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Figure S1. UV-Vis absorption spectrum of BHQ-OPh in acetonitrile. 
 

 
Figure S2. UV-Vis absorption spectra of BHQ-OPh in acetonitrile and 1:1 acetonitrile/PBS 
(pH 7.4). 
 

     
Figure S3. Titration of BHQ-OPh (left) and BHQ-OAc (right) to determine the pKa of the 
phenolic proton. BHQ-OPh or BHQ-OAc was dissolved in buffers of known pH, and its 
spectral maxima were noted by UV-vis at 331 (phenol) and 371 nm (phenolate) (or 330 and 
368 nm for BHQ-OAc). The ratio of the absorbance at the two reference wavelengths was 
plotted vs pH of the buffer. The plot is fitted with a sigmoidal regression and the pKa was 
calculated by solving for the inflection point. Buffers (pH): phosphate (3.91, 6.73, 7.32, and 
7.86), acetate (5.13 and 5.65), citrate (6.17), borate (8.59 and 9.47). 
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Figure S4. Simulated absorption spectrum of BHQ-OPh (N) obtained from TD-DFT 
calculation at the level of B3LYP/6-311G**. 
 

 
Figure S5. Simulated absorption spectrum of BHQ-OPh (A) obtained from TD-DFT 
calculation at the level of B3LYP/6-311G** 
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Figure S6. Frontier molecular orbitals of the strongest oscillator strength transition at 227.78 
nm for BHQ-OPh (N). 
 

 
Figure S7. Comparison between low power 266-nm resonance Raman spectrum of 
BHQ-OPh in 1:1 acetonitrile/water and the DFT calculated Raman spectra of N(S0) and A(S0) 
of BHQ-OPh. 
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Figure S8. Comparison between low power 240-nm resonance Raman spectrum of 
BHQ-OPh in 1:1 acetonitrile/water (pH 5) solution and the DFT calculated Raman spectrum 
of N(S0) of BHQ-OPh. 
 

 
Figure S9. Simulated absorption spectrum for the T1 state of BHQ-OPh (N) obtained from 
TD-DFT calculation at the level of B3LYP/6-311G** 
 

 
Figure S10. Simulated absorption spectrum for the T1 state of BHQ-OPh (A) obtained from 
TD-DFT calculation at the level of B3LYP/6-311G** 
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Figure S11. ns-TA spectra of BHQ-OPh in PBS (pH 7.4) after 266-nm excitation. 
 

 
Figure S12. Fit of the ns-TA spectra in Fig. 4c to determine the rate constant for the decay of 
the T1 state of BHQ-OPh (T). 
 

 
Figure S13. Comparison between high power 240-nm resonance Raman spectrum of 
BHQ-OPh in acetonitrile and the DFT calculated Raman spectra of the T1 and S0 states of 
BHQ-OPh (N). 
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Figure S14. ns-EM spectra of BHQ-OPh in PBS (pH 7.4) after 266-nm excitation. 
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Figure S15. fs-TA spectra of BHQ-OPh in 1:1 acetonitrile/PBS (pH 7.4) after 266-nm 
excitation. (a) The growth of the 355-nm absorption band within 1 ps results from excitation 
from the ground state BHQ-OPh (A). (b) Subsequently, there is a conversion with an emission 
band at 450 nm and an absorption band at 635 nm. Based on the assignments for the ns-EM 
spectra in 1:1 acetonitrile/PBS (pH 7.4) (Fig. 7), the emission band at 450 nm is attributed to 
the fluorescence from the S1 state of BHQ-OPh (A). Hence, the conversion in (b) can be 
assigned to the formation of the S1 state of BHQ-OPh (A). (c) The growing features at 410 
and 528 nm are assigned to the T1 state of BHQ-OPh (A) based on the ns-TA spectra (Fig. 4). 
The conversion in (c) indicates the intersystem crossing from the S1 state of BHQ-OPh (A) to 
the T1 state of BHQ-OPh (A). 
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Figure S16. Comparison between the high power 240-nm resonance Raman spectrum of 
BHQ-OPh in 1:1 acetonitrile/PBS (pH 7.4) and the DFT calculated Raman spectra of the T1 
and S0 states of BHQ-OPh (A). 
 

	
Figure S17. fs-TA spectra of BHQ-OPh in 1:1 acetonitrile/water (pH 5.0) after 266-nm 
excitation. 
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Scheme S1. Proposed mechanism of BHQ-OPh photoprocesses in acetonitrile. 
 
 
Table S1. Selected electronic transition energies, oscillator strength in the region of 210-310 
nm, and molecular orbital transitions for the strongest oscillator strength transition at 227.78 
nm obtained from (U)B3LYP/6−311G** TD−DFT calculations for the neutral form of 
BHQ-OPh. 

 
	

NHO
Br

OPh

S0 of BHQ-OPh (N)

hν
CH3CN

S1 of BHQ-OPh (N) ISC T1 of BHQ-OPh (N)

fluorescence

S0 of BHQ-OPh (N)

decay

S0 of BHQ-OPh (N)

NHO
Br

OH HOPh

BHQ-OH

X

Neutral	Form

Excitation
Energy	(nm) Oscillator	Strength

Molecular	Orbital
Transitions	for	227.78	excitation

211.42 0.0099

216.88 0.0002 78 -> 84        -0.25951

217.12 0.0043 78 -> 85        -0.12958

222.38 0.1865 81 -> 84        -0.27312

227.78 0.6085 81 -> 85         0.10130

228.02 0.0001 81 -> 88        -0.11514

236.93 0.0227 82 -> 85         0.47862

244.56 0.0002 83 -> 85        -0.20895

245.78 0.0262

258.94 0.0031

281.48 0.0549

283.71 0.0013


