Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Synthesis and Micellization of Redox-Responsive Dynamic Covalent Multi-block Copolymers

Wei Hu, [†], [‡] Changyu He,[#], [‡] Lianjiang Tan, [†] Bingya Liu, [#] Zhenggang Zhu, [#] Bing Gong, ^{||}, [§] Yu-Mei Shen[†], ^{*} and Zhifeng Shao[¶]

[†]Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; [#]Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; [¶]Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; [¶]College of Chemistry, Beijing Normal University, Beijing 100875, China; [§]Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, United States.

[‡]These two authors contributed equally to this work.

*Corresponding author. E-mail: <u>yumeishen@sjtu.edu.cn</u>

List of abbreviations

Abbreviations		Full Name		
	NMR	Nuclear Magnetic Resonance		
Measures	GPC	Gel Permeation Chromatography		
	DLS	Dynamic Light Scattering		
	TLC	Thin-Layer Chromatography		
	MTT	3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium		
		bromide		
	СМС	Critical Micelle Concentration		
	DLC	Drug Loading Content		
	DLE	Drug Loading Efficiency		
	PDI	Polydispersity Index		
	MWCO	Molecular Weight Cut Off		
	PEG	Polyethylene glycol		
	PLA	Polylactic acid		
	DOX	Doxorubicin		
	GSH	Glutathione		
	BSO	Buthionine Sulfoxide		
	DMF	N,N-dimethylformamide		
	DMSO	Dimethyl Sulfoxide		
Reagents	DCM	Dichloromethane		
	THF	Tetrahydrofuran		
	HATU	2-(7-Aza-1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium		
		hexafluorophosphate		
	NMM	N-methylmorpholine		
	DMAP	4-dimethylamiopryidine		
	DPH	1,6-diphenylhexa-1,3,5-triene		
	TEA	Triethylamine		
	PBS	Phosphate Buffered Saline		
	DTT	DL-Dithiothreitol		
	DMEM	Dulbecco's modified Eagle's medium		
	FBS	Fetal Bovine Serum		
Abbreviations Structures				
Intermediates	strand A	Ph ₃ CS HOH		
	O ₂ N-PEG-NO ₂	$O_2 N O_2 O_2 N O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2$		

Scheme S1. Synthetic route of the end-modified polymer A-PEG-A and B-PLA-B

Figure S1. ¹H-NMR (400 MHz) spectra of B-PLA₃₀₀₀-B, A-PEG₄₀₀₀-A and [PLA₃₀₀₀-PEG₄₀₀₀]_t in CDCl₃.

Figure S2. ¹H-NMR (400 MHz) spectra of B-PLA₃₀₀₀-B, A-PEG₂₀₀₀-A and [PLA₃₀₀₀-PEG₂₀₀₀]_t in CDCl₃

Figure S3. Gel permeation chromatography (GPC) traces of B-PLA₃₀₀₀-B, $[PLA_{3000}-PEG_{4000}]_t$ and A-PEG₄₀₀₀-A

Figure S4. Gel permeation chromatography (GPC) traces of B-PLA₃₀₀₀-B, [PLA₃₀₀₀-PEG₂₀₀₀]t and A-PEG₂₀₀₀-A

Table S1. The block numbers of multi-block copolymers					
	Copolymers	M_n	PDI	Num (avg. number of blocks)	
[P	LA ₅₀₀₀ -PEG ₄₀₀₀] _t	18300	1.21	4.26	
[P	LA ₃₀₀₀ -PEG ₄₀₀₀]t	15600	1.19	4.59	
[P	LA ₃₀₀₀ -PEG ₂₀₀₀]t	9700	1.21	4.04	

Estimated by GPC (THF, 1 mL/min) using polystyrene standards

Figure S5. Relationship of the absorbance intensity of DPH as a function of the copolymer concentration of [PLA₃₀₀₀-PEG₄₀₀₀]_t in aqueous solution at room temperature

Figure S6. Relationship of the absorbance intensity of DPH as a function of the copolymer concentration of [PLA₃₀₀₀-PEG₂₀₀₀]_t in aqueous solution at room temperature

Figure S7. DLS plots and TEM images of of blank (a), (c) and DOX-loaded (b), (d) $[PLA_{3000}-PEG_{4000}]_t$ micelle

Figure S8. DLS plots and TEM images of of blank (a), (c) and DOX-loaded (b), (d) [PLA₃₀₀₀-PEG₂₀₀₀]_t micelle

Figuer S9. DLS plot of $[PLA_{3000}-PEG_{4000}]_t$ micelles after being incubated with 1.0 mM, 5.0 mM and 10 mM DTT for 2 h

Figuer S10. DLS plot of [PLA₃₀₀₀-PEG₂₀₀₀]_t micelles after being incubated with 1.0 mM, 5.0 mM and 10 mM DTT for 2 h

Figuer S11. DLS plot of size change of [PLA₃₀₀₀-PEG₄₀₀₀]_t micelle over time at physiological temperature 37 °C

Figuer S12. DLS plot of size change of [**PLA**₃₀₀₀-**PEG**₂₀₀₀]_t micelles over time at physiological temperature 37 °C

Figure S13. DOX released from DOX loaded [PLA₃₀₀₀-PEG₄₀₀₀]_t micelle against 1.0 mM DTT as monitored with the fluorescence intensity of DOX (EX: 485nm, EM: 590 nm)

Figure S14. DOX released from DOX loaded [PLA₃₀₀₀-PEG₂₀₀₀]_t micelle against 1.0 mM DTT as monitored with the fluorescence intensity of DOX (EX: 485nm, EM: 590 nm)