Supplementary Information

Parietin: an efficient photo-screening pigment *in vivo* with good photosensitizing and photodynamic antibacterial effects *in vitro*

Laura R. Comini,^a F. Eduardo Morán Vieyra,^b Ricardo A. Mignone,^b Paulina L. Páez,^c M. Laura Mugas,^a Brenda S. Konigheim,^d José L. Cabrera,^a Susana C. Núñez Montoya^{a,*} and Claudio D. Borsarelli^{b,*}

^a IMBIV, CONICET and Facultad de Ciencias Químicas, Universidad Nacional Córdoba, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina.

^b Instituto de Bionanotecnología del NOA (INBIONATEC). Universidad Nacional de Santiago del Estero - CONICET. RN9, Km 1125, G4206XCP Santiago del Estero, Argentina.

^c Dto. Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Unidad de Tecnología Farmacéutica (UNITEFA) - CONICET. Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina.

^d Instituto de Virología "Dr. JM Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina

+ E-mail: cdborsarelli@gmail.com; sununez@fcq.unc.edu.ar..

Parietin (PTN) identification

General Experimental Procedures

UV spectra were recorded on a Cary Win UV-VIS spectrophotometer (Agilent Technologies, California, USA). NMR spectra were acquired in CDCl₃ on a Bruker Advance II 400 (400 MHz for ¹H and 100 MHz for ¹³C) spectrometer (Bruker BioSpin GmbH, Silberstreifen 4-76287 Rheinstetten, Germany). Chemical shifts (δ) are reported in ppm relative to TMS as internal standard and coupling constants (J value) in Hz. EIMS were obtained on a Variant Mat CH-7A at 70 eV.

PTN was identified by comparison of their experimental spectroscopic data (UV-Vis, 1D and 2D NMR, and MS) with those previously reported in the literature. Their spectroscopic and spectrometric data are reported herein.

UV-Vis absorption maxima (nm) in MeOH

This work	251; 265; 285; 434
Fairbairn et al. 1972	255; 267; 288; 432

Mass spectrometric data according Wu et al 1987.

EM-AR: m/z	284 (M+ 100%) 255 241 227 226 213 108 185
(relative intensity)	284 (101, 100%), 255, 241, 227, 220, 215, 198, 185

Figure 2: ¹H NMR spectra of PTN in CDCI₃

¹H NMR spectroscopic data according Wu et al 1987.

Position	¹ H NMR δ (ppm) (CDCl ₃)
2	6.69 (d, 1H, J= 2.5)
4	7.38 (d, 1H, J=2.5)
5	7.64 (s br, 1H)
7	7.09 (s br, 1H)
3-O- <u>CH</u> ₃	3.94 (s, 3H)
6- <u>CH</u> ₃	2.46 (s, 3H)
1-OH	12.32 (s, 1H)
8-OH	12.13 (s, 1H)

Figure 3: ¹³C NMR spectra of PTN in CDCl₃

Position	¹³ C NMR δ (ppm) (CDCl ₃)
1a	110.4
1	165.4
2	107.0
3	166.8
4	108.4
4a	135.3
5a	132.2
5	121.5
6	148.7
7	124.7
8	162.7
8a	113.9
9	191.3
10	182.2
3-O- <u>CH</u> 3	55.4
6- <u>CH</u> 3	21.7

¹³C NMR spectroscopic data according Canaviri at al 2006.

Figure 4: COSY spectra of PTN in CDCl₃

Position	¹ H NMR δ (ppm) (CDCl ₃)	Cosy (¹ H- ¹ H)
2	6.7 (d, 1H, J=2.0)	H4
4	7.4 (d, 1H, J=2.0)	H2
5	7.6 (d, 1H, J=2.0)	H7
7	7.1 (d, 1H, J=2.0)	H5

COSY spectroscopic data according Canaviri at al 2006.

Figure 5: HSQC-DEPT spectra of PTN in CDCl₃

gure 6: HMBC s	pectra of P	PTN in CDC)] ₃
----------------	-------------	------------	-----------------

HMBC spectroscopic data according Canaviri at al 2006.

Position	¹ H NMR δ (ppm) (CDCl ₃)	HMBC (¹ H- ¹³ C)
2	6.7 (d, 1H, J=2.0)	C-4, C-1a, C-1, C-3
4	7.4 (d, 1H, J=2.0)	C-3, C-1a, C-10
5	7.6 (d, 1H, J=2.0)	CH ₃ -6, C-8a, C-7, C-10
7	7.1 (d, 1H, J=2.0)	CH ₃ -6, C-8a, C-5, C-8
3-O- <u>CH</u> ₃	3.0	C3
6- <u>CH</u> ₃	1.8	C-5, C-6, C-7
_		

Figure 7: HPLC chromatogram of purified PTN

A Varian Pro Star chromatography apparatus (model 210, series 04171, California, USA), equipped with an UV-Vis detector and a Microsorb-MV column 100-5 C-18 (250 x 4.6 mm i.d., Agilent) was used at 25 °C. The mobile phase was a gradient elution of solvent A formic acid 0.16 M (ultra-pure water) and solvent B: MeOH 0.6% formic acid; the composition varied from 65 to 0 % of A in 66 min, at a variable flow from 1 at 0.7 mL/min. Detection was performed at 265 nm. Sample dissolved in MeOH (HPLC, Sintorgan, Buenos Aires, Argentina) and filtered through cellulose (Merck Millipore, Sao Paulo, Brasil) was manual injected (20 μ L). Data analysis was performed using Varian software (Star Chromatography Workstation 6.41, California, USA).

References

J. W. Fairbairn, F.J. EL-Muhtadi, Phytochem., 1972, 11, 263-268.

T-S. Wu, T-T. Jong, H-J. Tien, C-S. Kuoh, H. Furukama, K-H. Lee, Phytochem., 1987, 26, 1623-1625.

P. Canaviri, K-E. Bergquist, J. Vila, Revista Boliviana de Química, 2006, 23, 9-12.