Supporting Information

Facile Synthesis of Graft Copolymers of Controlled Architecture. Copolymerization of Fluorinated and Non-Fluorinated Poly(dimethylsiloxane) Macromonomers with Trialkylsilyl Methacrylates using RAFT Polymerization

Dražen Pavlović,^{*,†} Sandra Lafond, André Margaillan and Christine Bressy^{*}

Université de Toulon, Laboratoire MAPIEM, EA 4323, 83957 La Garde, France

Table of Content

Spectral, TD-SEC and kinetics data for compounds in the Experimental Section

Figure 1. ¹ H NMR spectrum of PDMSMAsymm Macro RAFT agent in CDCl ₃	S3
Figure 2. ¹ H NMR spectrum of PDMSMAfluor symm Macro RAFT agent in CDCl ₃	S4
Figure 3. ¹ H NMR spectrum of p(PDMSMAsymm)-b-p(TBDMSMA) in CDCl ₃	S 5
Figure 4. ¹ H NMR spectrum of p(PDMSMAfluor symm)-b-p(TBDMSMA) in CDCl ₃	S6
Figure 5. ¹ H NMR spectrum of p(PDMSMAsymm)-b-p(TIPSMA) in CDCl ₃	S7
Figure 6. ¹ H NMR spectrum of p(PDMSMAfluor symm)-b-p(TIPSMA) in CDCl ₃	S 8
Figure 7. (a) TD-SEC traces of PDMSsymm macro RAFT agent and p(PDMSMAsymm) b-p(TBDMSMA) block copolymer. (b) TD-SEC traces of PDMSfluor symm macro RAFT agent and p(PDMSMAfluor symm)-b-p(TBDMSMA) block copolymer.	- S9
*Corresponding authors: Christine Bressy (E-mail: <u>christine.bressy@univ-tln.fr</u>) and Dra	žen

Pavlović (dpavlovic@hotmail.fr).

[†] Current address: Siget 18c, 10000 Zagreb, Croatia.

Figure S8. (a) Plots of $\ln([M_0]/[M])/[A]_0^{1/2}$ versus polymerization time for TBDMSMA and TIPSMA polymerization in toluene at 70°C. (b) Plots of $\ln([M_0]/[M])/[A]_0^{1/2}$ versus polymerization time for symmetrical PDMSMA, and fluorinated symmetrical PDMSMA polymerization in toluene at 70°C.	S10
Figure S9. (a) Plot of monomer conversion versus time for RAFT copolymerization of TBDMSMA and symmetrical PDMSMA macromonomer (PDMSMA _{symm}), in the presence of CPDB at 70°C in toluene. (b) Plot of monomer conversion <i>versus</i> time for RAFT copolymerization of TBDMSMA and symmetrical fluorinated PDMSMA macromonomer (PDMSMA _{fluor symm}), in the presence of CPDB at 70°C in toluene.	S11
Figure S10. TD-SEC traces of statistical copolymers obtained by CPDB-mediated RAFT copolymerization of TBDMSMA and either PDMSMAsymm or PDMSMAfluor symm macromonomers at 70°C in toluene. (a) p(PDMSMAsymm-stat-TBDMSMA) (b) p(PDMSMAfluor symm-stat-TBDMSMA).	S11
Figure S11. (a) Plot of monomer conversion <i>versus</i> time for RAFT copolymerization of TIPSMA and symmetrical PDMSMA macromonomer (PDMSMA _{symm}), in the presence o CPDB at 70°C in toluene. (b) Plot of monomer conversion <i>versus</i> time for RAFT copolymerization of TIPSMA and symmetrical fluorinated PDMSMA macromonomer (PDMSMA _{fluor symm}), in the presence of CPDB at 70°C in toluene.	f S12
Figure S12. Evolution of the number-average molar mass M_n and dispersity D_M with monomer conversion in the statistical copolymerization of TIPSMA and either PDMSMA _{symm} (a) or PDMSMA _{fluor symm} (b) at 70°C mediated by CPDB.	S12
Figure S13. Jaacks plot for the RAFT polymerization of TBDMSMA and PDMSMA _{symm} (a), and PDMSMA _{fluor symm} (b) in toluene at 70°C.	S13
Figure S14. Jaacks plot for the RAFT polymerization of TIPSMA and PDMSMA _{symm} (a), and PDMSMA _{fluor symm} (b) in toluene at 70°C.	S13
Figure S15. Evolution of the mass with immersion time in artificial seawater. (a) Coatings composed of statistical graft copolymers, (b) coatings composed of diblock graft copolymers.	S13
References	S14

Figure S7. (a) TD-SEC traces of PDMSsymm macro RAFT agent (M_n = 12 500 g/mol and D_M = 1.15) and p(PDMSMAsymm)-b-p(TBDMSMA) block copolymer (M_n = 21 300 g/mol and D_M = 1.17) obtained by *in situ* chain extension of macro RAFT agent with TBDMSMA monomer at 70°C in toluene. For the determination of $M_{n,TD-SEC}$ crude PDMSsymm macro RAFT agent was used. (b) TD-SEC traces of PDMSfluor symm macro RAFT agent ($M_{n,NMR}$ = 13 100 g/mol and D_M = 1.14) and p(PDMSMAfluor symm)-b-p(TBDMSMA) block copolymer (M_n = 28 700 g/mol and D_M = 1.08) obtained by *in situ* chain extension with TBDMSMA at 70° C in toluene. For the determination of $M_{n,NMR}$ precipitated PDMSfluor symm macro RAFT agent was used.

Determination of global kinetic constants of trialkylsilyl methacrylates and PDMS macromononers

The global kinetic constants (k_g) of polymerization of trialkylsilyl methacrylates and PDMSMA macromonomers were determined using an overall kinetics law of the following form (Equation 1)¹:

$$V_p = -\frac{d[M]}{dt} = k_p \times [M] \times [P_n] \quad (1)$$

where k_p is the propagation rate constant, [M] is the monomer molar concentrations, and [P_n] is the radical concentration in the reaction media. In the quasi-stationary state, characterized by a constant concentration of radical species in the reaction medium, the amount of the initiated radicals is equal to the amount of the terminated radicals as shown in Equation 2:

$$2 \times f \times k_d \times [A] = 2 \times k_t \times [P_n] \times [P_n] \quad (2)$$

where k_d is the rate constant of decomposition of the initiator (initiation rate constant), f is the efficiency of the initiator, [A] and $[A_0]$ are the initial and instantaneous concentrations of the initiator, and k_t is the termination rate constant. Therefore, it follows:

$$[P_n] = \sqrt[2]{(f \times k_d \times [A]/k_t)} = \sqrt[2]{(f \times k_d \times [A_0] \times e^{-k_d t}/k_t)}$$
(3)

By substituting Equation (3) in Equation (1), it follows:

$$V_p = -\frac{d[M]}{dt} = k_p \times [M] \times \sqrt[2]{f \times k_d \times [A_0] \times e^{-k_d t}/k_t}$$
(4)

If the initiator concentration is considered constant, the integration of the Equation (4) gives:

$$ln \frac{[M_0]}{[M]} = k_p \times \sqrt[2]{f \times k_d \times [A_0]/k_t} \quad (5)$$

The values of global rate constants of RAFT polymerization $(k_g = k_p \times \sqrt[2]{f \times k_d/k_t})$ were therefore calculated from the slope of the each straight line in Figure S8.

Figure S8. (a) Plots of $\ln([M_0]/[M])/[A]_0^{1/2}$ versus polymerization time for TBDMSMA (\blacklozenge) and TIPSMA (\blacktriangle) polymerization in toluene at 70°C ([CPDB]/[AIBN]= 5/1): k_g(TBDMSMA)= 8.0 x 10⁻⁴ L mol^{-1/2} s⁻¹ (R²= 0.997); k_g(TIPSMA)= 2.0 x 10⁻⁴ L mol^{-1/2} s⁻¹ (R²= 0.999). (**b**) Plots of $\ln([M_0]/[M])/[A]_0^{1/2}$ versus polymerization time for symmetrical PDMSMA (\blacklozenge), and fluorinated symmetrical PDMSMA (\bigstar) polymerization in toluene at 70°C ([CPDB]/[AIBN]= 2/1): k_g(PDMSMA symm)= 4.0 x 10-4 L mol-1/2 s-1 (R2= 0.991); k_g(PDMSMA fluor symm)= 2.0 x 10-4 L mol-1/2 s-1 (R2= 0.991).

Figure S9. (a) Plot of monomer conversion versus time for RAFT copolymerization of TBDMSMA (\blacklozenge) and symmetrical PDMSMA macromonomer (PDMSMA_{symm}, \blacktriangle), in the presence of CPDB at 70°C in toluene. (b) Plot of monomer conversion *versus* time for RAFT copolymerization of TBDMSMA (\blacklozenge) and symmetrical fluorinated PDMSMA macromonomer (PDMSMA_{fluor symm}, \bigstar), in the presence of CPDB at 70°C in toluene.

Figure S10. TD-SEC traces of statistical copolymers obtained by CPDB-mediated RAFT copolymerization of TBDMSMA and either PDMSsymm or PDMSMAfluor symm macromonomers at 70°C in toluene. (a) p(PDMSMAsymm-stat-TBDMSMA) (Mn= 13 700 g/mol and ĐM= 1.11). (b) p(PDMSMAfluor symm-stat-TBDMSMA) (Mn= 13 600 g/mol and ĐM= 1.11).

Figure S11. (a) Plot of monomer conversion *versus* time for RAFT copolymerization of TIPSMA (\blacklozenge) and symmetrical PDMSMA macromonomer (\blacktriangle) (PDMSMA_{symm}), in the presence of CPDB at 70°C in toluene. (b) Plot of monomer conversion *versus* time for RAFT copolymerization of TIPSMA (\blacklozenge) and symmetrical fluorinated PDMSMA macromonomer (PDMSMA_{fluor symm}, (\bigstar)), in the presence of CPDB at 70°C in toluene.

Figure S12. Evolution of the number-average molar mass M_n (\blacklozenge) and dispersity \mathcal{D}_M (\blacktriangle) with monomer conversion in the statistical copolymerization of TIPSMA and either PDMSMA_{symm} (**a**) or PDMSMA_{fluor symm} (**b**) at 70°C mediated by CPDB.

Figure S13. Jaacks plot for the RAFT polymerization of TBDMSMA and PDMSMA_{symm} (**a**), and PDMSMA_{fluor symm} (**b**) in toluene at 70°C.

Figure S14. Jaacks plot for the RAFT polymerization of TIPSMA and PDMSMA_{symm} (**a**), and PDMSMA_{fluor symm} (**b**) in toluene at 70°C.

Figure S15. Evolution of the mass with immersion time in artificial seawater. (a) Coatings composed of statistical graft copolymers (◊) p(PDMSMAsymm-stat-TIPSMA) 50/50, (♦) p(PDMSMAfluor symm-stat-TIPSMA) 50/50, (o) p(PDMSMAsymm-stat-TBDMSMA) 20/80, (•) p(PDMSMAfluor symm-stat-TBDMSMA) 20/80, (•) p(PDMSMAfluor symm-stat-TBDMSMA) 20/80, (△) p(PDMSMAsymm-stat-TBDMSMA) 50/50, (▲) p(PDMSMAfluor symm-stat-TBDMSMA) 50/50 (b) coatings composed of diblock graft copolymers (□) p(PDMSMAsymm)-b-pTIPSMA 50/50, (■) p(PDMSMAfluor symm)-b-pTIPSMA 50/50, (●) p(PDMSMAfluor symm)-b-pTBDMSMA 50/50, (●) p(PDMSMAfluor symm)-b-pTBDMSMA 50/50, (●) p(PDMSMAfluor symm)-b-pTBDMSMA 50/50, (●) p(PDMSMAfluor symm)-b-pTBDMSMA 50/50. The film-forming hydrolyzable homopolymer pTIPSMA (×) is used as reference.

References

 Matyjaszewski, K.; Davis, T. P. Handbook of Radical Polymerization; John Wiley & Sons Inc., 2002.