Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2016

Exploration of photophysics of 2,2[']-pyridil at room temperature and 77 K: A combined spectroscopic and quantum chemical approach

Pronab Kundu, Saptarshi Ghosh and Nitin Chattopadhyay*

Department of Chemistry, Jadavpur University, Kolkata - 700 032, India

*Corresponding author: Fax: 91-33-2414-6584

E-mail: nitin.chattopadhyay@yahoo.com

Electronic supplementary information

Fig. S1 Room Temperature excitation spectra of 2,2[']-pyridil monitoring at different wavelengths under the entire emission band in both (a) EtOH and (b) MCH solvents upon photoexcitation at the $n\pi^*$ absorption band. Monitoring emission wavelengths are shown in the legends.

Fig. S2 Room temperature emission and excitation spectra of 2,2'-pyridil in ethanol at different time windows as labeled in the legends.

Fig. S3 Phosphorescence decays of 2,2'-pyridil in EtOH and MCH matrices at 77 K. Excitation and monitoring wavelengths are given in the legends.

Fig. S4 Lower energy phosphorescence decays of 2,2'-pyridil in EtOH and MCH matrices at 77 K. Excitation and monitoring wavelengths are given in the legends.

Fig. S5 Higher energy phosphorescence decays of 2,2'-pyridil in EtOH and MCH matrices at 77 K upon excitation at the $\pi\pi^*$ band. Excitation and monitoring wavelengths are given in the legends.

Fig. S6 Potential energy curves (PECs) of 2,2'-pyridil in S_0 , S_1 , S_2 , S_3 and T_1 electronic states as a function of intercarbonyl dihedral angle (Φ) in vacuum.

Solvent	λ _{ex} (nm)	λ _{em} (nm)	τ ₁ (ms)	τ_2 (ms)	a ₁	a ₂	R ²
EtOH	300	430	4.4 ± 0.4				0.9983
	300	520	4.1 ± 0.4	14.7 ± 1	0.43	0.57	0.9999
	380	500	12.4 ± 1				0.9991
МСН	290	430	3.6 ± 0.4				0.9930
	290	540	3.4 ± 0.4	11.3 ± 1	0.13	0.87	0.9999
	370	500	11.0 ± 1				0.9999

Table S1 Phosphorescence decay parameters of 2,2'-pyridil in EtOH and in MCH matrices at 77 K.

Table S2 Experimental and theoretical absorption wavelengths of 2,2'-pyridil in EtOH and MCH.

	Absorption positions					
Solvent	Experimental	Calculated				
EtOH	~ 360 nm and ~ 340 nm (n π^*); 270 nm ($\pi\pi^*$)	~ 348 nm and ~ 336 nm; 284 nm				
MCH	~ 370 nm and ~ 350 nm (n π^*); 268 nm ($\pi\pi^*$)	~ 354 nm and ~ 341 nm; 282 nm				