Polymerization of ethylene oxide under controlled monomer addition via a mass flow

controller for tailor made polyethylene oxides

Jürgen Vitz,^{a,b,#,*} Tobias C. Majdanski,^{a,b,#} Alexander Meier,^{a,b} Pierre J. Lutz,^c

Ulrich S. Schubert a,b,d,*

Supporting Information

Fig. S1 Timeline of installations up to the present.

Autoclave system	Sensors & converters	Control & automation
2 x Autoclave 250 mL	4 x PT1000	S7-1200 CPU 1212C
2 x Pressure burette 250 mL (jacketed)	2 x Manometer	2x SM 1231 AI
Pressure burette 250 mL	2 x Temperature converter 9113B with display 4501	CM 1241 RS232
Pressure burette 100 mL	2 x Universal converter 9116B2 with display 4501	CM 1243-5 Profibus-DP
Compr. air motor with magnetic coupling	Power supply 9420	CSM 1277 Network switch
Valves, rupture discs, etc.		PM 1207 Power supply
2 x Cryostat for heating/cooling		mini CoriFLOW

Table S1 Equipment used for the polymerization of ethylene oxide.

Fig. S2 MALDI-TOF-MS spectrum of PEO (2)

Fig. S3 MALDI-TOF-MS spectrum of PEO (3)

Fig. S4 MALDI-TOF-MS spectrum of PEO (4)

Fig. S5 ¹H NMR spectrum of PEO (1) (300 MHz, CD₂Cl₂).

Fig. S7 ¹H NMR spectrum of PEO (3) (300 MHz, CD₂Cl₂).

Fig. S9 SEC elution traces of the synthesized PEO polymers PEO (5) and PEO (6) (eluent DMAc + 0.21 % LiCl, polyethylene oxide standard).

Fig. S10 ¹H NMR spectrum of PEO (5) (300 MHz, CD₂Cl₂).

Fig. S11 ¹H NMR spectrum of PEO (6) (300 MHz, CD₂Cl₂).

Fig. S12 TGA graphs of PEO-*b*-PAGE (7) and (8), PEO-*stat*-PAGE (9).

Fig. S13 DSC graphs of PEO-b-PAGE (7).

Fig. S14 DSC graphs of PEO-*b*-PAGE (8).

Fig. S15 DSC graphs of PEO-stat-PAGE (9).

Fig. S16 ¹H NMR spectrum of PEO (7a) (300 MHz, DMSO-d₆).

Fig. S17 ¹H NMR spectrum of PEO-*b*-PAGE (7b) (300 MHz, DMSO-d₆).

Fig. S18 ¹H NMR spectrum of PEO (8a) (300 MHz, DMSO-d₆).

Fig. S19 ¹H NMR spectrum of PEO-*b*-PAGE (8b) (300 MHz, DMSO-d₆).

Fig. S20 ¹H NMR spectrum of PEO-*stat*-PAGE (9) (300 MHz, DMSO-d₆).