Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2016

Supporting Information

Remarkably high homoselectivity in [2+2] photodimerization of *trans*cinnamic acids in multicomponent system

Thanh Binh Nguyen* and Ali Al-Mourabit

General information

Reagents obtained from commercial supplier were used without further purification. NMR Chemical shifts are reported in (δ) ppm relative to tetramethylsilane (TMS) with the residual solvent as internal reference (DMSO-d₆, δ 2.50 ppm, methanol-d₄, δ 3.31 ppm for ¹H and δ 39.5 ppm for ¹³C. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz) and integration.

Photochemical reactions were carried out under argon with magnetic stirring in 17 mL Pyrex test tubes surrounded by 12 PL-L 36W/10/4P Philips lamps in an old computer case. The reactor is cooled by a fan (inside temperature varies from 35 to 40 °C).

For more information about specification of the lamps, see:

http://www.lighting.philips.com/main/prof/lamps/special-lamps/medical-lamps/medical-therapy-uva-puva/uva-puva-pl-s-pl-l/927903421014_EU/product (Accessed on February 23th 2016).

Preparation of acrylic acids

Except for *o*- and *p*-hydroxycinnamic acids (**F** and **D**) and *p*-chlorocinnamic acid (**G**) which were obtained from Fluka and used as such, acrylic acids **A**-**H** and **J** were prepared from the corresponding substituted aldehydes by condensation with malonic acid in pyridine in the presence of small amounts of piperidine (See Table 1).

(E)-3-(p-Tolyl)acrylic acid (A)

¹H NMR (300 MHz, DMSO-*d*₆) δ 12.30 (broad s, 1H), 7.56 (d, J = 7.9 Hz, 2H), 7.56 (d, J = 16.1 Hz, 1H), 7.22 (d, J = 7.9 Hz, 2H), 6.45 (d, J = 16.1 Hz, 1H), 2.32 (s, 3H).

(E)-3-(3,4-Dimethylphenyl)acrylic acid (B)

¹H NMR (300 MHz, DMSO- d_6) δ 12.27 (broad s, 1H), 7.51 (d, J = 15.9 Hz, 1H), 7.45 (d, J = 1.7 Hz, 1H), 7.38 (dd, J = 7.6, 1.7 Hz, 1H), 7.17 (d, J = 7.6 Hz, 1H), 6.44 (d, J = 15.9 Hz, 1H), 2.23 (s, 6H).

(E)-3-(Imidazo[1,2-a]pyridin-2-yl)acrylic acid (C)

¹H NMR (300 MHz, DMSO- d_6) δ 11.50 (broad s, 1H), 8.52 (d, J = 6.9 Hz, 1H), 8.24 (s, 1H),

7.63 (d, J = 16.0 Hz, 1H), 7.54 (d, J = 9.0 Hz, 1H), 7.27 (dd, J = 9.0, 7.5, Hz, 1H), 6.88 (dd, J = 7.5, 6.9 Hz, 1H), 6.60 (d, J = 16.0 Hz, 1H).

¹³C NMR (75 MHz, DMSO-*d₆*) δ 167.7, 145.1, 140.4, 136.2, 127.2, 126.1, 119.7, 116.8, 115.2, 112.5. HRMS-ESI+: m/z [M + H]+ calcd for C₁₀H₉N₂O₂: 189.0664; found: 189.0682.

(*E*)-3-(3-Hydroxyphenyl)acrylic acid (E)

¹H NMR (300 MHz, DMSO-*d*₆) δ 12.36 (broad s, 1H), 9.60 (broad s, 1H), 7.49 (d, J = 16.1 Hz, 1H), 7.21 (t, J = 7.9 Hz, 1H), 7.09 (dd, J = 7.9, 2.0 Hz, 1H), 7.01 (t, J = 2.0 Hz, 1H), 6.82 (dd, J = 7.9, 2.0 Hz, 1H), 6.40 (d, J = 16.1 Hz, 1H).

(E)-3-(4-Bromophenyl)acrylic acid (H)

0

^{Br}/_{Br}/_{OH}
¹H NMR (300 MHz, CD₃OD)
$$\delta$$
 7.62 (d, J = 16.1 Hz, 1H), 7.59-7.51 (m, 4H), 6.51 (d, J = 16.1 HH).

Hz,

(E)-3-(2-Bromophenyl)acrylic acid (I)

¹H NMR (300 MHz, CD₃OD) δ 8.04 (d, J = 16.0 Hz, 1H), 7.76 (dd, J = 7.8, 1.8 Hz, 1H), 7.65 (dd, J = 8.0, 1.1 Hz, 1H), 7.42-7.37 (m, 1H), 7.32-7.26 (m, 1H), 6.47 (d, J = 16.0 Hz, 1H).

(E)-3-(Naphthalen-2-yl)acrylic acid (J)

¹H NMR (300 MHz, DMSO- d_6) δ 12.49 (broad s, 1H), 8.18 (s, 1H), 7.96-7.86 (m, 4H), 7.74 (d, J = 16.0 Hz, 1H), 7.59-7.53 (m, 2H), 6.66 (d, J = 16.0 Hz, 1H).

General procedure for photocycloaddition

Single solid acrylic acids **A-J** (or their solid mixture) (~0.1 mmol each) dispersed in cyclohexane (2 mL) was stirred under an argon atmosphere in a 17 mL Pyrex test tube in the above-mentioned photo reactor for indicated reaction times (see Schemes 2-6 of the Manuscript and Table 1 of the Supporting information). Removal of cyclohexane afforded the single homocycloadduct (or their mixture) in virtually quantitative yields.

Table 1. Reaction tir	me for individual ca	se to at	tain full conversion

Cinnamic acid	Structure	t (h)	Adduct
Obtention method (yield)			
A Method 1 (65%)	Ме	40	4-MeC ₆ H ₄ , CO ₂ H HO ₂ C 4-MeC ₆ H ₄ A ₂
B Method 1 (63%)	Me Me	40	3,4-Me ₂ C ₆ H _{3,,} HO ₂ C [,] 3,4-Me ₂ C ₆ H ₃ B ₂
C Method 1 (96%)	ОН	24	$C_7H_5N_2$, CO_2H HO ₂ C ^C , $C_7H_5N_2$ C ₂
D Commercially available	но	24	4-HOC ₆ H ₄ , CO ₂ H HO ₂ C [×] 4-HOC ₆ H ₄ D ₂
E Method 2 (81%)	НО	24	3-HOC ₆ H ₄ , CO ₂ H HO ₂ C 3-HOC ₆ H ₄ E ₂

F Commercially available	ОН	24	2-HOC ₆ H ₄ HO ₂ C F ₂
G Commercially available	СІ	20	$4-CIC_6H_4$ $4-CIC_6H_4$ CO_2H CO_2H G_2
H Method 2 (95%)	Вг	24	$4-BrC_{6}H_{4}$ $4-BrC_{6}H_{4}$ $CO_{2}H$ H_{2}
I Method 2 (90%)	OH Br	12	2-BrC ₆ H ₄ 2-BrC ₆ H ₄ CO ₂ H
J Method 1 (67%)	ОН	6	2-Np 2-Np 2-Np 2-Np J ₂

A mixture of aldehyde (10 mmol), malonic acid (1.35 g, 13 mmol) and piperidine (85 mg, 1 mmol) in pyridine (2 mL) was stirred in an open 17-mL test tube at 100 °C for 16 h. The crude mixture was treated as the following methods:

Method 1: the crude reaction mixture was diluted with cold MeOH (4-6 mL) and filtered. The solid was washed with cold MeOH (4 mL \times 5) and dried *in vacuo*.

Method 2: the crude reaction mixture was diluted with H_2O (2-4 mL) and treated with concentrated HCl (3 mL). The solid was washed thoroughly with H_2O and dried in air and next in a vacuum desiccator (silica gel) for one night.

Single adduct characterization

(1R,2R,3S,4S)-2,4-di-p-tolylcyclobutane-1,3-dicarboxylic acid (A₂)

¹H NMR (500 MHz, DMSO-*d₆*) δ 12.04 (broad s, 2H), 7.23 (d, *J* = 7.7 Hz, 4H), 7.13 (d, *J* = 7.7 Hz, 4H), 4.23 (dd, *J* = 10.5, 7.0 Hz, 2H), 3.75 (dd, *J* = 10.5, 7.0 Hz, 2H), 2.28 (s, 6H).
¹³C NMR (75 MHz, DMSO-*d₆*) δ 173.0, 136.4, 135.7, 128.7, 127.5, 46.3, 40.7, 20.6.
(1*R*,2*R*,3*S*,4*S*)-2,4-*bis*(3,4-dimethylphenyl)cyclobutane-1,3-dicarboxylic acid (B₂)

¹H NMR (500 MHz, DMSO- d_6) δ 12.01 (broad s, 2H), 7.11 (s, 2H), 7.08-7.04 (m, 4H), 4.19 (dd, J = 10.5, 7.0 Hz, 2H), 3.73 (dd, J = 10.5, 7.0 Hz, 2H), 2.21 (s, 6H), 2.19 (s, 6H).

¹³C NMR (75 MHz, DMSO-*d*_δ) δ 173.0, 136.9, 135.7, 134.4, 129.3, 128.8, 125.0, 46.3, 40.7, 19.5, 19.0.

(1R,2R,3S,4S)-2,4-bis(imidazo[1,2-a]pyridin-2-yl)cyclobutane-1,3-dicarboxylic acid (C₂)

¹H NMR (300 MHz, DMSO- d_6) δ 12.00 (broad s, 2H), 8.49 (d, J = 6.6 Hz, 2H), 7.86 (s, 2H), 7.52 (d, J = 8.9 Hz, 2H), 7.19 (dd, J = 8.9, 6.6 Hz, 2H), 6.85 (t, J = 6.6 Hz, 1H), 4.44 (dd, J = 10.1, 7.0 Hz, 2H), 3.86 (dd, J = 10.1, 7.0 Hz, 2H).

¹³C NMR (125 MHz, DMSO-*d*₆ and a drop of TFA) *δ* 172.0, 140.1, 135.7, 134.3, 129.7, 117.9, 113.8, 112.5, 45.1, 33.3.

HRMS-ESI+: m/z [M + H]+ calcd for $C_{20}H_{17}N_4O_4$: 377.1250; found: 377.1242.

(1R,2R,3S,4S)-2,4-bis(4-hydroxyphenyl)cyclobutane-1,3-dicarboxylic acid (D₂)

¹H NMR (300 MHz, DMSO- d_6) δ 11.99 (broad s, 2H), 9.28 (broad s, 2H), 7.13 (d, J = 8.5 Hz, 4H), 6.70 (d, J = 8.5 Hz, 4H), 4.13 (dd, J = 10.2, 7.1 Hz, 2H), 3.65 (dd, J = 10.2, 7.1 Hz, 2H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 173.2, 156.1, 129.7, 128.8, 115.0, 46.8, 40.4.

(1R,2S,3R,4S)-2,4-bis(3-hydroxyphenyl)cyclobutane-1,3-dicarboxylic acid (E₂)

¹H NMR (500 MHz, DMSO- d_6) δ 12.10 (broad s, 2H), 9.31 (broad s, 2H), 7.10 (t, J = 7.9 Hz, 2H), 6.75 (d, J = 7.9 Hz, 2H), 6.71 (d, J = 2.0 Hz, 2H), 6.63 (dd, J = 7.9, 2.0 Hz, 2H), 4.13 (dd, J = 10.4, 7.3 Hz, 2H), 3.70 (dd, J = 10.4, 7.3 Hz, 2H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 172.9, 157.2, 140.9, 129.1, 118.2, 114.4, 113.6, 46.2, 41.1.

(1R,2S,3R,4S)-2,4-bis(2-hydroxyphenyl)cyclobutane-1,3-dicarboxylic acid (F₂)

¹H NMR (500 MHz, DMSO-*d*₆) δ 11.83 (broad s, 2H), 9.41 (broad s, 2H), 7.23-7.21 (m, 2H), 7.06-7.02 (m, 2H), 6.79-6.77 (m, 4H), 4.48 (dd, J = 10.1, 7.7 Hz, 2H), 3.74 (dd, J = 10.1, 7.7 Hz, 2H). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 173.6, 155.2, 127.4, 127.2, 126.0, 118.6, 114.7, 44.9, 35.7.

(1R,2S,3R,4S)-3,4-bis(4-chlorophenyl)cyclobutane-1,2-dicarboxylic acid (G₂)

¹H NMR (300 MHz, DMSO- d_6) δ 12.51 (broad s, 2H), 7.16 (d, J = 8.5 Hz, 4H), 7.07 (d, J = 8.5 Hz, 4H), 4.22 (d, J = 6.2 Hz, 2H), 3.80 (d, J = 6.2 Hz, 2H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 173.8, 138.2, 130.6, 129.8, 127.7, 43.7, 42.4.

(1R,2S,3R,4S)-3,4-bis(4-bromophenyl)cyclobutane-1,2-dicarboxylic acid (H₂)

¹H NMR (300 MHz, DMSO- d_6) δ 12.51 (broad s, 2H), 7.30 (d, J = 8.5 Hz, 4H), 7.02 (d, J = 8.5 Hz, 4H), 4.20 (d, J = 6.2 Hz, 2H), 3.79 (d, J = 6.2 Hz, 2H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 173.7, 138.5, 130.6, 130.1, 119.1, 43.6, 42.3.

(1R,2S,3R,4S)-3,4-bis(2-bromophenyl)cyclobutane-1,2-dicarboxylic acid (E₂)

¹H NMR (500 MHz, DMSO- d_6) δ 12.59 (broad s, 2H), 7.43-7.40 (m, 2H), 7.35-7.32 (m, 2H), 7.20-7.15 (m, 2H), 7.05-7.00 (m, 2H), 4.64 (d, J = 6.4 Hz, 2H), 3.86 (d, J = 6.4 Hz, 2H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 173.6, 137.8, 132.2, 129.1, 128.4, 127.1, 124.6, 43.9, 42.6.

(1*R*,2*S*,3*R*,4*S*)-3,4-di(naphthalen-2-yl)cyclobutane-1,2-dicarboxylic acid (J₂)

¹H NMR (300 MHz, DMSO-*d*₆) δ 13.42 (broad s, 2H), 8.56-8.53 (m, 2H), 8.46 (d, *J* = 7.4 Hz, 2H), 8.33 (d, *J* = 7.4 Hz, 2H), 8.21-8.10 (m, 4H), 8.00 (dd, *J* = 8.4, 1.3 Hz, 2H), 5.28 (d, *J* = 6.2 Hz, 2H), 4.85 (d, *J* = 6.2 Hz, 2H). ¹³C NMP (75 MHz, DMSO, *d*.) δ 174.0, 137.1, 132.6, 131.4, 127.4, 127.2, 127.0, 126.7, 126.0, 125.8

¹³C NMR (75 MHz, DMSO-*d*₆) δ 174.0, 137.1, 132.6, 131.4, 127.4, 127.2, 127.0, 126.7, 126.0, 125.8, 125.3, 44.7, 42.7.

Comparison of cyclobutane signals of β -truxinic type adducts G_2 - J_2

(E)-3-(p-Tolyl)acrylic acid (A)

(E)-3-(Imidazo[1,2-a]pyridin-2-yl)acrylic acid (C)

(E)-3-(3-Hydroxyphenyl)acrylic acid (E)

(E)-3-(2-Bromophenyl)acrylic acid (I)

(E)-3-(Naphthalen-2-yl)acrylic acid (J)

(1*R*,2*R*,3*S*,4*S*)-2,4-di-*p*-tolylcyclobutane-1,3-dicarboxylic acid (A₂)

S14

(1*R*,2*R*,3*S*,4*S*)-2,4-*bis*(imidazo[1,2-a]pyridin-2-yl)cyclobutane-1,3-dicarboxylic acid (C₂)

(1R,2S,3R,4S)-2,4-bis(2-hydroxyphenyl)cyclobutane-1,3-dicarboxylic acid (F₂)

(1*R*,2*S*,3*R*,4*S*)-3,4-*bis*(4-chlorophenyl)cyclobutane-1,2-dicarboxylic acid (G₂)

(1*R*,2*S*,3*R*,4*S*)-3,4-*bis*(4-bromophenyl)cyclobutane-1,2-dicarboxylic acid (H₂)

(1*R*,2*S*,3*R*,4*S*)-3,4-*bis*(2-bromophenyl)cyclobutane-1,2-dicarboxylic acid (E₂)

(1*R*,2*S*,3*R*,4*S*)-3,4-di(naphthalen-2-yl)cyclobutane-1,2-dicarboxylic acid (J₂)

[2 + 2] Photodimerization of an equimolar solid mixture of A and B dispersed in cyclohexane (Scheme 2a)

cyclobutane proton signals (Scheme 2c)

[2 + 2] Photodimerization of a solid mixture of *o*-, *m*-, and *p*-hydroxycinnamic acids D-F dispersed in cyclohexane (Scheme 4)

S26

¹³C NMR (20000 scans) of the crude mixture of D₂, G₂, and H₂ showed no trace of any cross adduct could be detected (Scheme 5b)

[2 + 2] Photodimerization of a solid mixture of six cinnamic acids D-F, H-J dispersed in cyclohexane (Scheme 6)