Janus Long-Chain Hyperbranched Copolymer of PSt and POEGMA from Self-Assembly Mediated Click Reaction

Sheng-Qi Chen, \# Chen He, ${ }^{\#}$ Hui-Juan Li, Peng-Yun Li, Wei-Dong He*

CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and

Engineering, University of Science and Technology of China, Hefei, Anhui 230026,

China

Synthesis of alkynyl-(PSt- $\left.\mathbf{N}_{3}\right)_{2}$ and alkynyl-(POEGMA-N $\mathbf{3}_{\mathbf{3}} \mathbf{2}_{2}$

Figure S 1 shows ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of alkynyl-($\left.\mathrm{PSt}-\mathrm{N}_{3}\right)_{2}$. Two meso-protons of phenyl groups of styrene units have the signal in the range of $6.3 \sim 6.9 \mathrm{ppm}$. The signals of methylene protons and methine proton of PSt backbone are loacated in the range of 1.0~2.3 ppm . Importantly, the signal of methylene protons from propargyl group appears at 4.52 ppm and that of methine proton next bromo end-group at 3.94 ppm .

Figure S1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of alkynyl-($\left.\mathrm{PSt}-\mathrm{N}_{3}\right)_{2}$ seesaw macromonomer

POEGMA with one alkynyl group at the chain center and two azido groups at each chain end [alkynyl-(POEGMA-Br) $)_{2}$] was prepared through atom transfer radical polymerization (ATRP) of OEGMA with PBMPMP as the initiator and the conversion of bromo end groups into azido end groups. Figure S2 shows ${ }^{1} \mathrm{H}-$ NMR spectrum of alkynyl-(POEGMA$\left.\mathrm{N}_{3}\right)_{2}$. Based on the integral heights of the signal at 3.67 ppm (methylene protons from OEG) and that at 4.25 ppm (methylene protons from propargyl group), real number-averaged molecular weight ($M_{\mathrm{n}, \mathrm{NMR}}$) of alkynyl-(POEGMA- $\left.\mathrm{N}_{3}\right)_{2}$ is 15000 .

Figure S2. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of alkynyl-(POEGMA- $\left.\mathrm{N}_{3}\right)_{2}$ seesaw macromonomer

Contact angle imaging of different copolymer films

Different $\mu-\left(\mathrm{PSt}-\mathrm{N}_{3}\right)_{2}\left(\text { POEGMA- } \mathrm{N}_{3}\right)_{2}$ films were obtained by casting real solution in THF and micelle dispersion in one selective solvent. Contact angles to water ($C A_{\mathrm{w}}$) and oil $\left(C A_{\mathrm{o}}\right)$ were imaged with digital camera, as shown in Figure S3.

Figure S3. Contact angles of μ-(PSt- $\left.\mathrm{N}_{3}\right)_{2}\left(\text { POEGMA- } \mathrm{N}_{3}\right)_{2}$ films casting from different solvents [$C A_{\mathrm{w}}$: THF (a), methanol (b), cyclohexane (c); $C A_{\mathrm{o}}$: THF (d), methanol (e), cyclohexane (f)]

Camera images of different μ-(lhb-POEGMA)(PSt- $\left.\mathrm{N}_{3}\right)_{2}$ films are shown in Figure S4.

Figure S4. Contact angles of μ-(lhb-POEGMA)(PSt-N $)_{3}$ films from THF (a: $C A_{\mathrm{w}}, \mathrm{d}$:
$C A_{\mathrm{o}}$), methanol (b: $C A_{\mathrm{w}}, \mathrm{e}: C A_{\mathrm{o}}$) and cyclohexane (c: $C A_{\mathrm{w}}, \mathrm{f}: C A_{\mathrm{o}}$)

Camera images of different μ-(lhb-POEGMA)(lhb-PSt) films are shown in Figure Ss.

Figure S5. Contact angles of μ-(lhb-POEGMA) (lhb-PSt) films casting from different solvents THF (a: $C A_{\mathrm{w}}$, d: $C A_{\mathrm{o}}$), methanol (b: $C A_{\mathrm{w}}$, e: $C A_{\mathrm{o}}$) and cyclohexane (c: $C A_{\mathrm{w}}$,

$$
\left.\mathrm{f}: C A_{\mathrm{o}}\right)
$$

Table S1. Contact angles of different copolymer films cast from different solvents

sample	THF		$\mathrm{CH}_{3} \mathrm{OH}$		cyclcohexane	
	$C A_{\text {w }}$	$C A_{\text {o }}$	$C A_{\text {w }}$	$C A_{\text {o }}$	$C A_{\text {w }}$	$C A_{\text {o }}$
$\mu-\left(\mathrm{PSt}-\mathrm{N}_{3}\right)_{2}\left(\text { POEGMA- } \mathrm{N}_{3}\right)_{2}$	50.0°	65.6°	$39.8{ }^{\circ}$	$82.5{ }^{\circ}$	$89.5{ }^{\circ}$	$56.4{ }^{\circ}$
μ-(lhb-POEGMA)(PSt- $\left.\mathrm{N}_{3}\right)_{2}$	47.3°	70.3°	$19.9{ }^{\circ}$	98.7°	79.1°	60.8°
μ-(lhb-POEGMA)(lhb-PSt)	$53.4{ }^{\circ}$	65.9°	$42.4{ }^{\circ}$	83.1°	92.7°	61.5°

