Supporting Information for

Aggregation-induced emission: the origin of lignin

fluorescence

Yuyuan Xue,^{a, b} Xueqing Qiu,*, ^{a, b} Ying Wu,^{a, b} Yong Qian,^{a, b} Mingsong Zhou,^{a, b} Yonghong Deng,^{a, b} and Yuan Li*, ^{a, b}

a School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China.

b State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China.

* Corresponding authors' E-mail: Yuan Li celiy@scut.edu.cn Tel.: +86-020-87114033 Xueqing Qiu cexqqiu@scut.edu.cn. Tel.: +86-020-87114722

Table of contents

1. Synthesis of SAL1s and SAL2
2. UV spectra of AL in water at pH=12, SAL1-0.1, SAL1-0.5 and SAL2
in pure water
3. PL spectra of SAL1-1 in water and water-ethanol mixtures at different
excitation wavelength
4. The functional group contents and molecular weight of SALs
5. PL spectra of AL in ethanol and water-ethanol mixtures
6. ¹ H-NMR spectra of SALs in DMSO- d_6
7. Fourier transform infrared spectroscopy (FT-IR) spectra of SALsS9
8. The molecular weight distributions of SALs
9. PL spectra of SAL1-1 and SAL2 in water and water-glycerinum
mixtures
10. PL spectra of SAL2 in mixed solutions

1. Synthesis of SAL1s and SAL2

Scheme S1 Synthesis route of SAL1s and SAL2

2. UV spectra of AL in water at pH=12, SAL1-0.1, SAL1-0.5 and SAL2 in pure water

Figure S1. UV spectra of AL in water at pH=12, SAL1-0.1, SAL1-0.5 and SAL2 in pure water.

3. PL spectra of SAL1-1 in water and water-ethanol mixtures at different

excitation wavelength

Figure S2. PL spectra of SAL1-1 in water and water-ethanol mixtures at different excitation wavelength (280, 350 and 370 nm).

Table S1. The functional group contents and molecular weight of SALs.							
Samples		AL	SAL1-0.1	SAL1-0.5	SAL1-1	SAL2	
Contents	-OH	2.98	1.70	0.98	0.36	2.31	
(mmol g ⁻¹)	-SO ₃ H	-	0.73	1.55	2.61	1.77	
Molecule weight (Mw/Da)		4570	7447	7571	7992	8112	

4. The functional group contents and molecular weight of SALs

5. PL spectra of AL in ethanol and water-ethanol mixtures

Figure S3. PL spectra of AL in ethanol and water-ethanol mixtures (1 mg/L, λ_{ex} =350 nm)

6. ¹H-NMR spectra of SALs in DMSO- d_6

Figure S4. ¹H-NMR spectra of SALs in DMSO- d_6 .

7. Fourier transform infrared spectroscopy (FT-IR) spectra of SALs

Figure S5. Fourier transform infrared spectroscopy (FT-IR) spectra of SALs.

8. The molecular weight distributions of SALs

Figure S6. The molecular weight distributions of SALs.

PL spectra of SAL1-1 and SAL2 in water and water-glycerinum mixtures

Figure S7. PL spectra of SAL1-1 and SAL2 in water and water-glycerinum mixtures (100 mg/L, λ_{ex} =350 nm).

10. PL spectra of SAL1-1 and SAL2 in water and water-glycerinum

mixtures

Figure S8. a) PL spectra of sulfonated alkali lignin (SAL2) in water and waterethanol mixtures (100 mg/L, λ_{ex} =350 nm). b) The fluorescent image of SAL2 in water and water-ethanol (1:9) mixtures and the change curves of PL intensity (yellow line) and emission peak (blue line) in water and water-ethanol mixtures. c) The change curves of PL intensity (yellow line) and emission peak (blue line) in water and waterglycerinum mixtures.