Janus Long-Chain Hyperbranched Copolymer of PSt and POEGMA from Self-Assembly Mediated Click Reaction

Sheng-Qi Chen,# Chen He,# Hui-Juan Li, Peng-Yun Li, Wei-Dong He*

CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and

Engineering, University of Science and Technology of China, Hefei, Anhui 230026,

China

Synthesis of alkynyl-(PSt-N₃)₂ and alkynyl-(POEGMA-N₃)₂

Figure S1 shows ¹H-NMR spectrum of alkynyl-(PSt-N₃)₂. Two meso-protons of phenyl groups of styrene units have the signal in the range of $6.3\sim6.9$ ppm. The signals of methylene protons and methine proton of PSt backbone are loacated in the range of $1.0\sim2.3$ ppm. Importantly, the signal of methylene protons from propargyl group appears at 4.52 ppm and that of methine proton next bromo end-group at 3.94 ppm.

Figure S1. ¹H-NMR spectrum of alkynyl-(PSt-N₃)₂ seesaw macromonomer

POEGMA with one alkynyl group at the chain center and two azido groups at each chain end [alkynyl-(POEGMA-Br)₂] was prepared through atom transfer radical polymerization (ATRP) of OEGMA with PBMPMP as the initiator and the conversion of bromo end groups into azido end groups. Figure S2 shows ¹H-NMR spectrum of alkynyl-(POEGMA-N₃)₂. Based on the integral heights of the signal at 3.67 ppm (methylene protons from OEG) and that at 4.25 ppm (methylene protons from propargyl group), real number-averaged molecular weight ($M_{n,NMR}$) of alkynyl-(POEGMA-N₃)₂ is 15000.

Figure S2. ¹H-NMR spectrum of alkynyl-(POEGMA-N₃)₂ seesaw macromonomer

Contact angle imaging of different copolymer films

Different μ -(PSt-N₃)₂(POEGMA-N₃)₂ films were obtained by casting real solution in THF and micelle dispersion in one selective solvent. Contact angles to water (*CA*_w) and oil (*CA*_o) were imaged with digital camera, as shown in Figure S3.

Figure S3. Contact angles of μ -(PSt-N₃)₂(POEGMA-N₃)₂ films casting from different solvents [*CA*_w: THF (a), methanol (b), cyclohexane (c); *CA*_o: THF (d), methanol (e),

cyclohexane (f)]

Camera images of different μ -(*lhb*-POEGMA)(PSt-N₃)₂ films are shown in Figure S4.

Figure S4. Contact angles of μ -(*lhb*-POEGMA)(PSt-N₃)₂ films from THF (a: CA_w , d:

 CA_{o}), methanol (b: CA_{w} , e: CA_{o}) and cyclohexane (c: CA_{w} , f: CA_{o})

Camera images of different μ -(*lhb*-POEGMA)(*lhb*-PSt) films are shown in Figure Ss.

Figure S5. Contact angles of μ -(*lhb*-POEGMA)(*lhb*-PSt) films casting from different solvents THF (a: CA_w , d: CA_o), methanol (b: CA_w , e: CA_o) and cyclohexane (c: CA_w ,

f: CA_o)

sample -	THF		CH ₃ OH		cyclcohexane	
	$CA_{\rm w}$	CA _o	$CA_{\rm w}$	CA _o	$CA_{\rm w}$	CA _o
μ-(PSt-N ₃) ₂ (POEGMA-N ₃) ₂	50.0°	65.6°	39.8°	82.5°	89.5°	56.4°
μ -(<i>lhb</i> -POEGMA)(PSt-N ₃) ₂	47.3°	70.3°	19.9°	98.7°	79.1°	60.8°
μ-(<i>lhb</i> -POEGMA)(<i>lhb</i> -PSt)	53.4°	65.9°	42.4°	83.1°	92.7°	61.5°

 Table S1. Contact angles of different copolymer films cast from different solvents