Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2017

Effect of nucleants in photothermally assisted crystallization

Shilpa T^a, Sajan D. George^{a, b}, Aseefhali Bankapur^a, Santhosh Chidangil^a, Aditya K. Dharmadhikari^c, Deepak Mathur^{a, c}, Madan

Kumar S^d, Byrappa K^e, Abdul Ajees Abdul Salam^{a,*}

^aDepartment of Atomic and Molecular Physics, Manipal University, Manipal 576 104, India. ^bCentre for Applied Nanosciences, Manipal University, Manipal 576 104, India. ^cTata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India. ^dPURSE Lab, Mangalagangotri, Mangalore University, Mangalore 574 199, India, ^eDepartment of Material Science, Mangalagangotri, Mangalore University, Mangalore 574 199, India. *Corresponding Author: <u>abdul.ajees@manipal.edu</u>; Phone: +91-8147966458

Supplementary Information

Figure 1. Effect of concentration on crystallization time. The time required to obtain crystals for different concentrations of glycine is shown in (a) control (b) under laser with copper as well as aluminum wire.

Effect of nucleants in photothermally assisted crystallization, Shilpa et al.,

Photochemical & Photobiological Sciences Supplementary Information

Page **1** of **10**

Figure 2. Effect of drop size on crystallization time. Crystallization time with respect to different sample volume for various concentrations of glycine is shown in (a) control, (b) under laser with copper wire. For the clarity purpose, only 5 μ l and 100 μ l is drop sizes are shown.

Figure 3. (a) Glycine crystal formation on the surface of the bubble, (b) Crystal formation away from the bubble.

Figure 4: Laser-induced glycine crystal formed around the nucleant aluminum wire

Figure 5: The structure of α -glycine, showing 50% probability displacement ellipsoid and the atomnumbering scheme.

Table 1. Laser-induced crystallization results of various concentrations of NaCl and KCl with copper wire (~0.4 mm x 0.03 mm). The time duration is shown in seconds.

NaCl			KCl			
Molarity	Control	Laser with Cu wire	Molarity	Control	Laser with Cu wire	
1 M	1800 ± 82	83 ± 5	1 M	7785 ± 967	104 ± 17	
2 M	1320 ± 99	51 ± 5	2 M	6600 ± 443	38 ± 6	
3 M	1260 ± 28	27 ± 1	3 M	4605 ± 670	26 ± 8	
4 <i>M</i>	1140 ± 268	24 ± 11	4 M	2475 ± 150	6 ± 0.5	
5 M	1020 ± 35	10 ± 4	5 M	2145 ± 596	4 ± 0.2	

Sl. No.	Source Pa	arameters		Time taken						
	Source	Laser intensity	Concentration (M)	H ₂ O /D ₂ O	Aged / Fresh	in (seconds)				
	Pulsed Laser (150 fs, $\lambda = 800$ nm)									
1	Femto second ¹	19 PW/cm ²	3	H ₂ O	Exposed to laser after 5-8 days	600				
		Pulse	ed Laser (9 ns, λ =	=106 4ni	n)					
2	Q-switched Nd:YAG ²	0.7 GW/cm ²	2.69	H ₂ O	Exposed to laser after 5-8 days	1800				
3	Q-Switched Nd:YAG ³	0.4 GW/cm ²	4	H ₂ O	Exposed to laser after 3 days	After several hours				
		Con	tinuous Wave λ =	=1064nn	1					
4	Nd:YVO ₄ ⁴	$0.4 \mathrm{GW/cm^2}$	2	D ₂ O	3 h	415				
5	Nd:YAG ⁵ (+ Gold thin film)	8.9 MW/cm ²	3	H ₂ O	Fresh	122				
6	Nd:YVO ₄ ⁶ (+SWCNT)	6.82 MW/cm ²	3	H ₂ O	Fresh	15				
7	Nd:YAG (current study with cooper & aluminum)	0.8 MW/cm ²	3	H ₂ O	Fresh	3				
8	Nd:YAG (current study with graphite)	0.1 MW/cm ²	3	H ₂ O	Fresh	3				

Table 2. Comparison of literature data on laser-induced crystallization of glycine with the current study.For comparison and uniformity purpose, laser intensity was used instead of average laser power.

Effect of nucleants in photothermally assisted crystallization, Shilpa et al.,

Photochemical & Photobiological Sciences Supplementary Information

Page **6** of **10**

Table 3. Raman bands and assignments for α -glycine, and γ -glycine single crystals in the spectral region of 200-3050 cm⁻¹.

Raman Fre	quencies	- Assignments		
α -glycine	γ -glycine	Assignments		
360	366	CCN rock		
486		NH ₃ tor, C-C bend		
502	502	CO_2 wag		
602	606	CO ₂ bend		
697	688	CO_2 bend, C-N bend		
889	890	C-C str		
918	921	CH ₂ rock		
1034	1048	C-N str, CCN asym str		
1109	1109	CH ₂ rock		
	1129	NH ₃ rock		
1139	1137	NH ₃ rock		
	1156	NH ₃ rock		
1324	1325	CH ₂ twist		
	1337	CH ₂ wag		
	1344	CH_2 wag or tor		
1410	1395	CO_2 sym str		
1437	1436	CH ₂ sci		
1453		CH ₂ sci		
1512	1496	NH ₃ sym def		
1565	1573	CO ₂ asym str		
1669	1673	NH ₃ asym def		
2972	2962	CH ₂ sym str		
3006	2998	CH_2 asym str		

Table 4. Raman bands and assignments for lysozyme single crystal in the spectral region of

450-1800 cm⁻¹.

Frequencies	Assignments	Raman Frequencies	Assignments
459		1028	Phe
492		1071	v(C-N)
506	v(S-S) ggg	1088	v(C-N)
525	v(S-S) ggt	1099	
541	v(S-S)	1124	v(C-N)
574	Trp	1177	Tyr
621	Phe	1193	Tyr
643	Tyr	1208	Tyr, Phe
695	Met: $v(C-S)$	1236	Amide III
721	Cys: $v(C-S)$	1257	Amide III
759	Trp	1334	Trp
835	Tyr	1360	Trp
855	Tyr	1425	
871	Trp	1449	$\delta(CH_2)$
876	Trp	1458	$\delta(CH_3)$
898	v(C-C)	1549	Trp
930	v(C-C)	1576	Phe
961		1619	Tyr
976		1638	
1000	Phe	1656	Amide I (α-helix
1008	Trp	1672.6	Amide I (β-shee

Table 5. Crystallographic and geometric data of α -glycine crystal obtained using a laser with nucleant comparison with literature values.

	Current Study	Literature ⁷
Empirical formula	C ₂ H ₅ NO ₂	C ₂ H ₅ NO ₂
Wavelength	0.71075 Å	0.71075 Å
Crystal system & Space group	Monoclinic & P2 ₁ /n	Monoclinic & P2 ₁ /n
Unit cell dimensions: a, b, c(Å)	5.1014(8), 11.957(2), 5.4649(9)	5.087(2),11.73(3),5.460(2)
α, β, γ (°)	90, 111.842(8),90	90, 111.990(15), 90
Volume & Z	309.42(9) Å ³ & 4	303.21(18) Å ³ & 4
Density (calculated)	1.612 Mg/m ³	1.645 Mg/m ³
Absorption coefficient	0.143 mm ⁻¹	
F(000)	160	
Crystal size	0.360 x 0.230 x 0.220 mm ³	
Theta range for data collection	3.408 to 27.485°	
Index ranges	-6<=h<=6,-15<=k<=15,-6<=l<=7	
Independent reflections	709 [R(int) = 0.0396]	
Completeness to theta = 25.242°	100.0 %	
Final R indices [I>2sigma(I)]	R1 = 0.0333, $wR2 = 0.0962$	
R indices (all data-3601 reflections)	R1 = 0.0376, wR2 = 0.0977	
Extinction coefficient	0.21(2)	
Largest diff. peak and hole	0.256 and -0.207 e.Å ⁻³	
Bond Length (Å)		
O(2)-C(1)	1.2508(17)	1.2599(5)
C(1)-O(1)	1.2468(16)	1.2575(5)
C(1)-C(2)	1.5264(18)	1.5269(6)
C(2)-N(1)	1.4760(17)	1.4823(6)
Bond Angle (°)		
O(1)-C(1)-O(2)	125.67(12)	125.54(2)
O(1)-C(1)-C(2)	117.34(12)	117.44(2)
O(2)-C(1)-C(2)	116.99(12)	117.01(2)
N(1)-C(2)-C(1)	111.92(11)	111.49(2)
Torsion Angle (°)		
O(1)-C(1)-C(2)-N(1)	-18.54(16)	19.54(2)
O(2)-C(1)-C(2)-N(1)	161.86(11)	-161.31(2)

Sl. No.	CCDC number	a(Å)	b(Å)	c(Å)	α(°)	β(°)	γ(°)	Space group	Volume Å ³	R factor
1	Current study	5.1014(8)	11.957(2)	5.4649(9)	90	111.842(8)	90	P2 ₁ /n	309.42(9)	0.0376
2	1416370	5.0855(3)	11.8018(8)	5.4600(4)	90	111.973(1)	90	$P2_1/n$	303.895	0.0279
3	1416373	5.124(6)	12.042(14)	5.496(7)	90	111.647(14)	90	$P2_1/n$	315.204	0.0431
4	1169354	5.1020(8)	11.9709(17)	5.4575(15)	90	111.70(2)	90	$P2_1/n$	309.698	0.0630
5	1169355	5.1054(6)	11.9688(19)	5.4645(9)	90	111.70(1)	90	$P2_1/n$	310.248	0.0320
6	1169356	5.1054(6)	11.9688(19)	5.4645(9)	90	111.697	90	$P2_1/n$	310.254	0.0400
7	1169357	5.1020(8)	11.9709(17)	5.4575(15)	90	111.705	90	$P2_1/n$	309.687	0.0450
8	1169369	5.0835(10)	11.820(2)	5.4579(9)	90	111.95(2)	90	$P2_1/n$	304.176	0.0300
9	193596	5.0993(3)	11.9416(6)	5.4608(3)	90	111.784(2)	90	$P2_1/n$	308.783	0.0371
10	193597	5.0999(3)	11.9516(6)	5.4594(3)	90	111.781(2)	90	$P2_1/n$	309.005	0.0267
11	193598	5.1008(3)	11.9558(8)	5.4602(3)	90	111.772(3)	90	$P2_1/n$	309.233	0.0273
12	193599	5.1012(3)	11.9651(9)	5.4604(4)	90	111.763(5)	90	$P2_1/n$	309.528	0.0300
13	193600	5.1026(3)	11.9752(9)	5.4602(4)	90	111.757(5)	90	$P2_1/n$	309.876	0.0311
14	193601	5.1074(3)	12.0775(9)	5.4596(4)	90	111.827(5)	90	$P2_1/n$	312.63	0.0314
15	1169372	5.106(1)	11.979(5)	5.463(2)	90	111.75(2)	90	$P2_1/n$	310.355	0.0274
16	1169373	5.1047(3)	11.9720(14)	5.4631(3)	90	111.740(5)	90	$P2_1/n$	310.122	0.0370
17	842907	5.0993(3)	11.9416(6)	5.4608(3)	90	111.784(2)	90	$P2_1/n$	308.783	NA
18	849671	5.1038(3)	11.9701(4)	5.4620(2)	90	111.718(4)	90	$P2_1/n$	310.003	0.0477
19	849670	5.1040(10)	11.966(2)	5.4620(11)	90	111.79(3)	90	$P2_1/n$	309.754	0.0462
20	849669	5.1012(3)	11.9376(6)	5.4626(7)	90	111.848(1)	90	$P2_1/n$	308.758	0.0502
21	849668	5.1150(10)	11.925(2)	5.4812(11)	90	111.80(3)	90	$P2_1/n$	310.424	0.0470
22	849667	5.0936(1)	11.8783(2)	5.4625(1)	90	111.872(10)	90	$P2_1/n$	306.709	0.0451
23	849666	5.0949(1)	11.8776(2)	5.4614(3)	90	111.899(7)	90	$P2_1/n$	306.65	0.0337
24	849665	5.0906(1)	11.8413(2)	5.4605(1)	90	111.935(1)	90	$P2_1/n$	305.327	0.0445
25	849664	5.0912(1)	11.8353(2)	5.4617(1)	90	111.981(3)	90	$P2_1/n$	305.177	0.0369
26	849663	5.0876(1)	11.8092(2)	5.4615(1)	90	111.992(1)	90	$P2_1/n$	304.254	0.0395
27	849662	5.0881(1)	11.7980(1)	5.4629(1)	90	112.034(1)	90	$P2_1/n$	303.983	0.0389
28	849661	5.0856(1)	11.7821(2)	5.4615(1)	90	112.029(1)	90	$P2_1/n$	303.357	0.0370
29	849660	5.0874(2)	11.7817(5)	5.4635(7)	90	112.053(1)	90	$P2_1/n$	303.514	0.0343
30	986786	5.1042(8)	11.9718(2)	5.93652(9)	90	121.2642(8)	90	$P2_1/n$	310.081	NA

Table 6: Comparison of crystallographic data for α -glycine with data extracted from CSD

1. T.-H. Liu, T. Uwada, T. Sugiyama, A. Usman, Y. Hosokawa, H. Masuhara, T.-W. Chiang and C.-J. Chen, Single femtosecond laser pulse-single crystal formation of glycine at the solution surface, *J. Cryst. Growth*, 2013, **366**, 101-106.

2. B. A. Garetz, J. Matic and A. S. Myerson, Polarization switching of crystal structure in the nonphotochemical light-induced nucleation of supersaturated aqueous glycine solutions, *Phys. Rev. Lett.*, 2002, **89**, 175501.

3. X. Sun, B. A. Garetz and A. S. Myerson, Supersaturation and polarization dependence of polymorph control in the nonphotochemical laser-induced nucleation (NPLIN) of aqueous glycine solutions, *Cryst. Growth Des.*, 2006, **6**, 684-689.

4. T. Rungsimanon, K.-i. Yuyama, T. Sugiyama and H. Masuhara, Crystallization in unsaturated glycine/D2O solution achieved by irradiating a focused continuous wave near infrared laser, *Cryst. Growth Des.*, 2010, **10**, 4686-4688.

5. T. Uwada, S. Fujii, T. Sugiyama, A. Usman, A. Miura, H. Masuhara, K. Kanaizuka and M.-a. Haga, Glycine Crystallization in Solution by CW Laser-Induced Microbubble on Gold Thin Film Surface, *ACS Appl. Mater. Interfaces*, 2012, **4**, 1158-1163.

6. S. Pathak, J. A. Dharmadhikari, A. Thamizhavel, D. Mathur and A. K. Dharmadhikari, Growth of micro-crystals in solution by in-situ heating via continuous wave infrared laser light and an absorber, *J. Cryst. Growth*, 2016, **433**, 43-47.

7. S. Mondal, S. J. Prathapa and S. van Smaalen, Experimental dynamic electron densities of multipole models at different temperatures, *Acta Crystallogr. Sect. A: Found. Crystallogr.*, 2012, **68**, 568-581.

Effect of nucleants in photothermally assisted crystallization Supplementary Information