Supporting Information

Promotion of morphology transition of diblock copolymer nano-objects via RAFT dispersion copolymerization

Jiemei Zhou, Wenjian Zhang, Chunyan Hong,* Caiyuan Pan

CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and

Engineering, University of Science and Technology of China, Hefei, Anhui, 230026,

P. R. China.

AUTHOR INFORMATION

Corresponding Author

* E-mail: hongcy@ustc.edu.cn.

Figure S1.¹H NMR spectrum of PHEA in D₂O.

Figure S2.¹H NMR spectra (in CDCl₃) of the RAFT dispersion copolymerization system at different polymerization time. The polymerization was conducted with a molar ratio of $[St&MMA]_0/[PHEA_{21}]_0/[AIBN]_0 = 300/3/1$ in methanol at 70 °C (St/MMA = 4/1, total solids concentration = 20%).

Figure S3.¹H NMR spectrum of the RAFT dispersion copolymerization system of St and MMA.

$$Conversion_{St} = \frac{I_{6.30 \sim 7.35} + I_{7.38 \sim 7.45} - 6I_{5.70 \sim 5.80}}{I_{6.30 \sim 7.35} + I_{7.38 \sim 7.45} - I_{5.70 \sim 5.80}} \times 100\%$$
(S1)

$$Conversion_{MMA} = \frac{I_{3.70 \sim 3.81} - 3I_{5.55 \sim 5.61}}{I_{3.70 \sim 3.81}} \times 100\%$$
(S2)

$$Conversion_{St\&MMA} = \frac{n_{St} \times Conversion_{St} + n_{MMA} \times Conversion_{MMA}}{n_{St} + n_{MMA}} \times 100\%$$
(S3)

 n_{St} and n_{MMA} are the initial molar quantity of the feeding St and MMA, respectively.

Entry	Polymerization time (h)	Conversion of St ^a (%)	Conversion of MMA ^a (%)	DP of P(St- co-MMA) block	$\mathbf{M_n}^b$	M _w /M _n ^b	TEM morphology
Figure 3	0				3000	1.13	
	6	13	18	14	4100	1.07	n. d.
	12	22	29	24	5000	1.06	n. d.
	18	26	34	28	5900	1.07	n. d.
	24	34	41	35	7200	1.07	S
	30	49	54	50	10100	1.08	w, v
	36	83	81	82	19400	1.05	V
	42	94	92	93	22900	1.05	v
	48	96	94	96	24600	1.04	V
	54	97	96	97	24700	1.04	V

Table S1. Polymerization time, monomer conversions, molecular weights and morphology characterization of $PHEA_{21}$ -b-P(St-co-MMA)_x di-block copolymers synthesized by RAFT dispersion copolymerization

^{*a*} The results were calculated based on ¹H NMR spectra in CDCl₃. ^{*b*} The numberaverage molecular weight and polydispersity of di-block copolymers were determined by GPC measurements. The polymerization was conducted with a molar ratio of [St&MMA]₀/[PHEA₂₁]₀/[AIBN]₀ = 300/3/1 in methanol for different polymerization times (St/MMA = 4/1, solids concentration = 20%). Abbreviation: n.d. = not determined, s = spheres, w = nanowires, v = vesicles.

Figure S4. TEM images of PHEA₂₁-b-P(St-co-MMA)_x nanoparticles fabricated by RAFT dispersion copolymerization of St and MMA at different polymerization times. The polymerization was conducted with a molar ratio of $[St\&MMA]_0/[PHEA_{21}]_0/[AIBN]_0 = 300/3/1$ in methanol at 70 °C (St/MMA = 4/1, total solids concentration = 20%). The values of x are determined to be 35 (a), 50 (b), 82 (c) and 96 (d), respectively. All scale bars are 200 nm.

Entry	Molar ratio of St/MMA	Target DP of P(St-co-MMA)	Solids (wt %)	Conversion ^a	Actual DP of P(St-co-MMA)	$\mathbf{M_n^b}$	$M_w/M_n^{\ b}$	Morphology ^c
	7/3	50	20%	73%	38	9500	1.05	S
	7/3	60	20%	72%	44	10200	1.06	S
	7/3	70	20%	70%	49	11900	1.06	S&W
	7/3	80	20%	80%	63	13500	1.06	W&V
	7/3	90	20%	80%	72	19300	1.04	V
	7/3	100	20%	87%	86	22300	1.04	V
	7/3	50	30%	95%	47	10600	1.09	S&W
	7/3	60	30%	90%	53	13500	1.08	W&V
	7/3	70	30%	97%	68	14500	1.07	W&V
Figure 4A	7/3	80	30%	96%	76	18300	1.05	V
	7/3	90	30%	98%	88	20000	1.06	V
	7/3	100	30%	94%	94	20400	1.06	V
	7/3	50	40%	98%	49	10100	1.09	S&W
	7/3	60	40%	98%	59	13000	1.10	S&W&V
	7/3	70	40%	99%	70	15800	1.10	V
	7/3	80	40%	99%	79	18200	1.09	V
	7/3	90	40%	98%	88	20400	1.08	V
	7/3	100	40%	98%	98	22100	1.07	V
	4/1	50	20%	83%	42	9800	1.05	S
	4/1	60	20%	89%	54	13600	1.05	S
	4/1	70	20%	95%	66	15600	1.04	S
	4/1	80	20%	97%	77	18400	1.03	S&V
	4/1	90	20%	98%	88	21400	1.03	S&V
	4/1	100	20%	97%	96	24500	1.04	V
	4/1	50	30%	98%	49	9800	1.08	S
	4/1	60	30%	99%	60	12300	1.08	S
Figure 4B	4/1	70	30%	99%	69	14700	1.07	S&V
	4/1	80	30%	99%	79	18100	1.05	V

Table S2. Monomers conversions, number-average molecular weight and polydispersity, and TEM morphology of $PHEA_{21}$ -b-P(St-co-MMA)_x di-block copolymers synthesized by RAFT dispersion copolymerization in methanol.

	4/1	90	30%	99%	89	19500	1.05	V
	4/1	100	30%	99%	99	22600	1.04	V
	4/1	50	40%	99%	50	10100	1.10	S
	4/1	60	40%	99%	50	12100	1.10	S&W&V
	4/1	70	40%	100%	70	14600	1.09	S&W&V
	4/1	80	40%	99%	79	16400	1.07	V
	4/1	90	40%	100%	90	21400	1.05	V
	4/1	100	40%	100%	100	23900	1.04	V
	9/1	50	20%	96%	48	10600	1.04	S
	9/1	60	20%	96%	58	13200	1.04	S
	9/1	70	20%	97%	68	16100	1.04	S
	9/1	80	20%	96%	77	19900	1.03	S
	9/1	90	20%	97%	88	21700	1.03	S
	9/1	100	20%	98%	98	23200	1.03	S
	9/1	50	30%	99%	50	11800	1.06	S
	9/1	60	30%	99%	59	14700	1.05	S
	9/1	70	30%	99%	69	18000	1.06	S
Figure 4C	9/1	80	30%	99%	79	19500	1.04	S&V
	9/1	90	30%	99%	89	20600	1.05	S&V
	9/1	100	30%	99%	99	24200	1.05	S&V
	9/1	50	40%	100%	50	11700	1.08	S
	9/1	60	40%	100%	60	14300	1.08	S& V
	9/1	70	40%	100%	70	17300	1.05	S&V
	9/1	80	40%	100%	80	18100	1.08	S&V
	9/1	90	40%	100%	90	20600	1.05	V
	9/1	100	40%	100%	100	24600	1.05	V

^a The results were calculated based on ¹H NMR spectra in CDCl₃. ^b The numberaverage molecular weight and polydispersity of di-block copolymers were determined by GPC measurements. ^c The morphologies formed in methanol were identified by TEM. Abbreviation: S = spheres, W = nanowires, V = vesicles.