Electronic Supplementary Material (ESI) for Photochemical & Photobiological Sciences. This journal is © The Royal Society of Chemistry and Owner Societies 2017

Supporting Information for

Absolute Configuration Determination through the Unique Intramolecular Excitonic Coupling in the Circular Dichroisms of *o*,*p*'-DDT and *o*,*p*'-DDD. A Combined Experimental and Theoretical Study.

Hiroki Tanaka,^a Yoshihisa Inoue,^a Takeshi Nakano^b and Tadashi Mori*^a

a. Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan

b. Research Center for Environmental Preservation, Osaka University, 2-4, Yamada-oka, Suita, Osaka 565-0871, Japan

Contents

- 1. General experimental details (page S2).
- 2. Typical chiral HPLC profiles for optical resolution of *o*,*p* '-**DDT** and *o*,*p* '-**DDD** (Figure S1, page S3).
- 2. Experimental CD spectra of both enantiomers of *o*,*p*'-**DDT** and *o*,*p*'-**DDD** (Figure S2, page S4).
- 3. Calculated CD spectra of conformers of *o*,*p* '-DDD (Figure S3, page S4).
- 4. Optimized geometries of *o*,*p*'-**DDT** and *o*,*p*'-**DDD**. (Table S1, pages S5-S8).

General Experimental Details

Optical resolution of o,p'-**DDT** and o,p'-**DDD** were performed by chiral HPLC using Daicel Chiralcel OJ-H column (4.6 mm $\phi \times 40$ cm) under the following conditions: eluent: 9 : 1 mixture of hexane/2-propanol, flow rate: 0.5 mL min⁻¹, temperature: 38 °C, UV detector at 291 nm. Experimental circular dichroism (CD) spectra were measured in a conventional quartz cell (light path 1 cm) fitted with a temperature controller for hexane (spectroscopic grade) solutions of o,p'-**DDT** and o,p'-**DDD** on a JASCO J-720WI Spectropolarimeter under the following conditions: bandwidth, 1 nm; scan rate, 50 nm min⁻¹, response, 4 sec; accumulation, 4 times. Optical rotations were measured in a thermostated conventional quartz cell ($\phi = 1.8$ mm, l = 1 dm) at the sodium-D line (589.3 nm) by using a JASCO DIP-1000 Digital Polarimeter fitted with a temperature controller.

All calculations were performed on Linux-PCs by using Gaussian 09^{S1} or Turbomole 7.0^{S2} program suite. Geometries were fully optimized at the dispersion-corrected density functional theory (3rd generation, DFT-D3 with BJ dumping), with AO basis-set of valence triple- ξ quality (in standard notation: H, [3s1p]; C, [5s3p2d1f]; Cl, [5s5p2d1f]) at the TPSS-D3/def2-TZVP level. The resolution of identity (RI) approximation was employed and the corresponding auxiliary basis-sets were taken from the Turbomole basis-set library. The numerical quadrature grid m5 was employed and the convergence criterion for the optimization regarding the change of total energy between two subsequent optimization cycles was set to $10^{-7} E_h$. Subsequent single-point energy calculations were performed with the spin-component-scaled (SCS)-MP2 method with a def2-TZVPP basis-set (in standard notation: H, [3s2p1d]; C, [5s3p2d1f]; Cl [5s5p3d1f]). The method has been shown to provide the most accurate relative energies (comparable to the computationally highly demanding CCSD(T) calculations). All excited-state calculations were performed with the above DFT-D3 optimized ground-state geometries, thus corresponding to the vertical transition approximation. The CD spectrum was simulated at the RI-CC2/def2-TZVP or SAC-CI/B95(d) level. Gaussian functions for each transition where the width of the band at 1/e height is fixed at 0.4 eV. The overall excitation energies obtained by the RI-CC2 method were shifted by 0.3 eV.

⁽S1) Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

⁽S2) Turbomole V7.0 2015, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, Turbomole GmbH, since 2007; available from http://www.turbomole.com.

Figure S1. Typical chiral HPLC charts for optical resolution of *o*,*p*'-DDT (left) and *o*,*p*'-DDD (right).

Figure S2. Experimental CD spectra of *o*,*p*'-**DDT** (left) and *o*,*p*'-**DDD** (right) in hexane at 25 °C. The 1st and 2nd elutes in chiral HPLC are shown in red and black lines, respectively.

Figure S3. Comparison of experimental (red) and SAC-CI (left) and RI-CC2 (0.3 eV red-shifted, right) predicted CD spectra of various conformers of (*S*)-o,p'-**DDT**. Light blue: t/r, green: g-r, light green: g-r/r and purple: t/s.

(s)	-0,p'-DDT			(r)	-0,p'-DDT					
E(DFT) = -2840.420380952 au				E (D	E(DFT) = -2840.414166842 au					
E(S	CSMP2) = -2836	5.193186746 au	1	E(S	CSMP2) = -2836	5.187287172 au	ı			
С	0.8832322	0.7449711	-0.0148504	C	0.7686447	0.8892242	0.0517556			
С	2.4353570	0.6873713	-0.0328450	C	2.3183053	0.9788919	-0.0011886			
Η	0.7092570	1.8258692	0.0561228	Н	0.4876445	1.9387960	0.1776057			
Cl	3.0486953	1.5978011	-1.4622946	Cl	2.7971293	1.8979756	-1.4670281			
С	0.1572377	0.3017316	-1.2842446	С	0.0890279	0.4219096	-1.2278992			
С	-1.1919921	0.6669899	-1.3680593	C	-1.0234074	1.1579996	-1.6537964			
С	-1.9719870	0.3207073	-2.4667893	С	-1.7532294	0.7870299	-2.7795544			
С	-1.3875917	-0.3999762	-3.5058882	C	-1.3577360	-0.3389124	-3.4979467			
С	-0.0467506	-0.7699014	-3.4513069	С	-0.2510503	-1.0860847	-3.1021202			
С	0.7178664	-0.4185251	-2.3407674	С	0.4630459	-0.7050259	-1.9679778			
Н	-1.6477867	1.2222843	-0.5519074	Н	-1.3277283	2.0376644	-1.0924813			
Н	-3.0167708	0.6061611	-2.5198721	Н	-2.6130671	1.3646658	-3.1004732			
Н	0.3950124	-1.3320177	-4.2666931	Н	0.0500628	-1.9552391	-3.6766336			
Η	1.7538110	-0.7311857	-2.3084953	Н	1.3302063	-1.2879693	-1.6816986			
С	0.2728047	0.1645486	1.2602864	С	0.2560479	0.1507989	1.2787240			
С	0.0112630	1.0671376	2.3043695	С	-0.3185027	0.8332970	2.3617950			
С	-0.5626992	0.6731710	3.5070490	С	-0.8035093	0.1591147	3.4822591			
С	-0.9049687	-0.6648089	3.6959147	С	-0.7286578	-1.2293896	3.5343049			
С	-0.6810045	-1.5820298	2.6753351	C	-0.1881264	-1.9359327	2.4602104			
С	-0.1048967	-1.1723168	1.4701341	С	0.2869526	-1.2480121	1.3488944			
Η	-0.7439662	1.4063065	4.2867506	Н	-1.2385605	0.7271180	4.2970615			
Η	-1.3548124	-0.9964123	4.6268995	Н	-1.1056714	-1.7541378	4.4069922			
Η	-0.9547550	-2.6247126	2.7934360	Н	-0.1430462	-3.0202739	2.4832437			
Cl	-2.3500032	-0.8432496	-4.8944323	Н	0.6847305	-1.8031111	0.5073327			
Η	0.2768430	2.1096031	2.1548201	Cl	-0.4885733	2.5773515	2.3464875			
Cl	0.0711603	-2.4089062	0.2522713	Cl	-2.2572699	-0.8164002	-4.9161212			
Cl	3.1061334	-0.9674283	-0.0488561	Cl	3.1697272	-0.6079066	-0.0214952			
Cl	3.0813112	1.5168170	1.4339128	Cl	2.8966112	1.8665581	1.4497477			

TABLE S1. Optimized Geometries of o, p'-**DDT** and o, p'-**DDD** at the DFT-D3(BJ)-TPSS/def2-TZVP level. (s)-o, p'-DDT (r)-o, p'-DDT

(t/s)-o,p'-DDD							
E(DF1	Г) =	-2380.	79552	4934	au		
E(SCS	SMP2) =	-2377.	10233	2848	au		
С	-0.5301	084	-1.02	8953	4	0.4201308	
С	-1.0394	522	-2.17	1289	7	-0.4681240	
Н	-0.7674	995	-1.30	7911	6	1.4491108	
Cl	-0.1926	175	-3.70	8190	9	-0.0789980	
С	0.9731	979	-0.81	3889	7	0.3255181	
С	1.6474	486	-0.34	8902	6	1.4596634	
С	3.0117	394	-0.07	3321	6	1.4268325	
С	3.7129	433	-0.26	9997	6	0.2387229	
С	3.0688	712	-0.73	8860	5	-0.9038157	
С	1.7023	644	-1.00	5070	4	-0.8520038	
Н	1.0956	511	-0.19	5765	2	2.3834846	
Н	3.5284	579	0.28	5080	5	2.3103600	
Н	3.6310	257	-0.89	7965	0	-1.8174230	
Н	1.2192	060	-1.38	7804	3	-1.7467234	
С	-1.2746	790	0.25	9466	9	0.0935608	
С	-2.1087	639	0.90	0833	8	1.0176220	
С	-2.7840	587	2.07	9922	7	0.7014205	
С	-2.6333	049	2.64	0524	8	-0.5635042	
С	-1.8026	009	2.02	5964	6	-1.5015911	
С	-1.1317	280	0.85	5127	4	-1.1653350	
Н	-3.4197	777	2.54	5129	6	1.4467292	
Н	-3.1604	703	3.55	7290	9	-0.8095686	
Н	-1.6725	873	2.46	2085	5	-2.4875985	
Н	-0.4664	145	0.39	4485	5	-1.8900085	
Cl	-2.3365	276	0.24	5100	9	2.6260739	
Cl	5.4253	551	0.06	7528	2	0.1830765	
Н	-0.8826	214	-1.99	5067	0	-1.5302229	
Cl	-2.8130	489	-2.37	7551	8	-0.2673891	

(t/r)) <i>-0,p'-</i> D	DD						
E(DF1	Г) =	-2380.	797	028	499 au			
E(SCS	SMP2) =	-2377.	103	910	661 au			
С	-0.4959	056	-1.	102	8663	0.14	6584	5
С	-1.1338	223	-2.	057	5614	-0.87	11058	В
Н	-0.5814	044	-1.	614	7566	1.11	15736	õ
Cl	-0.3522	440	-3.	676	4329	-0.77	43770	C
С	0.9914	352	-0.	838	5162	-0.08	83443	1
С	1.7200	429	-0.	276	3966	0.96	65338	З
С	3.0732	745	Ο.	019	9943	0.83	71886	5
С	3.7101	887	-0.	253	2454	-0.37	2061	1
С	3.0115	774	-0.	814	5939	-1.43	69996	5
С	1.6557	175	-1.	101	6266	-1.28	81300	5
Н	1.2193	276	-0.	057	7023	1.90	64496	5
Н	3.6298	025	0.	454	5088	1.66	02704	1
Н	3.5210	129	-1.	024	1698	-2.37	10384	1
Η	1.1290	469	-1.	541	8525	-2.12	72343	1
С	-1.2648	570	0.	204	6567	0.30	19473	3
С	-1.8138	157	0.	502	6090	1.55	6361	7
С	-2.4917	299	1.	693	0179	1.80	25193	3
С	-2.6405	073	2.	625	7396	0.77	77150)
С	-2.1129	064	2.	357	4013	-0.48	27209	9
С	-1.4351	695	1.	160	6831	-0.70	8070	7
Н	-2.9042	322	1.	887	4544	2.78	76693	3
Н	-3.1673	608	3.	559	1350	0.95	08939	9
Н	-2.2217	637	3.	065	7227	-1.29	6769	5
Cl	-0.8111	501	0.	893	5371	-2.32	28865	5
Н	-1.7062	375	-0.	231	2435	2.35	08569	Э
Cl	5.4089	125	0.	111	4805	-0.55	14149	9
Н	-1.0403	729	-1.	727	1621	-1.90	0889	7
Cl	-2.8968	593	-2.	217	8142	-0.56	45211	L

(g-/s)-o,p'-DDD						
E(DFT	Г) =	-2380.	7907	2331	L3 au	
E(SCS	SMP2) =	-2377.	0968	5728	38 au	
С	-0.4014	1888	-0.7	3487	734	0.8294018
С	-1.0820)325	-2.1	0555	544	0.6782856
Н	-0.4695	5749	-0.5	4762	294	1.9088531
Cl	-0.1826	5226	-3.3	8077	704	1.5688128
С	1.0676	5837	-0.6	3051	L16	0.4592243
С	1.7932	2074	0.4	2126	506	1.0339985
С	3.1367	7186	0.6	2538	363	0.7371395
С	3.7694	1663	-0.2	4348	344	-0.1507514
С	3.0760)616	-1.3	0088	327	-0.7316359
С	1.7277	7098	-1.4	8762	221	-0.4252535
Н	1.2961	789	1.0	9766	510	1.7253509
Н	3.6899	9779	1.4	4149	971	1.1886911
Н	3.5835	5949	-1.9	7289	963	-1.4149764
Н	1.1996	5518	-2.3	1488	382	-0.8836760
С	-1.2538	3675	0.3	2456	596	0.1427039
С	-2.4036	5603	0.8	4849	939	0.7477314
С	-3.1979	9550	1.8	0785	502	0.1224478
С	-2.8465	5261	2.2	5933	309	-1.1471963
С	-1.7084	1963	1.7	5367	778	-1.7758986
С	-0.9253	3965	0.8	0060	064	-1.1320572
Н	-4.0762	2020	2.1	9005	519	0.6310165
Н	-3.4620)116	3.0	0706	504	-1.6382793
Н	-1.4291	381	2.1	0264	168	-2.7651760
Н	-0.0337	7058	0.4	1160)36	-1.6134866
Cl	-2.8857	7542	0.3	0358	361	2.3464012
Cl	5.4568	3907	-0.0	0286	536	-0.5336590
Cl	-1.3670)990	-2.6	0044	149	-1.0340918
Н	-2.0716	5103	-2.0	7286	512	1.1260794

(g-	/r)-0,p'-DDD		
E (D	FT) = -2380	.797943022 au	
E(S	CSMP2) = -2377	.103909469 au	
С	-0.3208928	0.9055725	-0.5413522
С	-1.1603738	2.1322801	-0.1490247
Η	-0.2045041	1.0483710	-1.6252543
Cl	-0.3768120	3.6649175	-0.6959122
С	1.0908595	0.7803731	0.0077015
С	1.8755632	-0.2631989	-0.4984684
С	3.1836004	-0.4611084	-0.0692842
С	3.7191288	0.4086642	0.8787206
С	2.9659324	1.4626094	1.3878216
С	1.6555826	1.6437078	0.9483623
Н	1.4509091	-0.9463281	-1.2302822
Н	3.7819830	-1.2761514	-0.4612343
Н	3.3977270	2.1330315	2.1227921
Н	1.0776839	2.4598773	1.3635915
С	-1.1879709	-0.3466986	-0.4083205
С	-2.0131006	-0.6567630	-1.5017780
С	-2.8698730	-1.7518307	-1.5047410
С	-2.9148095	-2.5858983	-0.3884384
С	-2.1064528	-2.3116141	0.7095462
С	-1.2563027	-1.2024930	0.7029362
Н	-3.4884408	-1.9559459	-2.3731327
Η	-3.5713693	-3.4504982	-0.3692261
Н	-2.1243517	-2.9491318	1.5867823
Cl	-0.2938501	-0.9595354	2.1358999
Н	-1.9645442	-0.0128110	-2.3776341
Cl	5.3599947	0.1733100	1.4321246
Cl	-1.5930177	2.2206174	1.5911285
Н	-2.1122988	2.0966749	-0.6733238

(g+/	's)-o,p'-DDD			(g+/	′r)-o,p′-DDD		
E (DE	T = -2380).790803693 au	ı	E (DE	FT) = -2380).795340549 au	1
E(SC	CSMP2) = -2377	7.097293883 au	ı	E(SC	CSMP2) = -2372	7.101392473 au	1
С	-0.4754010	-0.6956042	0.8319571	C	-0.3935251	-0.9379925	0.4495012
С	-1.0424452	-2.1215602	0.7256039	С	-1.1123615	-2.1781041	-0.1151230
Н	-0.6148800	-0.4538280	1.8943242	Н	-0.3407338	-1.1659290	1.5228894
Н	-0.4895016	-2.8090999	1.3617822	Н	-0.4619867	-3.0492667	-0.0718895
С	1.0234528	-0.6093015	0.5504718	С	1.0572813	-0.8135385	-0.0054837
С	1.6081580	0.6631418	0.4819490	С	1.8399115	0.1740453	0.6059720
С	2.9761718	0.8244035	0.2895313	С	3.1812278	0.3394746	0.2793679
С	3.7801908	-0.3069935	0.1586550	С	3.7540256	-0.5033350	-0.6722766
С	3.2295833	-1.5827355	0.2236461	С	3.0021758	-1.4982875	-1.2892745
С	1.8558043	-1.7254044	0.4222290	С	1.6575682	-1.6481145	-0.9505555
Н	0.9806881	1.5447939	0.5754130	Н	1.3871565	0.8365814	1.3393590
Н	3.4167591	1.8140592	0.2385205	Н	3.7786301	1.1105892	0.7532663
Н	3.8642729	-2.4554815	0.1162288	Н	3.4593985	-2.1433870	-2.0314724
Н	1.4500530	-2.7306219	0.4539319	Н	1.0795611	-2.4051178	-1.4700410
С	-1.2712156	0.3246421	0.0393442	С	-1.2072725	0.3471106	0.3590280
С	-2.1572804	1.2238110	0.6478096	С	-2.0411560	0.6536599	1.4462910
С	-2.8901184	2.1505850	-0.0942489	С	-2.8411001	1.7907503	1.4752840
С	-2.7381222	2.1955995	-1.4767955	С	-2.8156959	2.6737171	0.3974082
С	-1.8442279	1.3295706	-2.1070809	С	-1.9867906	2.4108580	-0.6881080
С	-1.1182228	0.4151762	-1.3513108	С	-1.1921809	1.2623498	-0.7066185
Н	-3.5648739	2.8280151	0.4172839	Н	-3.4739729	1.9862478	2.3353221
Н	-3.3093657	2.9157989	-2.0549801	Н	-3.4294615	3.5695307	0.3997196
Н	-1.7080443	1.3697522	-3.1833524	Н	-1.9420761	3.0900782	-1.5324169
Н	-0.4058211	-0.2437825	-1.8354621	Cl	-0.1716501	1.0592118	-2.1092609
Cl	-2.3578800	1.2514369	2.3887031	Н	-2.0552576	-0.0333334	2.2872305
Cl	5.4978599	-0.1191212	-0.0941110	Cl	5.4371806	-0.3054810	-1.0951821
Cl	-0.9597546	-2.8257871	-0.9320890	Cl	-1.6317525	-2.0169110	-1.8193743
Cl	-2.7358393	-2.1714644	1.3120462	Cl	-2.5371432	-2.6054067	0.9064377