Supplementary Information

for

Lactone-Fused Electron-Deficient Building Blocks for *n*-Type Polymer Field-Effect Transistors: Synthesis, Properties, and Impact of Alkyl Substitution Positions

Xiao-Ye Wang, Meng-Wen Zhang, Fang-Dong Zhuang, Jie-Yu Wang,* and Jian Pei*

Table of Contents

- 1. Synthetic Procedures
- 2. Thermal Properties (TGA and DSC)
- 3. Photoelectron Spectroscopy (PES)
- 4. X-Ray Diffraction (XRD)
- 5. Single-Crystal X-Ray Analysis
- 6. Computational Details
- 7. NMR Spectra

1. Synthetic Procedures.

(E)-4-(3-hexylthiophen-2-yl)-4-oxobut-2-enoic acid (2a-H) and (E)-4-(4-hexylthiophen-2-yl)-4-oxobut-2-enoic acid (2b-H). 3-Hexylthiophene (1-H) (10.0 g, 59.4 mmol) and maleic anhydride (5.83 g, 59.4 mmol) were dissolved in dichloromethane (150 mL) and the mixture was cooled in an ice bath. AlCl₃ (11.9 g, 89.1 mmol) was added portion-wise and the mixture was stirred at room temperature for 16 h. Then the mixture was poured into ice-cooled 10% aqueous HCl (200 mL) and stirred for 30 min. The organic layer was separated and the aqueous layer was extracted with dichloromethane for 3 times. The combined organic layers were washed with water and saturated aqueous NaCl successively and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was subjected to column chromatography (80 g normal phase silica gel cartridge, eluent: petroleum ether/dichloromethane/acetic acid = 50 : 50 : 1) to afford 3.13 g (20 %) of compound **2a-H**, which eluted first, as a light yellow solid and 2.43 g (15 %) of compound **2b-H**, which followed, as a light yellow solid.

Compound **2a-H**: ¹H NMR (400 MHz, CDCl₃, 298 K, ppm): δ 7.79 (d, *J* = 15.2 Hz, 1H), 7.58 (d, *J* = 4.8 Hz, 1H), 7.09 (d, *J* = 4.8 Hz, 1H), 6.89 (d, *J* = 15.2 Hz, 1H), 3.06 (t, *J* = 7.8 Hz, 2H), 1.69 – 1.58 (m, 2H), 1.44 – 1.26 (m, 6H), 0.89 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, 298 K, ppm): δ 181.1, 170.4, 153.4, 140.8, 134.8, 132.2, 131.8, 130.3, 31.6, 30.7, 30.2, 29.2, 22.6, 14.0; HRMS (ESI) *m/z*: Calcd for C₁₄H₁₉O₃S: 267.1049; Found: 267.1049 [M + H]⁺.

Compound **2b-H**: ¹H NMR (400 MHz, CDCl₃, 298 K, ppm): δ 7.85 (d, J = 15.6 Hz, 1H), 7.71 (s, 1H), 7.40 (s, 1H), 6.94 (d, J = 15.6 Hz, 1H), 2.65 (t, J = 7.6 Hz, 2H), 1.70 – 1.59 (m, 2H), 1.40 – 1.26 (m, 6H), 0.89 (t, J = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, 298 K, ppm): δ 180.6, 170.5, 145.3, 143.6, 138.0, 134.7, 131.4, 130.8, 31.6, 30.4, 30.2, 28.8, 22.5, 14.0. HRMS (ESI) *m/z*: Calcd for C₁₄H₁₉O₃S: 267.1049; Found: 267.1049 [M + H]⁺.

(*E*)-5,5'-(3-hexylthiophen-2-yl)-3,3'-bifuranylidene-2,2'-dione (3a-H). A 50 mL round bottomed flask was charged with 2a-H (0.90 g, 3.8 mmol), CuCl (0.14 g, 1.4 mmol), NH₄Cl (0.15 g, 2.8 mmol) and acetic anhydride (8 mL). The mixture was heated to reflux for 2 h after a dark purple color appeared. Then the mixture was cooled thoroughly, whereupon dark purple solids precipitated. The precipitate was filtrated and washed with acetic acid and ethanol successively and was purified by column chromatography over silica gel (eluent: petroleum ether/CH₂Cl₂ = 4 : 1) to give 0.30 g (36 %) of compound **3a-H** as a dark purple solid. ¹H NMR (400 MHz, CDCl₃, 298 K, ppm): δ 7.47 (d, *J* = 5.2 Hz, 2H), 7.27 (s, 2H), 7.02 (d, *J* = 5.2 Hz, 2H), 2.90 (t, *J* = 7.6 Hz, 4H), 1.75 – 1.65 (m, 4H), 1.49 – 1.29 (m, 12H), 0.90 (t, *J* = 6.8 Hz,6H); ¹³C NMR (100 MHz, CDCl₃, 298 K, ppm): δ 166.9, 154.8, 147.6, 131.6, 129.9, 125.3, 124.8, 103.8, 31.6, 30.4, 29.8, 29.2, 22.6, 14.0; HRMS (ESI) *m/z*: Calcd for C₂₈H₃₃O₄S₂: 497.1815; Found: 497.1801 [M + H]⁺.

(*E*)-5,5'-(4-hexylthiophen-2-yl)-3,3'-bifuranylidene-2,2'-dione (3b-H). A 50 mL round bottomed flask was charged with 2b-H (640 mg, 2.4 mmol), CuCl (88 mg, 0.9 mmol), NH₄Cl (94 mg, 1.8 mmol) and acetic anhydride (4 mL). The mixture was heated to reflux for 2 h after a dark purple color appeared. Then the mixture was cooled thoroughly and subjected to ultrasonication to give a dark purple precipitate. The precipitate was filtrated and washed with acetic acid and ethanol successively. The residue was purified by column chromatography over silica gel (eluent: petroleum ether/CH₂Cl₂ = 4 : 1) to give 85 mg (14 %) of compound **3b-H** as a dark purple solid. ¹H NMR (400 MHz, CDCl₃, 298 K, ppm): δ 7.46 (s, 2H), 7.31 (s, 2H), 7.18 (s, 2H), 2.63 (t, *J* = 7.8 Hz, 4H), 1.69 – 1.58 (m, 4H), 1.40 – 1.24 (m, 12H), 0.89

(t, J = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃, 298 K, ppm): δ 167.2, 154.6, 145.5, 130.7, 130.4, 126.5, 124.9, 102.8, 31.6, 30.3, 30.2, 28.8, 22.6, 14.1; HRMS (ESI) m/z: Calcd for C₂₈H₃₂O₄S₂: 496.1736; Found: 496.1725 [M]⁺.

3,7-bis(3-hexylthiophen-2-yl)pyrano[4,3-c]pyran-1,5-dione (4a-H). Compound **3a-H** (330 mg, 0.66 mmol) was suspended in 1,4-butanediol (20 mL) and the mixture was heated to 200 °C under nitrogen for 1 h and then cooled down to room temperature. 20 mL of methanol and 40 mL of saturated aqueous NaCl were added. The mixture was extracted with chloroform for 3 times and the combined organic layers were washed with water and saturated aqueous NaCl successively and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was subjected to column chromatography over silica gel (eluent: petroleum ether/CH₂Cl₂ = 4 : 1 to 2 : 1) to give 100 mg (30 %) of compound **4a-H** as an orange solid. ¹H NMR (400 MHz, CDCl₃, 298 K, ppm): δ 7.39 (d, *J* = 5.2 Hz, 2H), 7.00 (s, 2H), 6.98 (s, 2H), 2.92 (t, *J* = 7.8 Hz, 4H), 1.75 – 1.65 (m, 4H), 1.47 – 1.29 (m, 12H), 0.89 (t, *J* = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃, 298 K, ppm): δ 159.2, 154.2, 145.2, 131.3, 128.3, 127.9, 126.5, 98.8, 31.6, 30.22, 30.19, 29.2, 22.6, 14.04; HRMS (ESI) *m/z*: Calcd for C₂₈H₃₃O₄S₂: 497.1815; Found: 497.1819 [M + H]⁺.

3,7-bis(**4-hexylthiophen-2-yl**)**pyrano**[**4,3-c**]**pyran-1,5-dione** (**4b-H**). Compound **3b-H** (155 mg, 0.31 mmol) was suspended in 1,4-butanediol (30 mL) and the mixture was heated to 200 $\$ under nitrogen for 0.5 h and then cooled down to room temperature. 20 mL of methanol and 40 mL of saturated aqueous NaCl was added. S4

The mixture was extracted with chloroform for 3 times and the combined organic layers were washed with water and saturated aqueous NaCl successively and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was subjected to column chromatography over silica gel (eluent: petroleum ether/CH₂Cl₂ = 4 : 1 to 2 : 1) to give 78 mg (50 %) of compound **4b-H** as an orange solid. ¹H NMR (400 MHz, CDCl₃, 298 K, ppm): δ 7.49 (s, 2H), 7.08 (s, 2H), 7.07 (s, 2H), 2.62 (t, *J* = 7.6 Hz, 4H), 1.67 – 1.58 (m, 4H), 1.40 – 1.25 (m, 12H), 0.90 (t, *J* = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃, 298 K, ppm): δ 159.2, 153.6, 145.0, 134.3, 128.8, 126.7, 124.5, 96.7, 31.6, 30.34, 30.30, 28.9, 22.6, 14.1; HRMS (ESI) *m/z*: Calcd for C₂₈H₃₃O₄S₂: 497.1815; Found: 497.1828 [M + H]⁺.

2. Thermal Properties (TGA and DSC)

Fig. S1 TGA curves of P_{66} TET-3OD and P_{66} TET-4OD. T_d with 5% weight loss: 389 \mathbb{C} (P_{66} TET-3OD), 391 \mathbb{C} (P_{66} TET-4OD).

Fig. S2 DSC traces of polymers P₆₆TET-3OD and P₆₆TET-4OD.

3. Photoelectron Spectroscopy (PES)

Fig. S3 PES spectra of (a) P_{66} TET-3OD and (b) P_{66} TET-4OD in thin films (work function: P_{66} TET-3OD, 5.59 eV; P_{66} TET-4OD, 5.69 eV).

4. X-Ray Diffraction (XRD)

Fig. S4 Out-of-plane XRD patterns of (a) P₆₆TET-3OD and (b) P₆₆TET-4OD films.

5. Single-Crystal X-Ray Analysis

Table 51. Crystal uata and structure refinement for F 662 1-	Tab	ıbl	le	S1 .	Crystal	data	and	structure	refinement	for	P ₆	62T.	-3]	H
--	-----	-----	----	-------------	---------	------	-----	-----------	------------	-----	----------------	------	-----	---

Empirical formula	$C_{28}H_{32}O_4S_2$				
Formula weight	496.65				
Temperature/K	180.01(10)				
Crystal system	triclinic				
Space group	P-1				
a/Å	6.0485(7)				
b/Å	6.9813(4)				
c/Å	15.2806(16)				
$\alpha/^{\circ}$	94.625(6)				
β/°	94.955(9)				
γ/°	95.942(7)				
Volume/Å ³	636.77(10)				
Z	1				
$ ho_{calc} mg/mm^3$	1.295				
m/mm ⁻¹	0.241				
F(000)	264.0				
Crystal size/mm ³	0.2 imes 0.1 imes 0.1				
2θ range for data collection	5.892 to 52.042 °				
Index ranges	$-6 \le h \le 7, -8 \le k \le 8, -18 \le l \le 18$				
Reflections collected	4143				
Independent reflections	2507[R(int) = 0.0364]				
Data/restraints/parameters	2507/0/155				
Goodness-of-fit on F ²	1.025				

Final R indexes [I>= 2σ (I)]	$R_1 = 0.0745, wR_2 = 0.1791$
Final R indexes [all data]	$R_1 = 0.1171, wR_2 = 0.2069$
Largest diff. peak/hole / e Å ⁻³	0.83/-0.37

6. Computational Details

DFT calculations were performed using the Gaussian 09 software package.¹ The geometries and energies were calculated at the B3LYP/DGDZVP level.

Fig. S5 DFT-calculated HOMO and LUMO energy levels of P_{66} 2T-3H and P_{66} 2T-4H. Hexyl chains were replaced with methyl groups during the calculation.

Fig. S6 DFT-calculated HOMO (H) and LUMO (L) energy levels of DPP, isoindigo, and their corresponding lactone-based counterparts (top) and OPV derivatives fused with lactams and/or lactones (bottom).

Reference:

Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.

7. NMR Spectra

7.808 7.770 7.582 7.5570 7.5570 7.5570 7.5570 7.5570 7.5570 7.263 7.097 7.085 6.909 6.871 3.078 3.059 3.039 3.039 1.1.638 1.1.638 1.1.334 1.1.334 1.1.334 1.1.325 0.877 0.877 0.870

7.478 7.465 7.268 7.261 7.028

2.2918 2.2899 2.2890 2.2890 1.697 1.1.352 1.1.345 1.34

7.428 7.314 7.261 7.152

7.462 7.308 7.261 7.182

∠7.399 7.386 √7.261 6.998 6.982

7.453 7.261 7.069 7.053

7.261

-2.795 2.778 2.778 -1.685 -1.685 -1.238 0.854 0.854

