FBT** (b: black), **FBTO2** (b: blue) and **FBTO**₄ (b: red) versus the solvent polarity parameter, $E_T(30)$. The slopes of the linear relationship are 5.0 for **FPT**, -247 for **FPTO**₂, 1.65 for **FBT**, -269 for **FBTO**₂ and -133 for **FBTO**₄. In the case of **FPTO**₂, **FBTO**₂ and **FBTO**₄, the slope of the linear relationship was calculated except in methanol and ethanol.

Figure S11. Stokes shift $(\Delta \nu/cm^{-1})$ of **FPT** (a: black), **FPTO₂** (a: blue), **FBT** (b: black), **FBTO₂** (b: blue) and **FBTO₄** (b: red) versus the solvent polarity, $E_T(30)$. The slopes of the linear relationship are -1.89 for **FPT**, 246 for **FPTO₂**, 7.72 for **FBT**, 274 for **FBTO₂** and 130 for **FBTO₄**. In the case of **FPTO₂**, **FBTO₂** and **FBTO₄**, the slope of the linear relationship was calculated except in methanol and ethanol.

Figure. S12. Stokes shift $(\Delta \nu/cm^{-1})$ of **FPT** (a: black), **FPTO**₂ (a: blue), **FBT** (b: black), **FBTO**₂ (b: blue) and **FBTO**₄ (b: red) versus orientation polarizability function (Δf). Only aprotic solvent was used. The slopes of the linear relationship are -470 ± 337 for **FPT** (r = 0.495), 11102 \pm 1102 for **FPTO**₂ (r = 0.972), 684 \pm 243 for **FBT** (r = 0.754), 11794 \pm 1855 for **FBTO**₂ (r = 0.933) and 6342 \pm 956 for **FBTO**₄ (r = 0.938).

Figure S13. Relationship between the measured and calculated v_{abs} values according to the Catalán equation for **FPT** (a: black), **FPTO**₂ (a: blue), **FPTO**₄ (a: red), **FBT** (b: black), **FBTO**₂ (b: blue) and **FBTO**₄ (b: red).

Figure S14. Relationship between the measured and calculated v_{flu} values according to the Catalán equation for **FPT** (a: black), **FPTO**₂ (a: blue), **FBT** (b: black), **FBTO**₂ (b: blue) and **FBTO**₄ (b: red).

5. Fluorescence decay curves in THF and acetonitrile

Figure S15. Fluorescence decay curves of FPTO₂ and FBTO₂ in THF and acetonitrile.

6. Atomic coordinates

8rrr	J = 0 F = -		
Atom	X/Å	Y/Å	Z/Å
С	1.332876	0.014854	3.482744
С	1.896648	-0.11042	0.731458
С	0.309883	0.237543	2.536227
С	2.632923	-0.27474	3.016455
С	2.920925	-0.33165	1.656201
С	0.59034	0.171387	1.180705
Н	-0.69245	0.482014	2.879613
Н	3.419099	-0.47935	3.736925
Н	3.931312	-0.55979	1.326498
С	-0.35759	0.384133	0
С	0.59034	0.171387	-1.18071
С	1.896648	-0.11042	-0.73146
С	0.309883	0.237543	-2.53623
Н	-0.69245	0.482014	-2.87961
С	1.332876	0.014854	-3.48274
С	2.632923	-0.27474	-3.01646
Н	3.419099	-0.47935	-3.73693
С	2.920925	-0.33165	-1.6562
Н	3.931312	-0.55979	-1.3265
С	-1.50192	-0.65437	0
Н	-2.1352	-0.5314	0.886117
Н	-1.10874	-1.67596	0
Н	-2.1352	-0.5314	-0.88612
С	-0.94327	1.814306	0
Н	-0.14794	2.566388	0
Н	-1.56778	1.976222	0.886076
Н	-1.56778	1.976222	-0.88608
С	1.069922	0.082325	4.922306
С	1.9459	0.375968	5.945379

Table S2. Cartesian coordinates of **FPT** optimized at the B3LYP/6-31G* level. The octyl groups are replaced to the methyl groups.

С	1.352863	0.355881	7.233739
С	0.010055	0.047402	7.225978
S	-0.52366	-0.24196	5.580683
Н	2.983348	0.640485	5.771708
Н	1.893437	0.602585	8.141209
С	-0.91126	-0.05978	8.362142
С	-2.65367	-0.25636	10.57226
С	-0.42169	-0.37493	9.644153
С	-2.29476	0.148827	8.213743
С	-3.15467	0.046731	9.305009
С	-1.282	-0.46436	10.73523
Н	0.638046	-0.57177	9.776943
Н	-2.69563	0.412268	7.238638
Н	-4.21934	0.214146	9.165202
Н	-0.88073	-0.71058	11.71483
Н	-3.32464	-0.33294	11.42333
С	1.069922	0.082325	-4.92231
S	-0.52366	-0.24196	-5.58068
С	0.010055	0.047402	-7.22598
С	1.352863	0.355881	-7.23374
С	1.9459	0.375968	-5.94538
Н	1.893437	0.602585	-8.14121
Н	2.983348	0.640485	-5.77171
С	-0.91126	-0.05978	-8.36214
С	-2.65367	-0.25636	-10.5723
С	-0.42169	-0.37493	-9.64415
С	-2.29476	0.148827	-8.21374
С	-3.15467	0.046731	-9.30501
С	-1.282	-0.46436	-10.7352
Н	0.638046	-0.57177	-9.77694
Н	-2.69563	0.412268	-7.23864
Н	-4.21934	0.214146	-9.1652
Н	-0.88073	-0.71058	-11.7148
Н	-3.32464	-0.33294	-11.4233

Atom	X/Å	Y/Å	Z/Å
Н	0.604145	3.560237	-0.546968
С	1.085082	2.609707	-0.331814
С	2.351243	0.145307	0.200207
С	0.330663	1.44222	-0.170055
С	2.469009	2.539659	-0.231577
С	3.123671	1.317587	0.040163
С	0.972083	0.214242	0.092704
Н	3.061135	3.436419	-0.388088
Н	2.842679	-0.795283	0.429054
С	-1.111543	1.212362	-0.227431
С	-3.739988	0.219665	-0.225026
С	-2.177901	2.087038	-0.450308
С	-1.356431	-0.158291	0.000231
С	-2.651498	-0.649463	0.009012
С	-3.476575	1.586996	-0.451777
Н	-2.005255	3.14485	-0.63107
Н	-2.842293	-1.698615	0.216954
Н	-4.304358	2.261296	-0.652586
С	-0.048146	-0.915669	0.228737
С	0.000136	-1.550808	1.63692
Н	0.969637	-2.030998	1.810461
Н	-0.7779	-2.315624	1.741867
Н	-0.15385	-0.797513	2.416137
С	0.170468	-2.00192	-0.848781
Н	0.140384	-1.57203	-1.854945
Н	-0.606566	-2.772109	-0.781202
Н	1.142214	-2.489717	-0.714224
С	4.573756	1.280926	0.15905
С	5.477309	2.252537	0.416488
С	6.88077	1.844472	0.40071
С	7.120497	0.544008	0.127926

Table S3. Cartesian coordinates of **FPTO**₂ optimized at the B3LYP/6-31G* level. The octyl groups are replaced to the methyl groups.

S	5.507189	-0.259425	-0.127562
С	-5.106947	-0.306011	-0.234178
С	-5.531482	-1.591736	-0.494285
С	-6.93778	-1.75868	-0.421464
С	-7.62112	-0.60492	-0.104404
S	-6.488711	0.713525	0.125546
С	8.366371	-0.213988	0.07646
С	10.791114	-1.632338	-0.0388
С	8.473028	-1.388784	-0.692077
С	9.494907	0.23133	0.792725
С	10.695164	-0.468541	0.729637
С	9.676617	-2.088299	-0.744409
Н	7.619472	-1.73734	-1.264182
Н	9.418342	1.116786	1.417201
Н	11.554591	-0.113372	1.291728
Н	9.743246	-2.991672	-1.344188
Н	11.727376	-2.181939	-0.081093
С	-9.066882	-0.412346	0.051342
С	-11.853573	-0.08357	0.336961
С	-9.888462	-1.493281	0.424052
С	-9.673887	0.837676	-0.168476
С	-11.049867	0.999724	-0.022662
С	-11.264832	-1.330926	0.557625
Н	-9.437808	-2.459615	0.630289
Н	-9.06432	1.683067	-0.476086
Н	-11.496024	1.974608	-0.200358
Н	-11.878648	-2.179601	0.847805
Н	-12.926967	0.042978	0.447346
Н	7.67161	2.563088	0.591007
Н	5.198832	3.278835	0.632395
Н	-4.851679	-2.389955	-0.771983
Н	-7.437805	-2.696601	-0.637622
0	5.350821	-0.691351	-1.528204
0	5.25222	-1.233786	0.948711

Atom	X/Å	Y/Å	Z/Å
Н	0.923194	3.480123	-0.55008
С	1.417885	2.536102	-0.33821
С	2.718879	0.087584	0.18708
С	0.681476	1.355621	-0.18788
С	2.801868	2.486561	-0.23001
С	3.473128	1.272476	0.038351
С	1.339133	0.136159	0.072158
Н	3.381321	3.392979	-0.37739
Н	3.22371	-0.84641	0.413434
С	-0.75664	1.105315	-0.25616
С	-3.36457	0.083421	-0.2693
С	-1.83161	1.968755	-0.47991
С	-0.98142	-0.27172	-0.03543
С	-2.26821	-0.77865	-0.03633
С	-3.12586	1.457811	-0.48648
Н	-1.6704	3.029428	-0.65216
Н	-2.44775	-1.83152	0.163903
Н	-3.96145	2.120481	-0.6843
С	0.336581	-1.01024	0.197487
С	0.386469	-1.65009	1.603615
Н	1.363284	-2.11341	1.781441
Н	-0.37796	-2.42965	1.700033
Н	0.213415	-0.90334	2.384988
С	0.578812	-2.08851	-0.88319
Н	0.546487	-1.65581	-1.88806
Н	-0.18472	-2.87262	-0.82185
Н	1.558031	-2.55996	-0.74535
С	4.923388	1.256079	0.165247
С	5.809908	2.238015	0.440422
С	7.219783	1.851495	0.430172
С	7.480633	0.558146	0.143525
S	5.881156	-0.26647	-0.13327
С	-4.7169	-0.45539	-0.29144
С	-5.17249	-1.71011	-0.50122
С	-6.62059	-1.89039	-0.41931

Table S4. Cartesian coordinates of **FPTO**⁴ optimized at the B3LYP/6-31G* level. The octyl groups are replaced to the methyl groups.

С	-7.34348	-0.78408	-0.14281
S	-6.16796	0.592529	0.059008
С	8.737662	-0.18097	0.091272
С	11.18308	-1.56252	-0.02432
С	8.866561	-1.34416	-0.69141
С	9.854381	0.271596	0.821398
С	11.06493	-0.41025	0.758309
С	10.08051	-2.02544	-0.74401
Н	8.022319	-1.69766	-1.27418
Н	9.760573	1.147757	1.456507
Н	11.91508	-0.05018	1.331203
Н	10.16463	-2.91985	-1.35486
Н	12.12747	-2.09797	-0.06677
С	-8.77952	-0.59463	0.032736
С	-11.555	-0.2714	0.342423
С	-9.59192	-1.68052	0.415132
С	-9.3828	0.659172	-0.18269
С	-10.7585	0.813494	-0.02688
С	-10.9654	-1.51968	0.562573
Н	-9.13674	-2.64554	0.618516
Н	-8.77521	1.50289	-0.49243
Н	-11.2091	1.786855	-0.19945
Н	-11.5765	-2.36656	0.862494
Н	-12.6272	-0.14581	0.464971
Н	7.998115	2.57967	0.634769
Н	5.514304	3.257286	0.66679
Н	-4.52146	-2.54245	-0.74816
Н	-7.07189	-2.85976	-0.60489
0	5.740352	-0.68355	-1.5399
0	5.632876	-1.2569	0.929708
0	-6.35497	1.594414	-1.00935
Ο	-6.14375	1.042227	1.459487

Broups are replaced to	and meanyr groups:		
Atom	X/Å	Y/Å	Z/Å
Н	1.325151	3.276404	-0.01858
С	1.655558	2.240888	-0.00944
С	2.53635	-0.43153	-0.01087
С	0.731663	1.192293	-0.00313
С	3.015835	1.947487	-0.02124
С	3.481285	0.615901	-0.01395
С	1.180315	-0.14386	-0.00762
Н	3.736062	2.758938	-0.05971
Н	2.880283	-1.4628	0.01044
С	-0.73165	1.192295	0.003221
С	-3.48129	0.615903	0.014005
С	-1.65555	2.240887	0.009486
С	-1.18031	-0.14386	0.007757
С	-2.53635	-0.43152	0.01099
С	-3.01583	1.947489	0.021254
Н	-1.32515	3.276406	0.018621
Н	-2.88027	-1.46279	-0.01027
С	-1E-06	-1.11593	0.000063
С	-4.92242	0.34256	0.005398
С	-5.93119	1.134228	-0.47051
С	-7.24191	0.566873	-0.3272
С	-7.20341	-0.71184	0.283622
S	-5.55542	-1.1732	0.674928
Н	-5.75296	2.092566	-0.94662
С	4.922419	0.342556	-0.00537
С	5.9312	1.134206	0.470539
С	7.241924	0.566862	0.327154
С	7.2034	-0.71185	-0.28367
S	5.555398	-1.17319	-0.67496
Н	5.752945	2.092514	0.9467
Н	-8.53844	2.073973	-1.18329

Table S5. Cartesian coordinates of **FBT** optimized at the B3LYP/6-31G* level. The octyl groups are replaced to the methyl groups.

С	-8.48905	1.096567	-0.71015
Н	-10.6089	0.773358	-0.77234
С	-9.64574	0.365347	-0.47874
Н	-10.5026	-1.45818	0.305804
С	-9.58649	-0.90045	0.132453
Н	-8.32264	-2.42775	0.98715
С	-8.36718	-1.44938	0.517338
С	8.489075	1.096567	0.710045
Н	8.538475	2.073969	1.183198
С	9.645754	0.36535	0.478584
Н	10.60896	0.773368	0.772135
С	9.586491	-0.90045	-0.1326
Н	10.50257	-1.45818	-0.30597
С	8.367162	-1.44939	-0.51743
Н	8.322597	-2.42776	-0.98723
Н	-3.73604	2.758957	0.059674
С	-0.00688	-2.002	-1.26587
Н	-0.01237	-1.39195	-2.17468
Н	-0.89251	-2.64752	-1.28093
Н	0.87937	-2.64634	-1.29099
С	0.006884	-2.00204	1.265952
Н	-0.87937	-2.64639	1.291058
Н	0.012378	-1.39204	2.174789
Н	0.892511	-2.64757	1.28098

groups are replaced to	the methyl groups:		
Atom	X/Å	Y/Å	Z/Å
Н	-0.92034	3.413412	0.082133
С	-1.27197	2.387254	0.014955
С	-2.20328	-0.27224	-0.12899
С	-0.37014	1.319182	-0.03304
С	-2.63644	2.120934	-0.00505
С	-3.12275	0.798264	-0.08359
С	-0.84371	-0.00693	-0.1018
Н	-3.34254	2.94298	0.06649
Н	-2.56938	-1.29152	-0.20503
С	1.092176	1.290669	-0.01748
С	3.828826	0.662631	-0.01399
С	2.034822	2.32097	0.043719
С	1.514628	-0.05255	-0.082
С	2.865295	-0.36537	-0.07844
С	3.388951	2.002417	0.038581
Н	1.723635	3.361753	0.082221
Н	3.189582	-1.4028	-0.10332
С	0.316974	-1.00035	-0.14004
С	5.264319	0.361713	0.003271
С	6.279373	1.111879	0.530565
С	7.581571	0.527034	0.381515
С	7.529514	-0.72142	-0.28807
S	5.880137	-1.13357	-0.72506
Н	6.110852	2.050509	1.047663
С	-4.5612	0.552776	-0.12345
С	-5.57364	1.341376	-0.54281
С	-6.92374	0.787786	-0.40017
С	-6.94167	-0.49686	0.160275
S	-5.25783	-1.00845	0.523871
Н	-5.41606	2.321367	-0.9836
Н	8.891398	1.968758	1.32572

Table S6. Cartesian coordinates of **FBTO**₂ optimized at the B3LYP/6-31G* level. The octyl groups are replaced to the methyl groups.

С	8.831837	1.015268	0.807169
Н	10.94415	0.649448	0.88612
С	9.978432	0.273688	0.559657
Н	10.81432	-1.52814	-0.29445
С	9.90585	-0.96171	-0.10973
Н	8.628322	-2.42433	-1.0528
С	8.683229	-1.46947	-0.53795
С	-8.13718	1.377263	-0.76056
Н	-8.15564	2.371756	-1.19844
С	-9.32701	0.67194	-0.55022
Н	-10.2731	1.127861	-0.82783
С	-9.31691	-0.60832	0.009582
Н	-10.2508	-1.14024	0.16461
С	-8.10519	-1.21315	0.372854
Н	-8.08148	-2.20827	0.806355
Н	4.12492	2.80036	0.052998
0	-4.87018	-2.14776	-0.32727
0	-5.0394	-1.0988	1.975606
С	0.284351	-1.94725	1.081215
Н	0.290532	-1.38297	2.019057
Н	1.15468	-2.61341	1.075558
Н	-0.61713	-2.56954	1.0627
С	0.31164	-1.82378	-1.44786
Н	1.184443	-2.48531	-1.48939
Н	0.334764	-1.17127	-2.32657
Н	-0.92034	3.413412	0.082133

Atom	X/Å	Y/Å	Z/Å
Н	-1.318893	3.496747	-0.01877
С	-1.651508	2.462256	-0.038497
С	-2.533	-0.218504	-0.061309
С	-0.731041	1.409307	-0.018957
С	-3.010337	2.170269	-0.065686
С	-3.470932	0.836034	-0.084778
С	-1.178319	0.072413	-0.027403
Н	-3.73231	2.981256	-0.046911
Н	-2.880141	-1.246739	-0.091126
С	0.731024	1.409327	0.018459
С	3.470917	0.836081	0.084497
С	1.651477	2.462284	0.038068
С	1.178329	0.072437	0.026903
С	2.533007	-0.218473	0.060906
С	3.01031	2.170306	0.065369
Н	1.318862	3.496774	0.018309
Н	2.880152	-1.246707	0.090712
С	0.000014	-0.899593	-0.000285
С	4.904463	0.562696	0.136989
С	5.919899	1.307601	0.623001
С	7.263577	0.738756	0.477867
С	7.272173	-0.511734	-0.155243
S	5.588693	-0.970439	-0.585571
Н	5.768683	2.262789	1.117289
С	-4.904474	0.562643	-0.137096
С	-5.920019	1.30759	-0.622812
С	-7.263661	0.738737	-0.477451
С	-7.272163	-0.511838	0.155492
S	-5.588594	-0.970567	0.585501
Н	-5.768957	2.262851	-1.117008
Н	8.503221	2.251236	1.394094

Table S7. Cartesian coordinates of **FBTO**⁴ optimized at the B3LYP/6-31G* level. The octyl groups are replaced to the methyl groups.

С	8.477997	1.28419	0.898847
Н	10.607182	0.99146	0.999759
С	9.660087	0.570052	0.674993
Н	10.568681	-1.215454	-0.121598
С	9.640801	-0.675774	0.042412
Н	8.397226	-2.204144	-0.873345
С	8.42782	-1.236145	-0.382689
С	-8.478153	1.284312	-0.898049
Н	-8.503414	2.251434	-1.393148
С	-9.660231	0.570218	-0.674008
Н	-10.607386	0.991725	-0.998469
С	-9.640851	-0.675702	-0.041612
Н	-10.56872	-1.215356	0.122547
С	-8.427801	-1.236206	0.383112
Н	-8.397162	-2.204294	0.87359
0	5.161631	-2.149447	0.188715
0	5.402731	-0.971147	-2.04452
Н	3.732282	2.981297	0.04664
0	-5.161627	-2.149575	-0.188825
0	-5.402458	-0.971253	2.044436
С	-0.03066	-1.786257	1.265669
Н	-0.052953	-1.177445	2.175123
Н	0.854735	-2.430514	1.30426
Н	-0.917457	-2.429464	1.263002
С	0.030707	-1.786123	-1.266339
Н	0.917506	-2.429333	-1.263735
Н	0.053014	-1.177218	-2.175731
Н	-0.854683	-2.430383	-1.305019

Atom	X/Å	Y/Å	Z/Å
С	1.366547	0.010114	3.488981
С	1.944384	0.013823	0.714065
С	0.310846	0.008343	2.523745
С	2.712504	0.014312	3.001632
С	3.002129	0.01629	1.654669
С	0.59446	0.010025	1.180809
Н	-0.72178	0.005626	2.863683
Н	3.530714	0.015368	3.714184
Н	4.036799	0.019269	1.322163
С	-0.37808	0.007671	0
С	0.59446	0.010025	-1.18081
С	1.944384	0.013823	-0.71407
С	0.310846	0.008343	-2.52375
Н	-0.72178	0.005626	-2.86368
С	1.366547	0.010114	-3.48898
С	2.712504	0.014312	-3.00163
Н	3.530714	0.015368	-3.71418
С	3.002129	0.01629	-1.65467
Н	4.036799	0.019269	-1.32216
С	-1.25997	-1.26069	0
Н	-1.90406	-1.28329	0.886667
Н	-0.64664	-2.16727	0
Н	-1.90406	-1.28329	-0.88667
С	-1.26634	1.27159	0
Н	-0.65758	2.181253	0
Н	-1.91056	1.290937	0.886653
Н	-1.91056	1.290937	-0.88665
С	1.101103	0.006912	4.894602
С	2.005371	0.011434	5.968611
С	1.401647	0.005977	7.227572
С	0.00442	-0.00259	7.201845

Table S8. Cartesian coordinates of **FPT** optimized at the B3LYP/6-31G* level in the excited state. The octyl groups are replaced to the methyl groups.

S	-0.55078	-0.00646	5.529523
Н	3.080443	0.021795	5.832408
Н	1.971189	0.016019	8.149852
С	-0.92336	-0.00834	8.313185
С	-2.72197	-0.02009	10.50272
С	-0.45628	-0.08445	9.649069
С	-2.32378	0.060319	8.116151
С	-3.20314	0.054016	9.192086
С	-1.3409	-0.08911	10.71924
Н	0.609577	-0.14674	9.844028
Н	-2.7226	0.124922	7.107454
Н	-4.27285	0.109041	9.007468
Н	-0.95194	-0.14951	11.73246
Н	-3.41108	-0.02478	11.34242
С	1.101103	0.006912	-4.8946
S	-0.55078	-0.00646	-5.52952
С	0.00442	-0.00259	-7.20185
С	1.401647	0.005977	-7.22757
С	2.005371	0.011434	-5.96861
Н	1.971189	0.016019	-8.14985
Н	3.080443	0.021795	-5.83241
С	-0.92336	-0.00834	-8.31319
С	-2.72197	-0.02009	-10.5027
С	-0.45628	-0.08445	-9.64907
Н	-0.95194	-0.14951	-11.7325
Н	-3.41108	-0.02478	-11.3424

8. Calculated ground state energy

Molecule	E/hartree	
FPT (in ground state)	-2145.296391	
FPT (in excited state)	-2145.199482	
FPTO ₂	-2295.638368	
FPTO ₄	-2445.979712	
FBT	-1990.547641	
FBTO ₂	-2140.896861	
FBTO ₄	-2291.245715	

Table S9. Calculated ground and excited state energies of the fluorene derivatives includingzero-point correction. The octyl groups are replaced to the methyl groups.

References

- S1 M. S. Maji, T. Pfeifer, A. Studer, *Chem.-Eur. J.* 2010, **16**, 5872–5875.
- S2 S. Kobatake, M. Irie, Chem. Lett. 2003, 32, 1078–1079.
- S3 W. Chen, Y. Zhang, L. Zhang, M. Wang, L. Wang, *Chem. Comm.* 2011, **47**, 10476–10478.
- S4 H. Chi, S. L. Lim, F. Wang, X. Wang, C. He, W. S. Chin, *Macromol. Rapid. Commun.* 2014, 35, 801–806.