Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Interpenetrating Poly(urethane-urea)-Polydimethylsiloxane Networks Designed as Active Elements in Electromechanical Transducers

By Codrin Tugui, Stelian Vlad, Mihail Iacob, Cristian-Dragos Varganici, Lucia Pricop and Maria Cazacu

Figure S1. ¹H NMR spectrum of poly(urethane-urea-siloxane), PUUS.

Figure S2. Cross-section SEM images.

Figure S3. DSC curves of series Y networks (a) and corresponding Tg domains zoom (b).

Figure S4. DSC curves of series Z networks (a) and corresponding Tg domains zoom (b).

Figure S5. Temperature dependence of the loss factor for samples Y-0% and Y-20% at 1 Hz.

Figure S6. DSC curve of pure PUUS with zoomed Tg domain on heat flow axis.

Sample	Sorption Capacity, wt% d.b. ^a	
PUUS	2.88	
Y-0%	0.65	
Y-5%	0.76	
Y-10%	0.89	
Y-20%	1.29	

Table 1S. The parameters estimated on the basis of water vapor sorption-desorption isotherms

^adry basis

Figure S7. Cyclic stress-strain curves at 100% strain for: a- simple PUUS; b, c, d – the three IPN series.

Figure S8. Dielectric loss in dependence on frequency.

Figure S9. The dependence of tan δ (tan δ =eps"/eps') on the frequency.