Supporting information to

An ATRP-based approach towards water-borne anisotropic polymer-Gibbsite nanocomposites

Olessya P. Loiko,^a Anne B. Spoelstra, ^a Alexander M. van Herk, ^{a,b} Jan Meuldijk ^a and Johan P.A. Heuts*^a

^{a.} Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands. E-mail: j.p.a.heuts@tue.nl ^{b.} Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island 627833, Singapore.

Synthesis and characterisation of anionic random ATRP copolymer

Figure S1. Plot of *M*n and PDI vs monomer conversion for BA-co-tBA at [monomer]:[2-bromo-2-methylpropionic acid phenyl ester]= 200:1 in the presence of 10 vol% DMF at 70 °C.

Figure S2. UV and DRI SEC chromatograms of ATRP macroinitiator before hydrolysis

Preparation and characterisationg of polymer-Gibbsite latex particles

Effect of [Cu²⁺] on Gibbsite-ATRP macroinitiator dispersion

Figure S3. TEM micrograph of colloidal instable Gibbsite platelets after copper (II) catalyst addition.

Effect of monomer feed rate on polymer-Gibbsite latex particles morphology

Figure S4. cryo-TEM images of tilt series recorded on polymer-Gibbsite latex particles obtained at the feed rate = 4.6 mg min^{-1} : (a) tilt +20°, (b) tilt 0°, (c)tilt -20°.

Figure S5. cryo-TEM images of tilt series recorded on polymer-Gibbsite latex particles obtained at the feed rate = 9 mg min⁻¹: (a) tilt 0° , (b) tilt +45°.

Figure S6. cryo-TEM images of polymer-Gibbsite latex particles obtained at the feed rate = 18 mg min^{-1} .

Figure S7. TEM images of polymer-Gibbsite latex particles obtained at the feed rate = 90 mg min^{-1} .

Potential loss of Br endgroups during hydrolysis of t-BA groups

The initiator ethyl α -bromoisobutyrate was subjected to the same hydrolysis conditions as the BA-*co-t*BA cooligomers and was characterized before and after reaction by ¹H and ¹³C NMR. The spectra shown in Figure S8 show that there is no significant loss in Br functionality.

Figure S8a. ¹H NMR (CDCl₃) of ethyl α -bromoisobutyrate in dichloromethane: $\delta(CH_3)=1.29$, $\delta(C-(CH_3)_2)=1.92$, $\delta(O-CH_2)=4.25$.

Figure S8b. ¹H NMR (CDCl₃) of ethyl α -bromoisobutyrate in dichloromethane after addition of TFA (24h): δ (CH₃)=1.3, δ (C-(CH₃)₂)=1.91, δ (O-CH₂)=4.23.

Figure S8c. ¹³C NMR (CDCl₃) of ethyl α -bromoisobutyrate in dichloromethane: δ (CH₃)=13.60, δ (C-(CH₃)₂)=30.50, δ (Br-C-(CH₃)₂)=55.82, δ (O-CH₂)=61.82, δ (C=O)=171.41.

Figure 8d. ¹³C NMR (CDCl₃) of ethyl α -bromoisobutyrate in dichloromethane: δ (CH₃)=14.01, δ (C-(CH₃)₂)=30.95, δ (Br-C-(CH₃)₂)=56.01, δ (O-CH₂)=62.01, δ (C=O)=171.98. Trifluoroacetic acid: δ (COOH)=113.33, δ (C-F₃)=161.24